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Abstract

C omplex systems are characterized by the emergence of recurrent dynamical patterns and self-organized behaviors are commonly observed in biology, ecology and socioeconomics. The attempt of modeling such complex systems
leads naturally to consider large families of microscopic identical units. A fundamental problem is to understand how many interacting components organize in a coherent behavior at a macroscopic level. Examples include

polarization (e.g. spin alignment) and synchronization (e.g. phase locking for rotators). A less understood phenomenon of self-organization consists in the emergence of periodic behavior in systems whose units have no tendency to
evolve periodically. In the present poster we discuss some dynamical features of a two-population generalization of the Curie-Weiss model with the scope of investigating simple mechanisms capable to generate a rhythm in large groups
of interacting individuals. In particular, we aim at understanding the role of interaction network topology and interaction delay in enhancing the creation of rhythms. Our main finding indicates that having two groups of spins with possibly
different size and different inter- and intra-population interactions suffices for the emergence of macroscopic oscillations. Moreover, delay may produce periodic behavior in interaction network configurations where otherwise absent.

1. A two-population Curie-Weiss model

The two-population Curie-Weiss model is a mean field spin
system where two types of spins are present.

•N particles on the complete graph.

• State of particle i: σi ∈ {−1,+1}.

• Populations:
Population I1 Population I2

(σ1, σ2, . . . , σN1
σN1+1, . . . , σN)

with N1 + N2 = N . Particles are differentiated by their
mutual interactions.

• Interaction network: there are two intra-group interac-
tions, tuning how strongly sites in the same group feel each
other, and two inter-group interactions, giving the magni-
tude of the influence between particles of distinct popula-
tions.

Population I1 Population I2

J22

J11

J12

J21

Within I1 (resp. I2) particles feel a mean field interaction
with coupling J11 (resp. J22). Beside, population I1 (resp.
I2) influences the dynamics of the other group through its
magnetization with strength J12 (resp. J21).
All the interactions can be either positive or negative allow-
ing both ferromagnetic and anti-ferromagnetic interactions.

2. Microscopic Markovian evolutions

Microscopic dynamics without delay. At any time t the
system may experience a transition whose rate depends on
the magnetization vector at time t only:

σi→ −σi at rate

{
e−σi R1(mN1

(t),mN2
(t)) if i ∈ I1

e−σi R2(mN1
(t),mN2

(t)) if i ∈ I2,
(wD)

where

• the magnetization of population Ii (i = 1, 2) at time t is

mNi
(t) :=

1

Ni

∑
j∈Ii

σj(t) ,

• the interaction functions are

R1 (x1, x2) = αJ11x1 + (1− α)J21x2
R2 (x1, x2) = (1− α)J22x2 + αJ12x1,

with α proportion of sites belonging to population I1.

The Ri’s are comprised of two terms: the first one tells how
strong sites in the same population interact, while the sec-
ond encodes the way one population influences the other.

Microscopic dynamics with delay. At any time t the influ-
ence of each population on the other is given by an aver-
age over the magnetization trajectory up to time t weighted
through a delay kernel (idea borrowed from [2]):

σi→ −σi at rate

 e
−σi R1(mN1

(t), γ
(n)
N2

(t)) if i ∈ I1

e
−σi R2(γ

(n)
N1

(t),mN2
(t)) if i ∈ I2,

(D)

where, for n ∈ N and k ∈ N \ {0}, we define

γ
(n)
Ni

(t) =

∫ t

0

(t− s)n

n!
kn+1e−k(t−s)mNi

(s) ds (i = 1, 2).

3. Infinite volume dynamics

The infinite volume limits of the dynamics (wD) and (D)
are deterministic. The limit as N goes to infinity must be

taken in such a way the proportion α remains constant.

Macroscopic dynamics without delay. As N −→ ∞, the
process (mN1

(t),mN2
(t))t≥0 weakly converges to the solution

of the system of ordinary differential equations

ṁ1(t) = 2 sinh [R1 (m1(t),m2(t))]
−2m1(t) cosh [R1 (m1(t),m2(t))]

ṁ2(t) = 2 sinh [R2 (m1(t),m2(t))]
−2m2(t) cosh [R2 (m1(t),m2(t))] .

