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Abstract

We consider from a microscopic perspective fluctuations in stochastic lat-
tice gas models. We make use of multilinear algebra and the representation
theory of Lie algebras and universal envelopping algebras to derive rigorously
duality functions for the simple exclusion process. This provides detailed in-
formation about fluctuations of the density in the symmetric simple exclusion
process (SSEP) on any graph and about the microscopic structure and dy-
namics of shocks in the asymmetric simple exclusion process (ASEP) on the
integer lattice Z. We go on to prove a generic fluctuation theorem for inte-
grated currents from well-known fluctuation relations such as the Jarzynski
relation and the Gallavotti-Cohen symmetry for stochastic processes with fi-
nite state space arise as simple corollaries. As a third result we describe briefly
how nonlinear fluctuating hydrodynamics yields an intriguing infinite discrete
family of dynamical universality classes. The dynamical exponents charac-
terizing these universality classes are Kepler ratios of neighbouring Fibonacci
numbers or their limiting case which is the golden mean. The scaling form of
the corresponding dynamical structure functions for the Fibonacci models is
an asymmetric Lévy distribution.
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1 Introduction

Stochastic interacting particle systems with short-range interaction exhibit a re-
markably rich variety of critical phenomena even in one dimension when they are
in a steady state far from equilibrium. This is in contrast to thermal equilibrium
for which there is a famous quite general rule that says, simply put, no phase tran-
sition in one dimension at positive temperature for equilibrium systems with short-
range interactions [99, 57, 80, 18]. One observes in non-equilibrium steady states
anomalous (non-diffusive) transport and universal non-diffusive dynamical scaling,
boundary-induced phase transition, spontaneous symmetry breaking, long-range or-
der and phase coexistence and more. Since one is away from equilibrium, these
phenomena cannot be explained from the properties of a free energy. The funda-
mental question of interest is therefore how such critical phenomena that appear on
macroscopic scale arise from the microscopic dynamics of such systems, in particular,
from conservation laws and other kinetic constraints on the microscopic dynamics.

A major contribution to this program has come from exact results on microscopic
stochastic lattice gas models for driven diffusive systems [61, 21, 62, 54, 87, 88, 10].
These are systems of classical interacting particles that move under the action of a
random force preferentially in one direction and/or where at the system boundaries
particles can exchange with external reservoirs at different densities, thus maintain-
ing a non-equilibrium steady state that supports macroscopic currents. Some of
these exact results have been obtained by exploiting a very simple mathematical
relation between the Markov generator of such processes and the Hamiltonian op-
erator of certain quantum systems [63, 87]. This link suggests to use mathematical
tools from algebra to treat probabilistic problems. In these lectures we introduce
some of these methods which require no knowledge of quantum physics at all.

1.1 Exclusion processes

In order make these general ideas more concrete we introduce some basic lattice gas
models called exclusion processes. These are Markov processes also called stochastic
interacting particle systems. We start with the simplest model of driven diffusive
systems of identical conserved particles with hard-core interaction, which is the the
asymmetric simple exclusion process (ASEP, see below) in one space dimension [96].

1.1.1 The Asymmetric Simple Exclusion Process

The asymmetric simple exclusion process (ASEP) has become a paradigmatic exam-
ple for a driven diffusive system and has attained a status in the study of nonequilib-
rium systems somewhat similar to the role that the Ising model plays in equilibrium
statistical mechanics. The ASEP is a Markov process in continuous time which can
be described informally as follows.

Each site k of the integer lattice Λ is occupied by at most one particle which
is specified by the random variable ηk ∈ {0, 1} indicating whether site k is vacant
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or occupied. The set of configurations η := {ηk : k ∈ Λ} is therefore Ω = {0, 1}Λ.
Particles hop randomly in continuous time to the right neighboring site with rate r
and to the left with rate ` respectively, provided the target site is empty. Otherwise
the attempted move is rejected. Hopping attempts take place independently with
an exponential waiting time distribution with mean τw = 1/(r + `) (Fig. 1). We
present this hopping rule as follows:

A0 → 0A with rate r

0A → A0 with rate `. (1)

Here the symbol A represents occupation by a single particle and 0 represents an
empty site. For definiteness we shall assume r ≥ ` corresponding to an average drift
on positive lattice direction, or clockwise in case of a finite periodic lattice. For
` = 0 the process is called totally asymmetric simple exclusion process (TASEP).

α

γ

δ

β

ASEP r   l

Figure 1: Pictorial representation of the ASEP with open boundaries and bulk
hopping rates r to the right and l ≡ ` to the left. Some but not all possible jumps
are indicated.

The ASEP was first invented in an early biophysics context already in 1968 as a
model to describe the kinetics of protein synthesis through ribosomes moving along
m-RNA templates [64, 85], and later became the “mother” of lattice gas models
for automobile traffic [67], see [82] for a thorough discussion of these developments
and applications to real biological systems and traffic flow. Despite being one-
dimensional in its simplest formulation it also serves as a model to capture features
of driven noisy dynamics in zeolites, carbon nanotubes, artificial narrow channels for
colloidal particles, or, via various mappings, for interface dynamics in two dimensions
and polymer dynamics and flux lines in three dimensions.

For a finite lattice with L sites one has to specify boundary conditions. Most
commonly studied are periodic boundary conditions, reflecting boundaries (hopping
confined to a box) [81], and open boundary conditions [56, 19, 83] where particles
may enter and exit the lattice at the boundary sites 1 and L under the exclusion con-
straint with rates α, β, γ, δ as indicated in Fig. 1. The parametrization α = rλ−ρ−,
γ = `λ−(1 − ρ−) as left boundary rates and β = rλ+(1 − ρ+), δ = `λ+ρ+ as
right boundary rates may be interpreted as a connection to particle reservoirs with
constant density ρ− at the left boundary and density ρ+ at the right boundary, re-
spectively. The parameters λ± describe a hopping mechanism between the reservoirs
and the chain which may differ from the hopping inside the chain.
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For periodic boundary conditions the total particle number N =
∑

k∈Λ ηk is
conserved and the invariant measure for the process with a fixed number of particles
is easily seen to be uniform. This fact allows for the construction of a family of
invariant measures which are Bernoulli product measures with parameter ρ. This
measure is also a (translation invariant) invariant measure of the ASEP defined on
the infinite lattice Z. Here ρ = Eρηk is the particle density. The instantaneous
current

jk := rηk(1− ηk+1)− `(1− ηk)ηk+1 (2)

has expectation
j∗ := Eρjk = (r − `)ρ(1− ρ). (3)

The stationary current j∗ tells us the net number of particle that flow in positive
direction per infinitesimal time unit across a lattice bond 〈k, k + 1〉.

