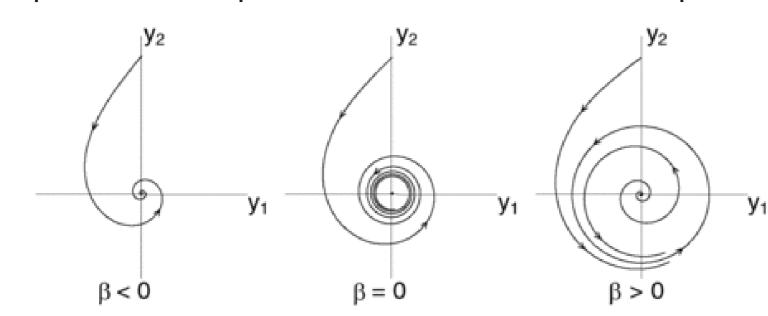
Introduction to Stochastic Hopf Bifurcation

We study the two-dimensional normal form of a Hopf bifurcation with additive white noise and phase-amplitude coupling:

$$dy_1 = (\beta y_1 - \omega y_2 - (ay_1 + by_2)(y_1^2 + y_2^2))dt + \sigma dW_1(t),$$

$$dy_2 = (\beta y_2 + \omega y_1 - (ay_1 - by_2)(y_1^2 + y_2^2))dt + \sigma dW_2(t),$$
(1)

where W_1 , W_2 are independent Brownian motions and ω , a, σ , b > 0. If $\sigma = 0$, such a system exhibits a supercritical Hopf bifurcation for bifurcation parameter $\beta \in \mathbb{R}$:



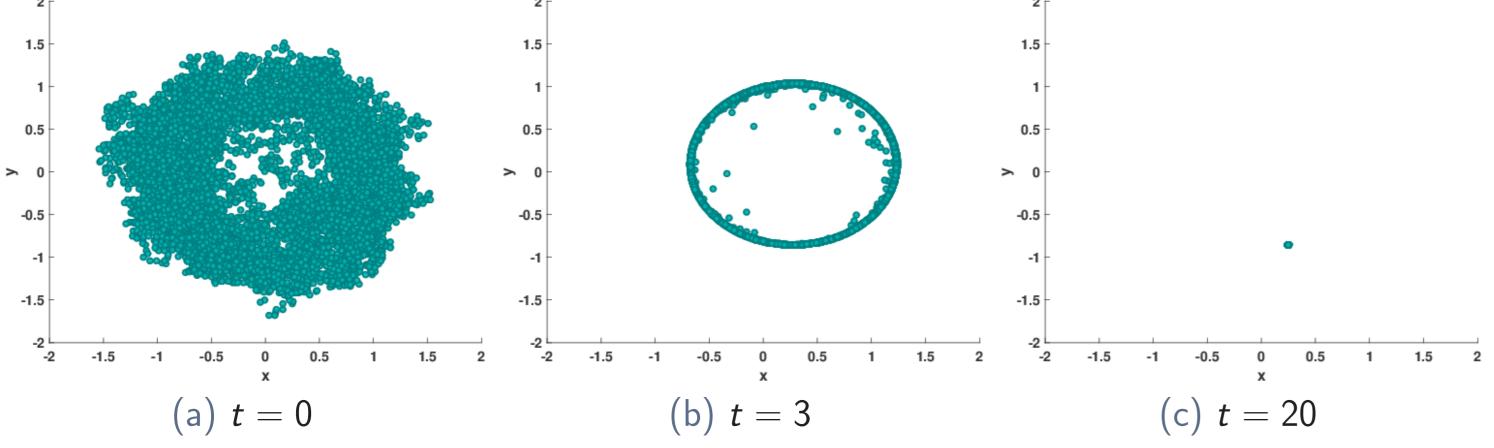
We investigate the system for $\sigma>0$ and study the impact of the parameter b which represents shear via phase-amplitude coupling. This can be seen in polar coordinates

$$dr = \left(\beta r - ar^3 + \frac{\sigma^2}{2r}\right) dt + \sigma dW_r(t),$$
 $d\phi = \left[\omega + br^2\right] dt + \frac{\sigma}{r} dW_\phi(t).$