(MwD)

Macroscopic dynamics with delay. We consider the pro-
cess (

mN1
(t),mN2

(t),
(
γ
(j)
N1

(t)
)n
j=0

,
(
γ
(j)
N2

(t)
)n
j=0

)
t≥0

,

that, as N −→ ∞, weakly converges to the solution of the
following system of ordinary differential equations

ṁ1(t) = 2 sinh
[
R1

(
m1(t), γ

(n)
2 (t)

)]
−2m1(t) cosh

[
R1

(
m1(t), γ

(n)
2 (t)

)]
ṁ2(t) = 2 sinh

[
R2

(
γ
(n)
1 (t), m2(t)

)]
−2m2(t) cosh

[
R2

(
γ
(n)
1 (t), m2(t)

)]
γ̇
(0)
1 (t) = k

[
−γ(0)1 (t) +m1(t)

]
γ̇
(n)
1 (t) = k

[
−γ(n)1 (t) + γ

(n−1)
1 (t)

]
, for n > 0

γ̇
(0)
2 (t) = k

[
−γ(0)2 (t) +m2(t)

]
γ̇
(n)
2 (t) = k

[
−γ(n)2 (t) + γ

(n−1)
2 (t)

]
, for n > 0 .

(MD)

Introducing delay through a kernel leads to a finite dimen-
sional macroscopic dynamics. In contrast, if instead of
γ
(n)
Ni

(t) we choose γNi
= mNi

(t− τ ), with fixed τ > 0 (delayed
rates), the limiting dynamics are infinite dimensional. See for
example [3] for an analysis of a mean field spin system with
delayed rates.

4. Transition from disorder to rhythm

We want to detect the transition from a disordered behav-
ior, where mN1

(·) and mN2
(·) fluctuate around zero, to

a collective rhythmic behavior in which we have periodic mo-
tion of the magnetizations (see Figs. 1 and 2). To this aim we
consider the limiting evolutions (MwD) and (MD) and derive
the conditions for the presence of a Hopf bifurcation (see
[1] for details).

Figure 1: Transition from disordered behavior (on the left)
to collective rhythm (on the right) for the spin system (wD).
Simulations have been run with N = 1000, α = 1/2, J21 = −6,
J12 = 5 and J11 = J22 = 0.5 on the left and J11 = J22 = 3
on the right. The top row shows the time evolution of all the
spins belonging to population I1. Spins are labelled from 1 to
500 on the y-axis. Blue spots represent +1 spins; whereas,
white spots stand for −1. In the bottom line the correspond-
ing evolution for the magnetization is depicted.

Figure 2: Transition from disordered behavior (on the left)
to collective rhythm (on the right) for the spin system (D)
when both the intra-group interactions are negative (i.e.
J11, J22 < 0). Simulations have been run with N = 1000,
α = 1/2, n = 2, J21 = 5, J12 = −6 and J11 = J22 = −4
with k = 6 on the left and J11 = J22 = −1 with k = 3 on the
right. The top row shows the time evolution of all the spins
belonging to population I1. Spins are labelled from 1 to 500
on the y-axis. Color convention as in Fig. 1.

5. Conclusions (cfr. [1])

We investigated the emergence of collective periodic be-
havior in a two-population generalization of the Curie-

Weiss model. We analyzed the role of interaction network
and delay in enhancing an oscillatory evolution for the mag-
netization vector. We were interested in showing that it is
possible to induce a transition from a disordered phase,
where mN1

and mN2
fluctuate closely around zero, to a phase

in which they both display a macroscopic regular rhythm. In
particular we have proven that a robust choice of the cou-
pling constants and of the population sizes is sufficient
for a limit cycle to arise. Moreover, in the case when the
choice of the parameters does not suffice to favor the
transition, delay may help in this respect. See Table 1.
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Table 1: Qualitative summary of the results. In the left col-
umn a schematic representation of the considered interaction
network is displayed. For each interaction network we high-
light the possibility of observing or not observing periodic
behavior when considering the dynamics (MwD) (central col-
umn) or (MD) (right column).

References

[1] F. Collet, M. Formentin, and D. Tovazzi. Rhythmic behavior in a two-
population mean field Ising model. Phys. Rev. E, 94(4): 042139,
2016.
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