Collective dynamics in life sciences Lecture 2: the Vicsek model

Pierre Degond

Imperial College London
pdegond@imperial.ac.uk (see http://sites.google.com/site/degond/)
Joint works with:
Amic Frouvelle (Dauphine), Jian-Guo Liu (Duke), Sébastien Motsch (ASU)

1. The Vicsek model
2. Mean-Field model
3. Self-Organized Hydrodynamics (SOH)
4. Properties of the SOH model and extensions
5. Conclusion

1. The Vicsek model

Individual-Based (aka particle) model
self-propelled \Rightarrow all particles have same constant velocity a align with their neighbours up to a certain noise

Time-discrete model
k-th particle position X_{k}^{n}, velocity direction V_{k}^{n}, at $t^{n}=n \Delta t$

$$
\begin{aligned}
& X_{k}^{n+1}=X_{k}^{n}+a V_{k}^{n} \Delta t, \quad\left|V_{k}^{n}\right|=1 \\
& \mathcal{J}_{k}^{n}=\sum_{j,\left|X_{j}^{n}-X_{k}^{n}\right| \leq R} V_{j}^{n}, \quad \bar{V}_{k}^{n}=\frac{\mathcal{J}_{k}^{n}}{\left|\mathcal{J}_{k}^{n}\right|} \\
& \arg \left(V_{k}^{n+1}\right)=\arg \left(\bar{V}_{k}^{n}+\tau_{k}^{n}\right)
\end{aligned}
$$

τ_{k}^{n} drawn uniformly in $[-\tau, \tau] ; \quad R=$ interaction range
$\mathcal{J}_{k}^{n}=$ local particle flux in interaction disk
$\bar{V}_{k}^{n}=$ neighbors' average direction

2. Mean-Field model

Time continuous Vicsek model

Passage to time continuous dynamics:
requires introduction of new parameter: interaction frequency ν
$\dot{X}_{k}(t)=a V_{k}(t)$
$d V_{k}(t)=P_{V_{k}^{\perp}} \circ\left(\nu \bar{V}_{k} d t+\sqrt{2 \tau} d B_{t}^{k}\right), \quad P_{V_{k}^{\perp}}=\mathrm{Id}-V_{k} \otimes V_{k}$
$\mathcal{J}_{k}=\sum_{j,\left|X_{j}-X_{k}\right| \leq R} V_{j}, \quad \bar{V}_{k}=\frac{\mathcal{J}_{k}}{\left|\mathcal{J}_{k}\right|}$

Recover original Vicsek by:
Time discretization Δt s.t. $\nu \Delta t=1$

Gaussian noise \rightarrow uniform
Dimension $n=2 ; \quad$ here $\left(X_{k}, V_{k}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, n \geq 2$

Mean-field model

$f(x, v, t)=$ particle probability density
satisfies a Fokker-Planck equation
$\partial_{t} f+a v \cdot \nabla_{x} f+\nabla_{v} \cdot\left(F_{f} f\right)=\tau \Delta_{v} f$
$F_{f}(x, v, t)=P_{v^{\perp}}\left(\nu \bar{v}_{f}(x, t)\right), \quad P_{v^{\perp}}=\mathrm{Id}-v \otimes v$

$\bar{v}_{f}(x, t)=\frac{\mathcal{J}_{f}(x, t)}{\left|\mathcal{J}_{f}(x, t)\right|}, \quad \mathcal{J}_{f}(x, t)=\int_{|y-x|<R} \int_{\mathbb{S}^{n-1}} f(y, w, t) w d w d y$
$\mathcal{J}_{f}(x, t)=$ particle flux in a neighborhood of x
$\bar{v}_{f}(x, t)=$ direction of this flux
$\left.F_{f}(x, v, t)\right)=$ projection of the flux direction on v^{\perp}
$(x, v) \in \mathbb{R}^{n} \times \mathbb{S}^{n-1} ; \nabla_{v} \cdot, \nabla_{v}$: div and grad on \mathbb{S}^{n-1}
Δ_{v} Laplace-Beltrami operator on the sphere