The open ASEP is ergodic. The exactly known unique invariant measure is
non-trivial and has an intriguing phase diagram. The bulk density ρ, which is deter-
mined by the two boundary densities ρ±, undergoes a nonequilibrium discontinuous
transition along the line 0 < ρ− = 1 − ρ+ < 1/2 between a low-density phase with
bulk density ρ = ρ− to a high-density phase with bulk density ρ = ρ+. There are
nonequilibrium continuous transitions from both phases to a maximal current phase
with ρ = 1/2, which one has inside the region 1/2 < ρ− ≥ 1, 0 ≤ ρ+ < 1/2 [60].
The microscopic density profiles are non-trivial in all phases [83, 20]. At the first-
order transition line one has phase coexistence with a left domain of density ρ− and
a right domain of density ρ+, separated by a domain wall. On macroscopic scale
this domain wall corresponds to a shock, i.e., a density discontinuity. Inside the
maximal current phase the local density decays algebraically from the boundaries
to its asymptotic bulk value 1/2. The theory of boundary-induced phase transitions
[55, 69] demonstrates that these phase transitions arise on microscopic level from
the interplay of the shock motion and the flow of local perturbations as described
by the so-called dynamical structure function. In this way one understands and
extends the hydrodynamic derivation of the phase diagram, first proposed by Krug
[56] and only quite recently proved rigorously by Bahadoran [2].

Also the dynamical properties of the ASEP are quite well understood. On micro-
scopic scale the local density ρk(t) defined by the expectation of the local occupation
number at time t, starting from some initial measure µ0 satisfies, due to particle
number conservation, away from the boundaries the lattice continuity equation

d

dt
ρk(t) = jk−1(t)− jk(t) (4)

where jk(t) is the expectation of the instantaneous current (2). This equation does
not allow for an explicit solution. However, it can be proved that on macroscopic
Eulerian scale the density profile of the ASEP evolves according to the inviscid
Burgers equation [79]

∂

∂t
ρ+

∂

∂x
j(ρ) =

∂

∂t
ρ+ (r − `)(1− 2ρ)

∂

∂x
ρ = 0 (5)
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Figure 2: Phase diagram of the ASEP with open boundaries. LD (HD) denotes the
low (high) density phase, and MC the maximal current phase. The red coexistence
line marks a discontinous phase transition between bulk densities ρ− and ρ+. The
green phase transition lines correspond to a continuous phase transition between
bulk densities ρ± and 1/2.

where ρ = ρ(x, t) is the coarse-grained local density.
The density develops a travelling shock discontinuity unless the initial density

profile is monotonously decreasing. The shock velocity of shock with left density ρ−
and right density ρ+ is given by the Rankine-Hugoniot condition [58]

vs(ρ+, ρ−) =
j+ − j−
ρ+ − ρ−

(6)

with the stationary currents j± in the two branches of the shock, which in the present
case are given by jα± = w(q − q−1)ρ±(1 − ρ±). Looking at diffusive scale into the
vicinity of the shock one finds that it performs a diffusive motion around its mean
position [29] with diffusion coefficient

Ds(ρ+, ρ−) =
1

2

j+ + j−
ρ+ − ρ−

(7)

The shock has been shown to be sharp even on microscopic lattice scale [28, 20, 5].
The dynamical structure function

Sk(t) := Eρ (ηk(t)η0(0))− ρ2 (8)

describes the flow and spreading of local fluctuations (Fig. 3). On large scales it is
expected to acquire a universal scaling form

Sk(t) ∼ t−zF ((k − vct)z/t) . (9)
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Figure 3: Schematic plot of the dynamical structure at two times t2 > t1 with center
of mass at lattice x0 at t = t1.

This means that the center of mass of a fluctuations travels with collective velocity

vc :=
d

dρ
j∗(ρ) = (r − `)(1− 2ρ). (10)

The dynamical exponent z which describes the spreading of a fluctuation around its
peak characterizes the universality class. The symmetric version (SSEP) with r = `
is in the diffusive universality class with dynamical exponent z = 2 and Gaussian
scaling function. On the other hand, the ASEP is in the celebrated universality class
of the Kardar-Parisi-Zhang equation [50, 36] with dynamical exponent z = 3/2 and
Prähofer-Spohn scaling function FPS(·) [75, 76].

We point out that for the periodic or infinite lattice the compressibility

K :=
∑
k∈Λ

Sk(t) =
∑
k∈Λ

Eρ (ηk(η0 − ρ)) = ρ(1− ρ) (11)

is time-independent due to particle number conservation for any conservative lat-
tice gas with sufficiently rapidly decaying stationary correlations Ck := Sk(0) =
Eρ (ηk(η0 − ρ)).

1.1.2 Multispecies and multilane exclusion processes

Models with more than one conservation law are much less understood. There are
few exact results on invariant measures, but numerical simulations and analytical
approximations indicate a wealth of intriguing behaviour. For an older review we
refer to [88]. Some recent numerical results will be discussed below and therefore
we briefly describe some simple models.

The perhaps simplest particle system with more than one conserved species of
particles is a multi-species exclusion process where each lattice site can be found
in at least three different states: empty, or occupied by either an A-particle or a
B-particle. Such an exclusion process is described by the six hopping rates

A0 → 0A with rate wA0
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0A → A0 with rate w0A

B0 → 0B with rate wB0

0B → B0 with rate w0B (12)

AB → BA with rate wAB

BA → AB with rate wBA.

Since there are two conservation laws one has two evolution equations for the two
local densities

d

dt
ρAk (t) = jAk−1(t)− jAk (t) (13)

d

dt
ρBk (t) = jBk−1(t)− jBk (t) (14)

where jA,Bk are the expectations of the respective instantaneous currents which in
general lead to two coupled lattice continuity equations. The stationary distribution
of this process and hence the current-density relations j∗A(ρA, ρB) and j∗B(ρA, ρB) are
known only on certain parameter manifolds [88, 10]. For

wAB + w0A + w0B = wA0 + wBA + wB0 (15)

the canonical measure with fixed particle numbers NA and NB is uniform which
allows for the construction of a product measure parametrized by densities ρA and
ρB [42]. The stationary currents are then given by

j∗A(ρA, ρB) = (wA0 − w0A)ρA(1− ρA)− (wB0 − w0B)ρAρB (16)

j∗B(ρA, ρB) = (wB0 − w0B)ρB(1− ρB)− (wA0 − w0A)ρAρB. (17)

The hopping asymmetry generates a coupling between the two densities, leading to
a non-tivial coupled system

∂

∂t
ρA +

∂

∂x
j∗A(ρA, ρB) = 0 (18)

∂

∂t
ρB +

∂

∂x
j∗B(ρA, ρB) = 0 (19)

of hyperbolic conservation laws for the coarse-grained local densities ρA,B(x, t). If,
however, e.g. wB0 = w0B the macroscopic evolution is known: The density of the A-
particles evolves autonomously as the in the single-species ASEP and the B-particle
density can be integrated straightforwardly [77].