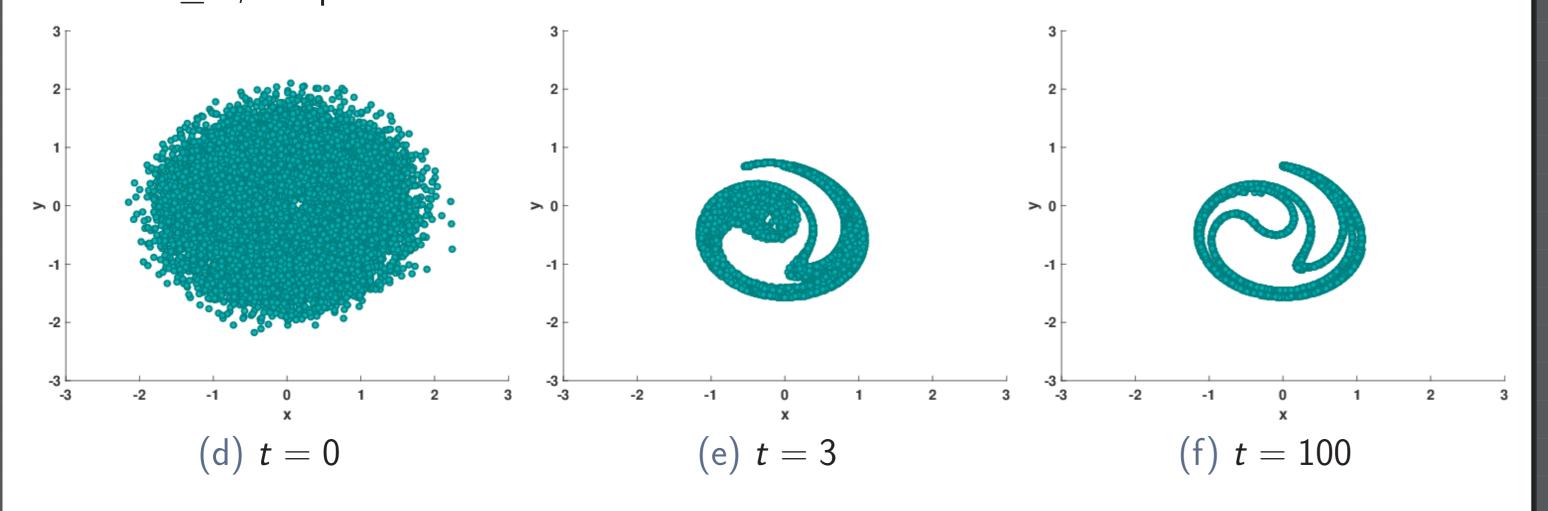
Applications: In the Zebiak-Cane model, which describes the tropical Pacific annual mean climate state, a Hopf bifurcation occurs at a critical value of the ocean-atmosphere coupling strength β . Dijkstra et al. (2008) study the impact of noise on the Hopf bifurcation but don't provide a dynamical analysis and don't consider phase-amplitude coupling. We show transitions between ordered and chaotic behaviour depending on continuous time noise and shear, partially solving a long-standing theoretical problem posed by Lai-Sang Young and co-workers and also investigated by Wieczorek (2009) with respect to Laser models.

Numerical observations

We start simulations at times t < 0 and run the system until time 0. This allows to study fixed attracting objects. We make the following observations for $\beta > 0$, i.e. after the bifurcation. First we observe that, for small $b \ge 0$, trajectories with different initial conditions but exposed to the same noise realisations synchronise:



For $b \ge 8$, the pullback attractor seems to show chaotic behaviour:



Random Dynamical Systems induced by an SDE and invariant measures

We consider the problem of stochastic bifurcations within the framework of random dynamical systems: A **random dynamical system** (RDS) on the measurable space (X, \mathcal{B}) over a *metric dynamical system* $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t)_{t \in \mathbb{R}})$ with time \mathbb{T} is a $\mathcal{B}(\mathbb{T}) \bigotimes \mathcal{F} \bigotimes \mathcal{B}$ -meas. map

$$\varphi: \mathbb{T} \times \Omega \times X \to \mathbb{R}^d, \quad (t, \omega, x) \mapsto \varphi(t, \omega)x,$$

which satisfies for all $\omega \in \Omega$ and $t,s \in \mathbb{T}$ the *cocycle* property

$$\varphi(0,\omega)=\operatorname{id},\quad \varphi(t+s,\omega)=\varphi(t,\theta_s\omega)\circ\varphi(s,\omega).$$

A stochastic differential equation(SDE) of the form

$$dX_t = f(X_t)dt + \sigma(X_t)dW_t \quad X_0 = x, \quad \text{on } \mathbb{R}^d,$$
 (2)

induces a continuous RDS (θ, φ) for time $\mathbb{T} = \mathbb{R}_+$ under typical Lipschitz and growth conditions. In this case (Ω, \mathbb{P}) is the Wiener space and θ_t the ergodic shift map.