Passage to dimensionless units

Highlights important physical scales \& small parameters
Choose time scale t_{0}, space scale $x_{0}=a t_{0}$
Set f scale $f_{0}=1 / x_{0}^{n}, F$ scale $F_{0}=1 / t_{0}$
Introduce dimensionless parameters $\bar{\nu}=\nu t_{0}, \bar{\tau}=\tau t_{0}, \bar{R}=\frac{R}{x_{0}}$
Change variables $x=x_{0} x^{\prime}, t=t_{0} t^{\prime}, f=f_{0} f^{\prime}, F=F_{0} F^{\prime}$
Get the scaled Fokker-Planck system (omitting the primes):

$$
\begin{aligned}
& \partial_{t} f+v \cdot \nabla_{x} f+\nabla_{v} \cdot\left(F_{f} f\right)=\bar{\tau} \Delta_{v} f \\
& F_{f}(x, v, t)=P_{v^{\perp}}\left(\bar{\nu} \bar{v}_{f}(x, t)\right), \quad P_{v^{\perp}}=\mathrm{Id}-v \otimes v \\
& \bar{v}_{f}(x, t)=\frac{\mathcal{J}_{f}(x, t)}{\left|\mathcal{J}_{f}(x, t)\right|}, \quad \mathcal{J}_{f}(x, t)=\int_{|y-x|<\bar{R}} \int_{\mathbb{S}^{n}-1} f(y, w, t) w d w d y
\end{aligned}
$$

Macroscoping scaling

Choice of t_{0} such that $\bar{\tau}=\frac{1}{\varepsilon}, \varepsilon \ll 1$
Macroscopic scale: there are many velocity diffusion events within one time unit

Assumption 1: $k:=\frac{\bar{\nu}}{\bar{\tau}}=\mathcal{O}(1)$
Social interaction and diffusion act at the same scale Implies $\bar{\nu}^{-1}=\mathcal{O}(\varepsilon)$, i.e. mean-free path is microscopic

Assumption 2: $\quad \bar{R}=\varepsilon$
Interaction range is microscopic and of the same order as mean-free path $\bar{\nu}^{-1}$
Possible variant: $\bar{R}=\mathcal{O}(\sqrt{\varepsilon})$: interaction range still small but large compared to mean-free path. To be investigated later

With Assumption $2(\bar{R}=\mathcal{O}(\varepsilon))$
Interaction is local at leading order: by Taylor expansion:

$$
\mathcal{J}_{f}=J_{f}+\mathcal{O}\left(\varepsilon^{2}\right), \quad J_{f}(x, t)=\int_{\mathbb{S}^{n-1}} f(x, w, t) w d w
$$

$J_{f}(x, t)=$ local particle flux. From now on, neglect $\mathcal{O}\left(\varepsilon^{2}\right)$ term
Fokker-Planck eq. in scaled variables

$$
\begin{aligned}
& \varepsilon\left(\partial_{t} f^{\varepsilon}+v \cdot \nabla_{x} f^{\varepsilon}\right)+\nabla_{v} \cdot\left(F^{\varepsilon} f^{\varepsilon}\right)=\Delta_{v} f^{\varepsilon} \\
& F^{\varepsilon}(x, v, t)=k P_{v^{\perp}} u_{f^{\varepsilon}}(x, t) \\
& u_{f^{\varepsilon}}(x, t)=\frac{J_{f^{\varepsilon}}}{\left|J_{f^{\varepsilon}}\right|}, \quad J_{f^{\varepsilon}}(x, t)=\int_{\mathbb{S}^{n}-1} f^{\varepsilon}(x, w, t) w d w
\end{aligned}
$$

Hydrodynamic model is obtained in the limit $\varepsilon \rightarrow 0$

3. Self-Organized Hydrodynamics (SOH)

Collision operator

Model can be written

$$
\partial_{t} f^{\varepsilon}+v \cdot \nabla_{x} f^{\varepsilon}=\frac{1}{\varepsilon} Q\left(f^{\varepsilon}\right)
$$

with collision operator

$$
\begin{aligned}
& Q(f)=-\nabla_{v} \cdot\left(F_{f} f\right)+\Delta_{v} f \\
& F_{f}=k P_{v^{\perp}} u_{f} \\
& u_{f}=\frac{J_{f}}{\left|J_{f}\right|}, \quad J_{f}=\int_{\mathbb{S}^{n-1}} f(x, w, t) w d w
\end{aligned}
$$

When $\varepsilon \rightarrow 0, f^{\varepsilon} \rightarrow f$ (formally) such that $Q(f)=0$
\Rightarrow importance of the solutions of $Q(f)=0$ (equilibria)
Q acts on v-variable only ((x, t) are just parameters)