A different way of constructing models with more than one conservation law are
coupled multi-lane models where hopping rates on one lane depend on the particle
configuration also of other lanes, but no particle exchange between lanes take place.
An interesting class are models where the invariant measure is not changed by the
coupling to the other lanes. This can be realized e.g. in a two-lane TASEP by
making the rate of jump from site k to site k + 1 proportional to a linear function
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of the the number of particles on site k and k + 1 in the adjacent lane, i.e., for
nαk := ηαk + ηαk+1 one chooses rates r1(n2

k) for lane 1 and r2(n1
k) for lane 2 given by

[71]
r1(n2

k) = 1 + γn2
k/2, r2(n1

k) = b+ γn1
k/2, (20)

see Fig. 4 for illustration. It is easy to see that a product of two Bernoulli product
measures is invariant under the stochastic dynamics of this process. One finds the
two stationary currents

j∗1(ρ1, ρ2) = ρ1(1− ρ1)(1 + γρ2), j∗2(ρ1, ρ2) = ρ2(1− ρ2)(b+ γρ1). (21)

Notice that like (generically) in the single-lane multi-species process described above
the currents depend on both densities unless the interaction constant γ vanishes.

Lane 2

r (2)
2

r (0)
1
r (1)

1

Lane1

Figure 4: Twolane TASEP without hopping between lanes. Some possible jumps
and their rates according to (20) are shown. The boxes drawn with broken lines
indicate on which sites in the neighbouring lane the jump rate depends.

1.2 Some linear algebra

In order to obtain more information about stochastic lattice gas models we introduce
below methods which are known under the flag quantum Hamiltonian formalism.
The term quantum Hamiltonian formalism may sound scary to a non-physicist. In
actual fact, however, this formalism is based on elementary notions from linear alge-
bra of finite-dimensional vector spaces. Hence one can work within this framework
without any reference to quantum mechanics and this is how we shall approach this
way of looking at stochastic interacting particle systems.

The fundamental ingredients are standard matrix multiplication and the per-
haps some less familiar Kronecker product of matrices, sometimes also called outer
product. We recall both types of matrix products. In the following and throughout
this work we use the Kronecker-symbol defined by

δα,β =

{
1 if α = β
0 else

(22)

for α, β from any set. Complex conjugation is denoted by a bar as e.g. in z.
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1.2.1 Matrices and vectors

A m× n matrix A is a number array

A =



A11 A12 A13 . . .
A21 A22 A23 . . .
A31 A32 A33 . . .
A41 A42 A43 . . .
A51 A52 A53 . . .

...
...

...
. . .


.

with m ≥ 1 rows and n ≥ 1 columns and matrix elements Akl in row k and column l.
The matrix elements Akl will be mostly real numbers, but they can also be complex
in certain applications. Hence we shall generally assume Akl ∈ C. We discuss some
special cases.

(a) If m = n = 1 the matrix reduces a single number and we shall not differentiate
between numbers and 1× 1-matrices.

(b) If n = 1 and m > 1 a matrix Φ is a column array of m numbers. We call such
a matrix a ket-vector that we denote by the so-called ket-symbol |Φ 〉. The matrix
elements Φ1l with 1 ≤ l ≤ m will be denoted in simplified form by Φl and called
components of the ket-vector. Thus

|Φ 〉 =


Φ1

Φ2
...

Φm

 .

The vector with Φi = δik is a canonical basis vector of the vector space Cm denoted
by | ek 〉. The set Bm := {| ek 〉 : k ∈ {1, . . . ,m}} spans Cm and is called the canonical
basis.
(c) If m = 1 and n > 1 a matrix Ψ is a row array of n numbers. We call such a
matrix a bra-vector that we denote by the so-called bra-symbol 〈Ψ |. The matrix
elements Ψk1 with 1 ≤ k ≤ n will be denoted in simplified form as Ψk and called
components of the bra-vector. Thus

〈Ψ | = (Ψ1,Ψ2, . . . ,Ψn) .

Defining 〈 ek | = | ek 〉T one realizes that the set B∗ := {〈 ek | : k ∈ {1, . . . , n}} spans
Cn. Since any finite-dimensional vector space is isomorphic to its dual, we can think
of the bra-vectors B∗n as representing the canonical basis of the dual space Cn∗ ∼= Cn.

The letter or number inside the ket-symbol | · 〉 or the bra-symbo l〈 · | is not to be
understood as the argument of some function, but just as a symbol that collectively
represents the components of the vector. When we use the term matrix we shall
tacitly assume that m,n ≥ 2. The distinction between “proper” matrices on the
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one hand and the two types of vectors or simple numbers on the other hand is useful
because many fundamental linear algebra operations can be represented as products
involving numbers, bra- and ket-vectors and proper matrices with more than one
column or row.

We usually denote proper matrices by capital letters or small letters with cir-
cumflex accent as e.g. in â. The unit matrix of dimension n > 2 with components
Akl = δk,l is denoted by 1 and for n = 2 we use the notation 1. Since multiplication
of a vector with the unit matrix is the same as multiplication with the scalar unity
1 of the field F we do not usually differentiate between the two operations, i.e., in
equations for matrices we often write a multiple x1 of the unity matrix simply as x.

1.2.2 Addition and multiplication of matrices

Any two matrices A and B which have the same number of rows and columns can
be multiplied by a number and added to form a matrix C = xA+ yB with the rule
that Ckl = xAkl + yBkl where x, y ∈ C. Square matrices with m = n form a ring
with a multiplication rule that can be generalized to non-square matrices as follows.

Definition 1.1 (Matrix product) For m,n, p ≥ 1 let A be a m× p-matrix and B be
a p× n-matrix, both with matrix elements in some field F . The matrix product AB
is an m× n matrix C with matrix elements Ckl ≡ (AB)kl ∈ F given by

Ckl =

p∑
j=1

AkjBjl, 1 ≤ k ≤ m, 1 ≤ l ≤ n. (23)

Square matrices A,B of the same dimension m = n = p satisfying

[A , B ] := AB −BA = 0 (24)

are said to commute.

Notice that unless m = n the reverse product BA is not defined since the number
of columns in the first factor must be equal to the number of rows in the second
factor of any matrix product. For a square matrix A the pth power of A is denoted Ap

and is defined for strictly positive integers p ∈ N by iteration of (23). By convention
A0 = 1.

We discuss separately the special cases where at least one of the three number
m,n, p is equal to one.