A **probability measure** μ on $\Omega \times \mathbb{R}^d$ is **invariant** for the RDS if for $\Theta_t : \Omega \times X \to \Omega \times X$ denoting the skew-product flow, i.e. $\Theta_t(\omega, x) = (\theta_t \omega, \varphi(t, \omega)x)$,

- $1. \Theta_t \mu = \mu$ for all $t \in \mathbb{T}$,
- 2. the marginal of μ on Ω is \mathbb{P} , i.e. $\mu(d\omega, dx) = \mu_{\omega}(dx)\mathbb{P}(d\omega)$.

Random attractors and Lyapunov exponents

Let the state space X be a Polish space (e.g. \mathbb{R}^d as in our case): A **random attractor** $A: \Omega \to \mathcal{P}(X)$ of the RDS (θ, φ) is a \mathbb{P} -a.s. compact set valued mapping with

- 1. $\varphi(t,\omega)A(\omega)=A(\theta_t\omega)$ for all t>0 and a.a. $\omega\in\Omega$,
- 2. $\lim_{t\to\infty} d(\varphi(t,\theta_{-t}\omega)B,A(\omega))=0$ \mathbb{P} -a.s. for every compact $B\subset X$.

If attraction in the limit just holds for all points $x \in X$, we call it a **random point attractor** which is the support for the disintegrations μ_{ω} of an invariant measure μ .

Consider the SDE (2): If $f \in C^{1,\delta}$ and $\sigma \in C^{2,\delta}$ for some $\delta > 0$, the induced RDS (θ, φ) is C^1 . If it has an ergodic inv. measure μ and satisfies an integrability condition, there are real numbers $\lambda_1 > \cdots > \lambda_p$, the **Lyapunov exponents** of φ w.r.t. μ , s.t. for μ -a.e. (ω, x) and for all $0 \neq v \in \mathbb{R}^d$

$$\lim_{t\to\infty}\frac{1}{t}\log\|D\varphi(t,\omega,x)v\|\in\{\lambda_i\}_{i=1}^p.$$

Theorem (Synchronisation)

The random dynamcial system induced by the stochastic differential equation (1) possesses a random attractor $A(\omega)$ and exhibits synchronisation, i.e. $A(\omega)$ is a singleton, for any $\beta \in \mathbb{R}$ if $\lambda_1 < 0$. We know that $\lambda_1 < 0$ if

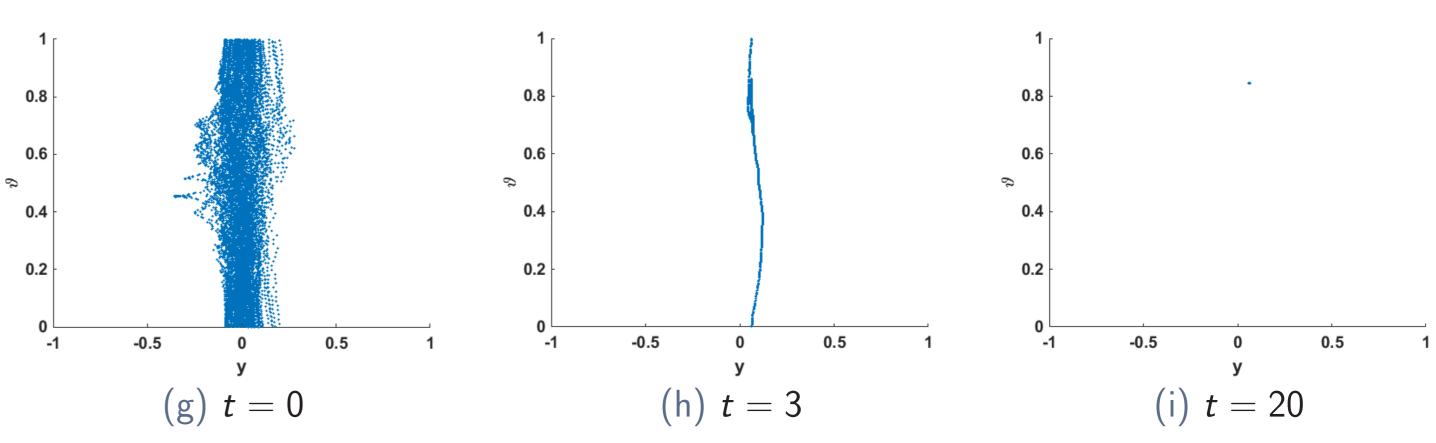
- a) $\beta \leq 0$ and b < a (and/or σ small),
- b) $\beta > 0$ and $0 \le b \le \frac{ac}{2(\alpha+c)} \le \frac{1}{2}a$, where $c = \mathcal{O}(\sigma)$.
- c) we fix $b \ge 0$, define $\varepsilon = \sigma^2 a^2/\beta^2$ and let $\varepsilon \to 0$ ($\lambda_1 = C\varepsilon + \mathcal{O}(\varepsilon^2)$ with C < 0).