Algebraic preliminaries

Force F_{f} can be written: $\quad F_{f}(v)=k \nabla_{v}\left(u_{f} \cdot v\right)$
Note u_{f} independent of $v((x, t)$ are fixed $)$
Rewrite:

$$
\begin{aligned}
Q(f)(v) & =\nabla_{v} \cdot\left[-f k \nabla_{v}\left(u_{f} \cdot v\right)+\nabla_{v} f\right] \\
& =\nabla_{v} \cdot\left[f \nabla_{v}\left(-k u_{f} \cdot v+\ln f\right)\right]
\end{aligned}
$$

Let $u \in \mathbb{S}^{n-1}$ be given: Solutions of $\nabla_{v}(-k u \cdot v+\ln f)=0$ are proportional to :

$$
f(v)=M_{k u}(v):=\frac{e^{k u \cdot v}}{\int_{\mathbb{S}^{n-1}} e^{k u \cdot v} d v}
$$

von Mises-Fisher (VMF) distribution

VMF distribution

Again:

$$
M_{k u}(v):=\frac{e^{k u \cdot v}}{\int_{\mathbb{S}^{n-1}} e^{k u \cdot v} d v}
$$

$k>0$: concentration parameter; $u \in \mathbb{S}^{n-1}$: orientation
Order parameter: $c_{1}(k)=\int_{\mathbb{S}^{n-1}} M_{k u}(v) u \cdot v d v$
$k \xrightarrow{\nearrow} c_{1}(k), \quad 0 \leq c_{1}(k) \leq 1$
Flux: $\int_{\mathbb{S}^{n-1}} M_{k u}(v) v d v=c_{1}(k) u$
Here:
concentration parameter k and order parameter $c_{1}(k)$ are constant

Definition: equilibrium manifold $\quad \mathcal{E}=\{f(v) \mid Q(f)=0\}$
Theorem: $\mathcal{E}=\left\{\rho M_{k u}\right.$ for arbitrary $\rho \in \mathbb{R}_{+}$and $\left.u \in \mathbb{S}^{n-1}\right\}$
Note: dim mediumblue $\mathcal{E}=n$
Proof: follows from entropy inequality:

$$
H(f)=\int Q(f) \frac{f}{M_{k u_{f}}} d v=-\int M_{k u_{f}}\left|\nabla_{v}\left(\frac{f}{M_{k u_{f}}}\right)\right|^{2} \leq 0
$$

follows from $Q(f)=\nabla_{v} \cdot\left[M_{k u_{f}} \nabla_{v}\left(\frac{f}{M_{k u_{f}}}\right)\right]$
Then, $Q(f)=0$ implies $H(f)=0$ and $\frac{f}{M_{k u_{f}}}=$ Constant and f is of the form $\rho M_{k u}$
Reciprocally, if $f=\rho M_{k u}$, then, $u_{f}=u$ and $Q(f)=0$
$f^{\varepsilon} \rightarrow f$ as $\varepsilon \rightarrow 0$ with $v \rightarrow f(x, v, t) \in \mathcal{E}$ for all (x, t)
Implies that $f(x, v, t)=\rho(x, t) M_{k u(x, t)}$
Need to specify the dependence of ρ and u on (x, t)
Requires n equations since $(\rho, u) \in \mathbb{R}_{+} \times \mathbb{S}^{n-1}$ are determined by n independent real quantities
f satisfies
$\partial_{t} f+v \cdot \nabla_{x} f=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} Q\left(f^{\varepsilon}\right)$
Problem: $\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} Q\left(f^{\varepsilon}\right)$ is not known
Trick:
Collision invariant

Collision invariant

is a function $\psi(v)$ such that $\int Q(f) \psi d v=0, \quad \forall f$
Form a linear vector space \mathcal{C}
Multiply eq. by $\psi: \varepsilon^{-1}$ term disappears
Find a conservation law:
$\partial_{t}\left(\int_{\mathbb{S}^{n-1}} f(x, v, t) \psi(v) d v\right)+\nabla_{x} \cdot\left(\int_{\mathbb{S}^{n-1}} f(x, v, t) \psi(v) v d v\right)=0$
Have used that ∂_{t} or ∇_{x} and $\int \ldots d v$ can be interchanged Limit fully determined if $\operatorname{dim} \mathcal{C}=\operatorname{dim} \mathcal{E}=n$
$\mathcal{C}=\operatorname{Span}\{1\}$. Interaction preserves mass but no other quantity Due to self-propulsion, no momentum conservation $\operatorname{dim} \mathcal{C}=1<\operatorname{dim} \mathcal{E}=n$. Is the limit problem ill-posed ?