(a) If n = 1 and p,m > 1 the we can write the matrix B as a ket-vector |Φ 〉
with components Φk := Bk1, k ∈ {1, . . . , p}. Then also the matrix product C is
a ket-vector (with m components given by (23)) and the matrix product can be
interpreted as a linear mapping |Φ 〉 7→ | Φ̃ 〉 given by | Φ̃ 〉 = A|Φ 〉, corresponding
to the standard right multiplication of a matrix A with the column vector |Φ 〉.
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(b) Likewise, for m = 1 and p, n > 1 we can write A = 〈Ψ | as a bra-vector with p
components with components Ψl := A1l and find that the matrix product is a linear
mapping 〈Ψ | 7→ 〈 Ψ̃ | that yields the bra-vector 〈 Φ̃ | = 〈Ψ |B with n components
given by (23), corresponding to the left multiplication of a matrix B with the row
vector 〈Ψ |.

(c) If p = 1 and m,n > 1 then the matrix product actually turns into a product
of two vectors. It maps a m-component ket-vector |Φ 〉 (= m × 1-matrix A) with
components Φk := Ak1 and an n-component bra-vector 〈Ψ | (= 1 × n-matrix B)
with components Ψl := B1l into a proper m× n matrix

C = |Φ 〉〈Ψ | (25)

with matrix elements Ckl = ΦkΨl as given by (23). This mapping, called dyadic
product, is a special form of the Kronecker product discussed below.

(d) For m = n = 1 the matrix product reduces to a single number C = 〈Ψ ||Φ 〉 =
C11 ∈ F with

〈Ψ ||Φ 〉 =

p∑
i=1

ΨiΦi ≡ 〈Ψ|Φ 〉. (26)

It defines a bilinear mapping (〈Ψ |, |Φ 〉) 7→ C11 which can be interpreted as a dual
pairing d : V∗ × V → F , (〈Ψ |, |Φ 〉) 7→ 〈Ψ|Φ 〉 since it is natural to regard the
bra-vector to be an element of the vector space dual to the vector space to which
the ket-vector belongs. This motivates the simplified notation 〈Ψ|Φ 〉 of this matrix
product with only one vertical bar.

Specifically, for the basis vectors we obtain from (26) the biorthogonality relation

〈 ei| ej 〉 = δij. (27)

Notice the difference between the dual pairing (26) and the scalar product s : V×
V→ F defined by the sesquilinear form (|Φ′ 〉, |Φ 〉) 7→ 〈Φ′,Φ 〉 :=

∑p
i=1 Φ

′
iΦi which

is linear in the second argument, but antilinear in the first. When 〈Φ′ | has only real
components (as is the case in most of our applications) this distinction is irrelevant,
but should nevertheless be kept in mind.

1.2.3 The Kronecker product

The Kronecker product A⊗B is defined for arbitrary rectangular matrices (including
vectors and numbers) as follows.

Definition 1.2 (Kronecker product) Let A and B be two finite-dimensional matri-
ces with mA ≥ 1 (mB ≥ 1) rows and nA ≥ 1 (nB ≥ 1) columns with matrix elements
Aij and Bkl respectively. The Kronecker product A⊗B is a mAmB × nAnB-matrix
C with matrix elements

C(i−1)mB+k,(j−1)nB+l = AijBkl (28)

with i ∈ {1, . . . ,mA}, j ∈ {1, . . . , nA}, k ∈ {1, . . . ,mB}, l ∈ {1, . . . , nB}.
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Alternatively we can write

A⊗B =



A11B A12B A13B . . .
A21B A22B A23B . . .
A31B A32B A33B . . .
A41B A42B A43B . . .
A51B A52B A53B . . .

...
...

...
. . .


.

Here each matrix “element” is itself a matrix, viz. the matrix B multiplied by the
number Aij. In general A ⊗ B 6= B ⊗ A. For p ∈ N0 the p-fold Kronecker product
of a matrix A with itself is denoted by A⊗p with the convention that A⊗1 := A and
A⊗0 := 1 where 1 is the unit element of F and not the unit matrix. We discuss
special cases.

(a) Consider nA = nB = 1, i.e., the Kronecker product of ket-vectors |Φ1 〉, |Φ2 〉
with components Φ1

i where i ∈ {1, . . . ,mA} and Φ2
k where k ∈ {1, . . . ,mB}. The

tensor product |Φ1 〉 ⊗ |Φ2 〉 is a column vector of dimension mAmB denoted by
|Φ1,Φ2 〉 and has factorized components (|Φ1,Φ2 〉)(i−1)mB+k = Φ1

iΦ
2
k. Specifically,

for the canonical basis vectors one gets | ei 〉 ⊗ | ek 〉 ≡ | ei, ek 〉 = | e(i−1)mB+k 〉. Thus
the Kronecker product of two canonical basis vectors yields a canonical basis vector.
The set BmAmB := {| e(i−1)mB+k 〉 : (i, k) ∈ {1, . . . ,mA} × {1, . . . ,mB}} forms the
canonical basis of the tensor space CmA ⊗ CmB ∼= CmAmB .

(b) Similarly, for mA = mB = 1, i.e., for bra-vectors 〈Ψ1 |, 〈Ψ2 | with components Ψ1
j

where j ∈ {1, . . . , nA} and Ψ2
l where l ∈ {1, . . . , nB} the tensor product 〈Ψ1 |⊗〈Ψ2 |

is a row vector of dimension nAnB denoted by 〈Ψ1,Ψ2 |. It has has factorized com-
ponents (〈Ψ1,Ψ2 |)(j−1)nB+l = Ψ1

jΨ
2
l and for the canonical basis vectors one gets

〈 ej, el | = 〈 e(j−1)nB+l |.

(c) For the Kronecker product of a bra-vector 〈Ψ | and a ket-vector |Φ 〉 the definition
(1.2) yields

〈Ψ | ⊗ |Φ 〉 = |Φ 〉 ⊗ 〈Ψ | = |Φ 〉〈Ψ | (29)

with the dyadic product (25).
The Kronecker product is associative. Multiple Kronecker products of matrices

define multilinear maps of the multiple tensor product of vector spaces defined by
iterating the Kronecker product (1.2). They satisfy the multiplication rule

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (30)

where we assume that the matrix products AC and BD are defined by (23).
We note an important factorization property of the dual pairing of Kronecker

products of vectors which is an immediate consequence of the multilinearity of the
Kronecker product encoded in (28).
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Proposition 1.3 Let 〈Ψk | (|Φk 〉) be a bra-vector (ket-vector) of dimension dk with
components Ψk

i ∈ C (Φk
i ∈ C) and 〈Ψ1,Ψ2, . . . ,ΨL | = 〈Ψ1 | ⊗ 〈Ψ2 | ⊗ · · · ⊗ 〈ΨL |

(|Φ1,Φ2, . . . ,ΦL 〉 = |Φ1 〉 ⊗ |Φ2 〉 ⊗ · · · ⊗ |ΦL 〉) be the L-fold Kronecker product of
these vectors. Then the dual pairing factorizes as

〈Ψ1,Ψ2, . . . ,ΨL|Φ1,Φ2, . . . ,ΦL 〉 =
L∏
k=1

〈Ψk|Φk 〉 (31)

with 〈Ψk|Φk 〉 given by (26).