Cylinder model

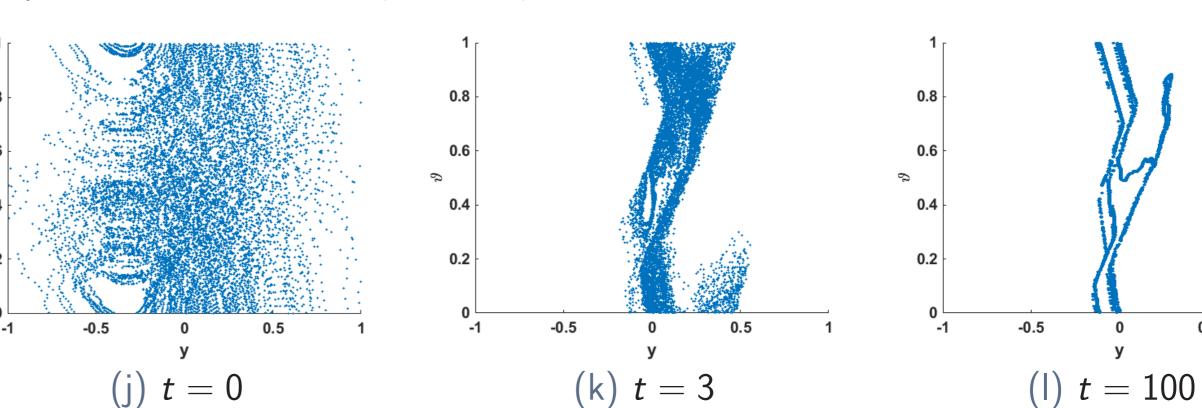
In the case of large shear we expect $\lambda_1>0$ which indicates the existence of a chaotic attractor. As this is difficult to show for (1), we consider the following simlified model of a stochastically driven limit cycle

$$dy = -\alpha y dt + \sigma f(\vartheta) \circ dW_t^1, d\vartheta = (1 + by) dt,$$
(3)

where $(y, \vartheta) \in \mathbb{R} \times \mathbb{S}^1$ are cylindrical amplitude-phase coordinates, and W^1_t denotes one-dimensional Brownian motion entering the equation as noise of Stratonovich type. For the parameter values $\sigma = 0.5, \alpha = 1.5, b = 3$, we observe synchronisation.



For parameter values $\sigma=2, \alpha=1.5, b=3$, we observe chaos:



Theorem (Transition to chaos)

Consider the stochastic differential equation (3) where $f: \mathbb{S}^1 \simeq [0,1) \to \mathbb{R}$ is continuous and piecewise linear with constant absolute value of the derivative almost everywhere. Then for all $\alpha > 0$ and $b \neq 0$, there exist $\sigma_-(\alpha, b) \leq \sigma_0(\alpha, b) \leq \sigma_+(\alpha, b)$ such that the top Lyapunov exponent $\lambda_1(\alpha, b, \sigma)$ of the random attractor of (3) satisfies

$$\lambda_1(\alpha, b, \sigma) \left\{ egin{array}{ll} < 0 & ext{if } 0 < \sigma < \sigma_-(lpha, b) \,, \ &= 0 & ext{if } \sigma = \sigma_0(lpha, b) \,, \ &> 0 & ext{if } \sigma > \sigma_+(lpha, b) \,. \end{array}
ight.$$

This has the following implications: If $0 < \sigma < \sigma_{-}(\alpha, b)$, the random point attractor of (3) is an attracting random equilibrium. If $\sigma > \sigma_{+}(\alpha, b)$ the random point attractor of system (3) is a random strange attractor (and not an attracting random equilibrium).

References

H.A. Dijkstra, L.M. Frankcombe, A.S. von der Heydt. A stochastic dynamical systems view of the Atlantic Multidecadal Oscillation, Philos Trans A Math Phys Eng Sci. 366 (2008), 2545-2560.

M. Engel, J.S.W. Lamb, M. Rasmussen. Bifurcation analysis of a stochastically driven limit cycle, arXiv1606.01137[math.PR], under review, 2016.

S. Wieczorek. Stochastic Bifurcation in Noise-driven Lasers and Hopf Oscillators, Physical Review E 79 (2009), 1–10.