Proof that $\psi(v)=1$ is a Cl ?
Obvious. $Q(f)=\nabla_{v} \cdot[\ldots]$ is a divergence
By Stokes theorem on the sphere, $\int Q(f) d v=0$
Use of the $\mathrm{Cl} \psi(v)=1$: Get the conservation law

$$
\partial_{t}\left(\int_{\mathbb{S}^{n-1}} f(x, v, t) d v\right)+\nabla_{x} \cdot\left(\int_{\mathbb{S}^{n-1}} f(x, v, t) v d v\right)=0
$$

With $f=\rho M_{k u}$ we have

$$
\int f(x, v, t) d v=\rho(x, t), \quad \int f(x, v, t) v d v=\rho c_{1} u
$$

We end up with the mass conservation eq.

$$
\partial_{t} \rho+c_{1} \nabla_{x} \cdot(\rho u)=0
$$

Generalized collision invariants (GCI)

Given $u \in \mathbb{S}^{n-1}$, Define $\mathcal{Q}_{u}(f)=\nabla_{v} \cdot\left[M_{k u} \nabla_{v}\left(\frac{f}{M_{k u}}\right)\right]$
Note $f \rightarrow \mathcal{Q}_{u}(f)$ is linear and $Q(f)=\mathcal{Q}_{u_{f}}(f)$
A function $\psi_{u}(v)$ is a GCl associated to u, iff

$$
\int \mathcal{Q}_{u}(f) \psi_{u} d v=0, \quad \forall f \text { such that } u_{f} \| u
$$

The set of $\mathrm{GCI} \mathcal{G}_{u}$ is a linear vector space
Theorem: Given $u \in \mathbb{S}^{n-1}, \mathcal{G}_{u}$ is the n-dim vector space : $\mathcal{G}_{u}=\left\{v \mapsto C+h(u \cdot v) \beta \cdot v\right.$, with arbitrary $C \in \mathbb{R}$ and $\beta \in \mathbb{R}^{n}$ with $\left.\beta \cdot u=0\right\}$. Introduce $\cos \theta=u \cdot v$ and $h(\cos \theta)=g(\theta) / \sin \theta$
g is the unique solution in V of problem $L g=\sin \theta$ with

$$
\begin{gathered}
L g(\theta)=-\sin ^{2-n} \theta e^{-k \cos \theta}\left(\sin ^{n-2} \theta e^{k \cos \theta} g^{\prime}(\theta)\right)^{\prime}+(n-2) \sin ^{-2} \theta g(\theta) \\
V=\left\{g \left\lvert\,(n-2)(\sin \theta)^{\frac{n}{2}-2} g \in L^{2}(0, \pi)\right., \quad(\sin \theta)^{\frac{n}{2}-1} g \in H_{0}^{1}(0, \pi)\right\}
\end{gathered}
$$

Use $\mathrm{GCl} \quad h(u \cdot v) \beta \cdot v$ for $\beta \in \mathbb{R}^{n}$ with $\beta \cdot u=0$
Equivalently, use the vector valued function $\vec{\psi}_{u}(v)=h(u \cdot v) P_{u} \perp v$
Multiply FP eq by $\mathrm{GCl} \vec{\psi}_{u_{f} \varepsilon}: O\left(\varepsilon^{-1}\right)$ terms disappear

$$
\int Q(f) \vec{\psi}_{u_{f}} d v=\int \mathcal{Q}_{u_{f}}(f) \vec{\psi}_{u_{f}} d v=0 \quad \text { by property of } \mathrm{GCI}
$$

Gives:

$$
\int\left(\partial_{t} f^{\varepsilon}+v \cdot \nabla_{x} f^{\varepsilon}\right) \vec{\psi}_{u_{f^{\varepsilon}}} d v=0
$$

As $\varepsilon \rightarrow 0: f^{\varepsilon} \rightarrow \rho M_{k u}$ and $\vec{\psi}_{u_{f} \varepsilon} \rightarrow \vec{\psi}_{u} \quad$ Leads to:

$$
\int\left(\partial_{t}\left(\rho M_{k u}\right)+v \cdot \nabla_{x}\left(\rho M_{k u}\right)\right) \vec{\psi}_{u} d v=0
$$