When 〈Ψk | = 〈Ψ | for all k ∈ {1, . . . , L} then we write 〈Ψ1,Ψ2, . . . ,ΨL | =
〈Ψ |⊗L and analogously for ket-vectors and proper matrices A.

Finally we introduce local operators which act non-trivially only on component
k in an L-fold tensor space. For simplicity we assume equal dimensions d := d1 =
d2 = · · · = dL.

Definition 1.4 (Local operator) Let 1 be the d-dimensional unit matrix and A be an
arbitrary square matrix of dimension d ≥ 1. The local operator Ak is the Kronecker
product

Ak := 1⊗(k−1) ⊗ A⊗ 1⊗(L−k). (32)

Notice the difference between the number 1 ∈ C and the unit matrix 1 in this
definition. The expression “local operator” come from the fact that when acting
on a tensor vector |Φ1, . . . ,ΦL 〉 only the kth factor is changed by the action of Ak.
More precisely,

Ak
(
|Φ1 〉 ⊗ · · · ⊗ |Φk 〉 ⊗ · · · ⊗ |ΦL 〉

)
= |Φ1 〉 ⊗ · · · ⊗ | Φ̃k 〉 ⊗ · · · ⊗ |ΦL 〉. (33)

where | Φ̃k 〉 = A|Φk 〉.
From (30) one finds

AkBk = (AB)k (34)

which is equal to BkAk if and only if AB = BA. On the other hand, by construction
one has for two square matrices A,B of dimension k the commutation relation

AkBl = BlAk for k 6= l (35)

even when AB 6= BA. In order to avoid confusion concerning the role of the indices
we point out that for L = 2 and [A , B ] 6= 0 we have

A⊗B = A1B2 = B2A1 6= B ⊗ A = B1A2 = A2B1. (36)

We also note that for matrices A(k) one has

A
(1)
1 A

(2)
2 . . . A

(L)
L = A(1) ⊗ A(2) ⊗ · · · ⊗ A(L). (37)
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The upper index defines the matrix while the lower index defines its position in the
L-fold Kronecker product. We stress that A(k) is a matrix of dimension d while A

(k)
k

is a matrix of dimension dL.
From Proposition (1.3) one finds for d-dimensional square matrices A(k) the fac-

torization property

〈Ψ1,Ψ2, . . . ,ΨL |A(1)
1 A

(2)
2 . . . A

(L)
L |Φ1,Φ2, . . . ,ΦL 〉 =

L∏
k=1

〈Ψk |A(k)|Φk 〉. (38)

We write explicitly two special cases of particular importance:

〈Ψ1,Ψ2, . . . ,ΨL |Ak|Φ1,Φ2, . . . ,ΦL 〉
〈Ψ1,Ψ2, . . . ,ΨL|Φ1,Φ2, . . . ,ΦL 〉

=
〈Ψk |A|Φk 〉
〈Ψk|Φk 〉

(39)

(〈Ψ |)⊗L (|Φ 〉)⊗L = 〈Ψ|Φ 〉L. (40)

These computational properties of the matrix product (23) and of the Kronecker
product defined in Def. (1.2) will be exploited throughout these notes.

1.3 Generator of Markov processes in matrix form

Markov processes provide very often a good description of classical physical processes
and have gained particular attention in the context of interacting particle systems,
both in mathematical probability theory [61, 62, 54] and in statistical physics [92,
21, 87, 27, 10, 9]. The link to quantum mechanical condensed matter systems that
we mentioned above allows one to use ideas and techniques borrowed from many-
body quantum mechanics even though stochastic interacting particle systems are
completely classical. The fundamental idea very simple:

One writes the generator of a Markov process in terms of
the intensity matrix of transition rates, expresses expecta-
tions as bilinear forms, and uses tools from algebra.

The point here is that in many cases of interest the intensity matrix is the same
object as the quantum Hamiltonian operator of some many-body quantum system.
Then one employs mathematical techniques from algebra that have proved useful in
the treatment of quantum Hamiltonian operators. Quantum mechanics as such plays
no part in extracting information about properties of the intensity matrix, only the
purely mathematical machinery developed for many-body quantum systems comes
into play.

To make clear some of the essential ideas we shall consider mostly irreducible
systems with finite state space Ω. This allows us to straightforwardly adopt the
strategy of describing the time evolution of the process by a master equation for
the probability measure which is the differential form of the Chapman-Kolmogorov

16



equation. Solving the master equation, which is a first-order linear differential equa-
tion in the time variable, yields the probability of finding any given state the system
may take given that it started from some initial state.

The idea of formulating the master equation in terms of a many-body quantum
Hamiltonian is not new. Systematic treatments of various aspects of the quantum
Hamiltonian formalism go back to [49, 23, 33, 1]. A mathematically rigorous account
is given in [97, 63] and a detailed (non-rigorous) review is [87]. The extension to
infinite systems can usually be made without great difficulty if the state space is
countably infinite or by taking appropriate limits of expectation values if the state
space of the infinite system is not countable.

1.3.1 Matrix formulation of the generator

We recall the definition of a Markov process ηt with state space Ω and transition
rates wη′,η for a transition from a configuration η ∈ Ω to a configuration η′ ∈ Ω in
terms of a generator L acting on suitably chosen functions f(η) through the relation

Lf(η) =
∑

η′∈Ω\η
wη′,η[f(η′)− f(η)]. (41)

Now we introduce the central object of interest.

Definition 1.5 The intensity matrix H of the process ηt with state space Ω is the
matrix with elements

Hη′η =


−wη′,η η 6= η′∑
η′∈Ω\η

wη′,η η = η′. (42)

Remark 1.6 The intensity matrix is often represented in transposed form and with
opposite sign and also called transition rate matrix. By definition of a transition
rate one has −Hη′η ∈ R+

0 (positivity of rates) and
∑

η∈ΩHη′η = 0 (probability con-
servation). We shall call any matrix with these properties an intensity matrix.

The defining equation (41) then becomes

Lf(η) = −
∑
η′∈Ω

f(η′)Hη′η (43)

with summation over η on the r.h.s. included. This follows from splitting the
sum on the r.h.s. into two terms −(f(η)Hηη +

∑
η′∈Ω\η f(η′)Hη′η) from which one

recovers (41) by using (42). According to (23) the r.h.s. of (43) represents the left
multiplication of the matrix H with a row vector with components f(η′).

Taking the expectation Eµ under a measure µ, one gets from (43) (after renaming
dummy variables inside the sums)

d

dt
Eµtf = Eµt [Lf ] = −

∑
η′∈Ω

f(η′)
∑
η′′∈Ω

Hη′η′′µt(η
′′) =

∑
η∈Ω

f(η)LTµt(η). (44)
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Choosing as f(η) the indicator function 1η : Ω→ {0, 1}, ξ 7→ 1η(ξ) = δη,ξ the second
equality yields

LTµ(η) = −
∑
η′∈Ω

Hηη′µ(η′) (45)

where the r.h.s. represents the right multiplication of the matrix H with a column
vector with components µ(ξ). The semigroup property of Markov processes then
implies for the time-evolving measure µt the master equation

d

dt
µt(η) = −

∑
η′∈Ω

Hηη′µt(η
′) =

∑
η′∈Ω\η

(wηη′µt(η
′)− wη′ηµt(η)) (46)

which is the adjoint version of (43) for functions f(η). The quantity

jt(η
′, η) := wη′ηµt(η)− wηη′µt(η′) (47)

is called the (instantaneous) probability current from η to η′.
The matrix multiplications (43) and (45) lead us consider the actual matrix in

a basis. We assume Ω to be countable so that to each configuration η one can
associate bijectively an integer ι(η) ∈ N that enumerates the configurations. We
shall call ι(η) the enumeration function. It is natural to choose the canonical basis
vectors denoted by 〈 ei | (represented as row vectors with components (ei)j = δi,j)
through the bijective map η 7→ 〈 eι(η) | =: 〈 η | and to define also the column vectors

| η 〉 := 〈 η |T . A given enumeration function thus fixes uniquely the matrix H which
without explicit enumeration function would be fixed only up to permutations of
the canonical basis vectors.

With the canonical basis vectors and an enumeration function at hand we define
the function vector

〈 f | :=
∑
η∈Ω

f(η)〈 η | (48)

and the probability vector

|µ(t) 〉 :=
∑
η∈Ω

µt(η)| η 〉 (49)

for a time-dependent measure µ(t).
Observing biorthogonality one realizes that a function f can be expressed as dual

pairing f(η) = 〈 f | η 〉 and similarly µt(η) = 〈 η|µ(t) 〉. These observations allow us
to rewrite (41) in the form

Lf(η) = −〈 f |H| η 〉 (50)

and the master equation (46) can be written in vector form as

d

dt
|µ(t) 〉 = −H|µ(t) 〉. (51)

with
H = −

∑
η∈Ω

∑
η′∈Ω\η

wη′η

(
Eη′η − 1̂η

)
(52)
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where
Eη′η := | η′ 〉〈 η |, 1̂η := | η 〉〈 η |. (53)

Integration then expresses the time-dependent measure

|µ(t) 〉 = e−Ht|µ 〉 (54)

in terms of an arbitrary initial measure µ = µ(0). In slight abuse of language we
shall call also the intensity matrix H the generator of the process. We shall call the
exponential exp (−Ht) the transition matrix at time t.

Some comments on the spectrum of H for finite state space Ω are in place.
Obviously, dim(H) = |Ω|. Since H is real all eigenvalues are either real or come
in complex conjugate pairs. The negative sign for the off-diagonal elements is by
convention. It ensures, by the theorem of Gershgorin [32], that all eigenvalues of
H are either 0 or have strictly positive real part. Consequently, the eigenvalues of
the transition matrix exp (−Ht) are either 1 or strictly inside the unit circle in the
complex plane for all times t ∈ R+

0 . This rules out periodicity of the process. If the
process ηt is irreducible then the matrix H is also irreducible and has unique lowest
eigenvalue 0. By Perron-Frobenius [66] the corresponding right and left eigenvec-
tor can be chosen to have strictly positive real components. More generally, the
following two statements on reducible chains are equivalent: (i) Ω has exactly n mu-
tually communicating subsets Ωα. (ii) The eigenvalue 0 of H is n-fold degenerate.
The process restricted to a single communicating subset is ergodic since it is both
aperiodic and irreducible.

1.3.2 Expectations in matrix formulation

In order to work with this matrix reformulation of the generator we introduce some
further key objects. All summations run over the full set Ω unless stated otherwise.

Definition 1.7 (a) The summation vector is the constant bra-vector

〈 s | :=
∑
η

〈 η |. (55)

(b) The function matrix f̂ for a function f : Ω → C and the measure matrix µ̂ for
a probability measure µ are the diagonal matrices

f̂ :=
∑
η

f(η)| η 〉〈 η |, µ̂ :=
∑
η

µ(η)| η 〉〈 η |. (56)

(c) The time-dependent function matrix f̂(t) is defined by

f̂(t) := eHtf̂e−Ht. (57)

If f̂(t) = f̂(0) for all t ∈ R we say that f is conserved.
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(d) Let S : Ω×Ω→ C be a function and Ŝ be a matrix with elements Sη,ξ = S(η, ξ).

If Ŝ satisfies
[H , Ŝ ] = 0. (58)

then S is called a symmetry of the process.

The function matrix for the indicator function 1η is the projector 1̂η = | η 〉〈 η |,
i.e. the dyadic product of the canonical basis vector | η 〉 with its transpose. For
a strictly positive measure any power µ̂α exists. Therefore, in particular, the in-
verse µ̂−1 exists. Conservation of f implies the commutation relation [H , f̂ ] = 0.
Therefore a conserved f is a symmetry of the process. Notice that conservation of
f implies 〈 f |H = 0, which means that f is a harmonic function. The converse,
however, is not true: A function may be harmonic, but not conserved. Nevertheless,
a non-constant harmonic function implies existence of a conserved function S with
the property 〈 s |Ŝ = 〈 f |.

Since by construction in each column of H all matrix elements sum up to zero
the summation vector is a left eigenvector of H with eigenvalue 0, i.e.,

〈 s |H = 0. (59)

This fact expresses conservation of probability since 〈 s|µ(t) 〉 = 〈 s |e−Ht|µ 〉 =
〈 s|µ 〉 = 1 with µ = µ0. For the function vector 〈 f | (48) we have trivially that

〈 s |f̂ = 〈 f |. (60)

This yields for the expectation of a function f(η) the various equivalent matrix
representations

Eµtf ≡ 〈 f 〉µt = 〈 s |f̂ |µ(t) 〉 = 〈 s |f̂e−Ht|µ 〉 = 〈 s |f̂(t)|µ 〉 ≡ 〈 ft 〉µ (61)

where in the rightmost expression we use the notation ft(η) = f(ηt).
The expectation – which we shall denote by angular brackets – is an average

both over histories of the process and over the initial distribution µ. Of course, if
the initial distribution is concentrated on a particular configuration ξ, the brackets
reduce to an average over histories. For a process starting at a configuration ξ the
expectation of the indicator function 1η yields the conditional probability (sometimes
called propagator)

P (η, t|ξ, 0) = 〈 s |1̂ηe−Ht| ξ 〉 = 〈 η |e−Ht| ξ 〉 = 〈 ξ |e−HT t| η 〉. (62)

Multi-time expectations can be expressed analogously using the propagator and the
Chapman-Kolmogorov equation arising from the Markov property of the process.