Not a conservation equation
because of dependence of $\vec{\psi}_{u}$ upon (x, t) through u
∂_{t} or ∇_{x} and $\int \ldots d v$ cannot be interchanged

Velocity equation (II)

Velocity equation takes the form:

$$
\rho\left(\partial_{t} u+c_{2}\left(u \cdot \nabla_{x}\right) u\right)+P_{u} \nabla_{x} \rho=0
$$

Computations are straightforward but tedious
Coefficient c_{2} depends on GCl

$$
c_{2}=\frac{\int_{0}^{\pi} \cos \theta h(\cos \theta) e^{k \cos \theta} \sin ^{n} \theta d \theta}{\int_{0}^{\pi} h(\cos \theta) e^{k \cos \theta} \sin ^{n} \theta d \theta}
$$

Self-Organized Hydrodynamics (SOH)

System for the density $\rho(x, t)$ and velocity direction $u(x, t)$:

$$
\begin{aligned}
& \partial_{t} \rho+c_{1} \nabla_{x}(\rho u)=0 \\
& \rho\left(\partial_{t} u+c_{2}\left(u \cdot \nabla_{x}\right) u\right)+P_{u} \perp \nabla_{x} \rho=0 \\
& |u|=1
\end{aligned}
$$

Rigorous limit $\varepsilon \rightarrow 0$
[N Jiang, L Xiong, T-F Zhang, arXiv:1508.04640]

4. Properties of the SOH model and extensions

$$
\begin{aligned}
& \partial_{t} \rho+c_{1} \nabla_{x} \cdot(\rho u)=0 \\
& \rho\left(\partial_{t} u+c_{2}\left(u \cdot \nabla_{x}\right) u\right)+P_{u} \perp \nabla_{x} \rho=0, \quad|u|=1
\end{aligned}
$$

Similar to Compressible Euler eqs. of gas dynamics
System of hyperbolic eqs.
But major differences:
Geometric constraint $|u|=1$
Preserved in time if satisfied by the initial condition thanks to the projection operator $P_{u \perp}$
But system not in conservative form i.e. spatial derivatives not in divergence form
$c_{2} \neq c_{1}$: loss of Galilean invariance
Vision anisotropy (or blind zone) reinforces this effect
[Frouvelle, M3AS 2012]

Local existence of smooth solutions

[PD Liu Motsch Panferov, MAA 20 (2013) 089]
in 2D and in 3D under the condition:
\exists a direction ω and $\left|u_{0} \times \omega\right| \geq C>0$ at $t=0$
Both rely on symmetrization and energy estimates
Non-smooth solutions
Non-conservative model, no entropy
Shock relations unknown
SOH is relaxation limit $\zeta \rightarrow 0$ of:

$$
\partial_{t}(\rho u)+c_{2} \nabla_{x} \cdot(\rho u \otimes u)+\nabla_{x} \rho=-\frac{1}{\zeta} \rho\left(1-|u|^{2}\right) u
$$

But limit system not conservative:
Relaxation theory not applicable

Shock-wave solutions

Selection principle: physically valid solutions $=$ consistent approximations of the Vicsek particle system

Numerical observation [S Motsch, L Navoret, MMS 9 (2011) 1253]
Relaxation based scheme \rightarrow valid solutions
Standard shock capturing methods \rightarrow not valid

Vicsek (dots), SOH (solid line), ρ (blue), θ (green), c_{1} (red)

Mills / Bibliographical remarks

Mills: $\rho(r)=\rho_{0}\left(r / r_{0}\right)^{c / d}, \quad u=x^{\perp} / r$
are stationary solutions. Stability ?
Shape depends on noise level small noise: $\rho(r)$ convex: sharp edged mills large noise: $\rho(r)$ concave: fuzzy edges

Previous models of active fluids

use average velocity (i.e. $c_{1} u$)
[Toner, Tu \& Ramaswamy, Annals of Physics 2005] except e.g. [Baskaran \& Marchetti, PRL 2008]
 who use 'polarization vector' ρu

So far: scaling of interaction range \bar{R} is such that $\bar{R}=\varepsilon$
\bar{R} is microscopic and of the same order as the mean-free path $\bar{\nu}^{-1}$
Different possibility is $\bar{R}=\sqrt{\varepsilon}$
\bar{R} is still microscopic
i.e. infinitesimally small at the macroscopic scale but much larger than the mean-free path $\bar{\nu}^{-1}$

Interaction force must be Taylor expanded at the next order

$$
F_{f}=k P_{v^{\perp}}\left(u_{f}+\varepsilon \frac{H}{\left|J_{f}\right|} P_{u_{f}^{\perp}} \Delta_{x} J_{f}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

H is a constant which only depends on the dimension

Ext. 1: large interaction range (ii)

The $\mathcal{O}(\varepsilon)$ term comes into the FP eq

$$
\partial_{t} f^{\varepsilon}+v \cdot \nabla_{x} f^{\varepsilon}+\frac{k H}{\left|J_{f^{\varepsilon}}\right|} \nabla_{v} \cdot\left(P_{v^{\perp}} P_{u_{f}^{\perp}} \Delta_{x} J_{f^{\varepsilon}} f^{\varepsilon}\right)=\frac{1}{\varepsilon} Q\left(f^{\varepsilon}\right)
$$

Its contribution in the SOH model needs to be evaluated
The resulting model is:

$$
\begin{aligned}
& \partial_{t} \rho+c_{1} \nabla_{x} \cdot(\rho u)=0 \\
& \rho\left(\partial_{t} u+c_{2}\left(u \cdot \nabla_{x}\right) u\right)+P_{u \perp} \nabla_{x} \rho=c_{3} P_{u^{\perp}} \Delta_{x}(\rho u), \quad|u|=1
\end{aligned}
$$

Viscous version of the SOH model
Similar to the compressible Navier-Stokes system
Scaling retains non-local effects via velocity diffusion
Local existence of smooth solutions in 2D. No result in 3D.
$c_{3}=k H\left((n-1)+c_{2}\right)>0$

Ext 2: curvature control

Agents control curvature instead of direction
like driver with steering wheel
and try to align with neighbors
Persistent Turner [Gautrais et al, J. Math. Biol. 2009]

Macro model is SOH

Ext. 3: precession

Add precession (dimension $=3$)

$$
\begin{aligned}
& \varepsilon\left(\partial_{t} f+v \cdot \nabla_{x} f\right)=-\nabla_{v} \cdot\left(F_{f} f\right)+\Delta_{v} f \\
& F_{f}=k P_{v} \perp \bar{v}_{f}+\alpha \bar{v}_{f} \times v \\
& \bar{v}_{f}=u_{f}+\varepsilon \frac{H}{\left|J_{f}\right|} P_{u_{f}} \Delta_{x} J_{f}, \quad u_{f}=\frac{J_{f}}{\left|J_{f}\right|}
\end{aligned}
$$

The limit model is SOH with precession

$$
\partial_{t} \rho+c_{1} \nabla_{x}(\rho u)=0
$$

$\rho\left\{\partial_{t} u+c_{2} \cos \delta\left(u \cdot \nabla_{x}\right) u+c_{2} \sin \delta u \times\left(\left(u \cdot \nabla_{x}\right) u\right)\right\}+P_{u} \perp \nabla_{x} \rho+$

$$
+k H\left\{-\left(2+c_{2} \cos \delta\right) P_{u^{\perp}} \Delta_{x}(\rho u)+\left(c_{2} \sin \delta-\alpha\right) u \times \Delta_{x}(\rho u)\right\}=0
$$

δ related to precession speed α

The Landau-Lifschitz-Gilbert equation

Special case: no self-propulsion and $\rho=1$. Gives:

$$
\begin{aligned}
\partial_{t} u+k H\left\{\left(2 d+c_{2} \cos \delta\right)\right. & \left(u \times\left(u \times \Delta_{x} u\right)\right) \\
& \left.+\left(c_{2} \sin \delta-\alpha\right)\left(u \times \Delta_{x} u\right)\right\}=0
\end{aligned}
$$

Landau-Lifschitz-Gilbert equation
First (to our knowledge) microscopic derivation of LLG eq.

5. Conclusion

Macroscopic models of collective dynamics require new concepts to face new challenges lack of conservation properties, phase transitions, ...

The Self-Organized Hydrodynamic (SOH) model is the paradigmatic fluid model for collective dynamics Its mathematical analysis is widely open
It has potential to model a vast category of
self-organization phenomena