1.3.3 Stationarity and reversibility

One of the most basic questions to ask is the behaviour at late times of the stochas-
tic evolution. If the process is ergodic then the measure in the limit t → ∞ is
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independent of the initial state and one would like to know for interacting particle
systems quantities like the mean density, density fluctuations, or the spatial struc-
ture of the particle distribution and its correlations. For transition rates that are
constant in time this asymptotic measure is invariant under time translations and
hence called stationary. We shall denote any normalized stationary measure by µ∗,
its associated probability vector by |µ∗ 〉 and the diagonal measure matrix by µ̂∗.
From the considerations of the previous subsections it is clear that |µ∗ 〉 is a right
eigenvector of H with eigenvalue zero,

H|µ∗ 〉 = 0. (63)

Trivially, one has
|µ∗ 〉 = µ̂∗| s 〉 (64)

where | s 〉 := 〈 s |T has constant components sη = 1. If the process is ergodic then
µ∗ = µ∞ is unique and the diagonal matrix power (µ̂∗)α with diagonal elements
(µ∗(η))α exists for every α ∈ C.

In the context of physical systems at thermal equilibrium the configurations η
are the microstates and the stationary measure is the Gibbs measure

µ∗(η) =
1

Z
exp (−βU(η)) (65)

which is proportional to the Boltzmann weight exp (−βU(η)). Here β = 1/(kBT ) is
proportional to the inverse temperature T , kB is the Boltzmann constant and U(η)
is called the energy of the microstate η (Fig. 5) and

Z =
∑
η∈Ω

exp (−βU(η)) (66)

is the partition function, related to the free energy F by

F = −kBT lnZ. (67)

For many applications, however, one has to think the other way round and con-
struct a process such that for a given energy function the Gibbs measure is station-
ary. This is the case e.g. in Monte Carlo simulations of equilibrium systems. One
possibility of solving this problem is implementing detailed balance on the transition
probabilities (or rates respectively).

Definition 1.8 (Detailed balance) A Markov process ηt with state space Ω and tran-
sition rates w(η′, η) is said to satisfy detailed balance (or to be reversible) if there
exists a strictly positive measure π(η) such that

π(η)w(η′, η) = π(η′)w(η, η′) ∀ η, η′ ∈ Ω. (68)

A measure π with this property is called reversible. If Z :=
∑

η π(η) < ∞ then Z
is called the partition function. The normalized measure π∗ := π/Z is called the
equilibrium measure.
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Figure 5: Stochastic transitions between two states of different equilibrium energies U,U ′.

Remark 1.9 The equilibrium measure entering the detailed balance definition is
a stationary measure of the process. The invariance follows immediately from the
master equation (46) since due to (68) each term in the sum over η′ on the r.h.s. of
(46) is equal to zero and therefore the time-derivative of π vanishes. Often any sta-
tionary measure is called an equilibrium measure which is confusing from a physics
viewpoint. Therefore we reserve ”equilibrium” to reversible processes and use ”sta-
tionary” or ”non-equilibrium” for non-reversible processes.

Detailed balance means for a Gibbs measure that the ratio of transition rates
between two microstates η, η′ equals the exponential exp (−β∆U) of the energy gain
∆U = U(η′) − U(η) incurred by the transition (Fig. 5). Thus the transition rate
ratio is the equilibrium ratio of the probabilities of finding these states. Processes
satisfying detailed balance are also called equilibrium processes.

For the generator H of a reversible process we note the following.

Proposition 1.10 Let π be a strictly positive measure on the state space Ω. For
an ergodic process ηt with generator H the following statements are equivalent:

(i) The process satisfies detailed balance with reversible measure π.

(ii) HT = π̂−1Hπ̂, where HT is the transpose of H.

(iii) H can be written in the form H = Fπ̂−1 for some symmetric intensity matrix
F .

Proof: (a) Assume (i) is true. By strict positivity π−1 exists and the detailed balance
condition (68) can be recast as π−1(η′)w(η′, η)π(η) = w(η, η′). This is assertion (ii)
in terms of each matrix element.

(b) Assume (ii) is true. Writing out the matrix equation (ii) in terms of each
matrix element one gets (i). Moreover, (ii) can be recast as Hπ̂ = π̂HT = (Hπ̂)T

which implies that Hπ̂ is symmetric. That F := Hπ̂ is an intensity matrix follows
from the fact that F has non-positive off-diagonal elements (meaning: non-negative
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transition rates) and 0 = 〈 s |Hπ̂ = 〈 s |F , which is conservation of probability. Thus
(iii) follows from (ii).

(c) Assume (iii) is true. Since F is symmetric it follows that HT = π̂−1F =
π̂−1Hπ̂. Thus (ii) follows from (iii). �

Property (ii) can be seen as a special property of a diagonal similarity trans-
formation of the generator H with the invariant measure π. Generalizing diagonal
similarity transformations with the invariant measure π to processes not satisfying
detailed balance leads us to introduce two more notions of interest.

Definition 1.11 (Reversed process and ground state transformation) Let µ be a
strictly positive stationary solution of the master equation (46) for a generator H.
Then

H∗ := µ̂HT µ̂−1 (69)

is called generator of the time-reversed (or simply reversed) process. The transfor-
mation to the matrix H̃ defined by

H̃ := µ̂−1/2Hµ̂1/2 (70)

is called the ground state transformation.

The reversed process has the same invariant measure, the same waiting time
distribution for all states, and the same allowed transitions as the original process
H, but different and often complicated non-local transition rates

wrevη′,η = wη,η′
µ(η′)

µ(η)
. (71)

With these notions Proposition (1.10) has a simple corollary that is worth noting.

Corollary 1.12 Let the process ηt with generator H be ergodic and reversible. Then
(i) H∗ = H and (ii) H̃ is symmetric.

Thus for a reversible ergodic process the spectrum of H is real and strictly posi-
tive except for its unique lowest eigenvalue which is 0. 1 The notion of reversibility
has its origin in the following property of the two-time equilibrium correlation func-
tion

lim
τ→∞
〈 f1(τ + t)f2(τ) 〉 = 〈 f1(t)f2(0) 〉π∗ . (72)

What one calculates with this quantity are time-dependent fluctuations in a system
which had sufficient time to reach equilibrium. Since the system is assumed to have
a unique stationary distribution, this expression is independent of the initial state.
Reversibility implies

1On other words, detailed balance implies that the eigenvalues of the generator are all real
and that the related symmetrized generator obtained from the ground state transformation can be
interpreted as Hamiltonian of some quantum system. One sees that the use of the term quantum
Hamiltonian formalism is justified by more than the formal analogy between Schrödinger equation
and master equation.
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Proposition 1.13 Let ηt be reversible w.r.t. a measure π∗ and f1 and f2 functions
of the configutations η. Then

〈 f1(t)f2(0) 〉π∗ = 〈 f2(0)f1(−t) 〉π∗ . (73)

Proof: By definition f̂1, f̂2, π̂
∗ are all diagonal and hence commute and are invariant

under transposition. Therefore

〈 f2(t)f1(0) 〉π∗ = 〈 s |f̂1e−Htf̂2| π∗ 〉
= 〈 s |π̂∗f̂1e−H

T tf̂2(π̂∗)−1| π∗ 〉
= 〈 π∗ |f̂1e−H

T tf̂2| s 〉
= 〈 s |f̂2e−Htf̂1| π∗ 〉
= 〈 f2(t)f1(0) 〉π∗ = 〈 f2(0)f1(−t) 〉π∗ (74)

where the last equality follows from time-translation invariance of the equilibrium
distribution. �

Time-reversal symmetry can be extended straightforwardly to multi-time corre-
lators.

Remark 1.14 Detailed balance means that all stationary probability currents (47)
vanish, thus exposing a direct link between probability currents and reversibility. No-
tice, however, that a system that does not satisfy detailed balance for the microscopic
transition rates may nevertheless be reversible on macroscopic scales. A simple ex-
ample is a translation-invariant random walk whose increments have zero mean and
finite variance. Then by the central limit theorem the large scale behaviour is that of
a diffusive particle whose probability distribution satisfies the reversible free diffusion
equation, irrespective of whether or not the microscopic increments satisfy detailed
balance w.r.t. the stationary uniform measure.

2 Duality

Duality is a powerful tool in the study of some interacting particles as in some cases
it allows for expressing one problem in terms of a much simpler problem. We discuss
this property for the SSEP where it was first pointed out by Spitzer in 1970 [96].
Later, by importing known results about quantum spin systems, it was realized
that this duality arises from a non-abelian symmetry of the generator [84] known
as SU(2) symmetry and eventually extended to the ASEP [86] which has a related
symmetry that we shall not discuss in detail. The relationship between symmetries
and duality was brought into a neat and systematic form by Giardinà et al. [31]
which triggered renewed interest in duality, see also [43] for a survey. We begin by
defining duality and presenting it in matrix form [97].
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2.1 Duality and Symmetry

Definition 2.1 Let xt be a Markov process with countable state space Ξ and inten-
sity matrix G and ηt be a Markov process with countable state space Ω and intensity
matrix H. Furthermore, let D : Ξ×Ω→ R be a bounded measurable function. The
processes xt and ηt are said to be dual w.r.t. the duality function D if

ExD(xt, η) = EηD(x, ηt). (75)

The |Ω| × |Ξ| matrix

D̂ :=
∑
x∈Ξ

∑
η∈Ω

D(x, η)|x 〉〈 η | (76)

with matrix elements Dx,η = D(x, η) is called the duality matrix. For |Ω| = |Ξ| a
duality function of the form D(x, η) =

∑
x d(x)δx,η is called diagonal. If H = G

then the process is said to be self-dual w.r.t. D.

Remark 2.2 In terms of transition probabilities P for xt and Q for ηt the defining
relation (75) reads∑

x′∈Ξ

D(x′, η)P (x′, t|x, 0) =
∑
η′∈Ω

D(x, η′)Q(η′, t|η, 0). (77)

This yields an equivalent formulation of duality in matrix form by taking the time
derivative at t = 0. With (62) one obtains [97]

D̂H = GT D̂. (78)

Remark 2.3 A process with strictly positive invariant measure and its reversed are
dual w.r.t. the diagonal duality function D∗(η, η′) =

∑
x µ
−1(η)δη,η′ where µ > 0

is the common invariant measure. This follows directly from the definition (69) of
the reversed process and the matrix representation D̂ = µ̂∗ of the diagonal duality
function.

Following [31, 6] we show now that symmetries of a generator may lead to non-
trivial dualities.

Theorem 2.4 Let H be the matrix representation of the generator of an ergodic
Markov process ηt with countable state space and Hrev be the matrix form of the
generator of the reversed process xt. Assume that there exists an intertwiner Ŝ such
that

ŜH = HrevŜ. (79)

Then H is self-dual with duality function D(x, η) = Dx,η given by the matrix ele-
ments of the duality matrix

D̂ = µ̂−1Ŝ. (80)

with the diagonal stationary distribution matrix of definition (1.7).
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Proof: Given the hypothesis (79), self-duality with duality matrix (80) follows from
the chain of equalities

DH = µ̂−1ŜH = µ̂−1HrevŜ = µ̂−1Hrevµ̂D = HTD. (81)

The first and the third equality are the definition (80), the second equality is the
hypothesis (79) of the theorem, and the fourth equality is the definition (69) of the
reversed process. �

Remark 2.5 It follows that if H is reversible then the hypothesis (79) reads ŜH =
HŜ, i.e. according to (58) Ŝ is a symmetry of H.

Corollary 2.6 Let H be the matrix representation of the generator of an ergodic
Markov process ηt with countable state space and strictly positive invariant measure
µ and S be a symmetry of H. Then H and Hrev are dual w.r.t. the duality function
D(η, η′) = µ−1(η)S(η, η′).

2.2 The symmetric simple exclusion process

Above we have introduced in informal fashion the ASEP on the one-dimensional
integer lattice. For symmetric hopping rates r = ` =: w the process is called
symmetric simple exclusion process (SSEP). Basically, what this process does is to
randomly interchange the occupation variables of a pair of sites. It has a natural
generalization to arbitrary graphs and link-dependent hopping rates and can then
informally be described as follows. Let Γ = (Λ,Υ) be a finite graph with nodes
k ∈ Λ and undirected links 〈k, l〉 ∈ Υ. A configuration of the SSEP is denoted by
η := {ηk : k ∈ Λ} with the L = |Λ| occupation numbers ηk ∈ {0, 1}. Each link
〈k, l〉 carries a “clock” that rings after an exponentially distributed random time
with parameter wkl ≡ wlk. When the clock rings the occupation numbers ηk and ηl
are interchanged, corresponding to a particle jump across bond 〈k, l〉 if one of the
two sites is occupied and the other is empty.

This process has a non-Abelian symmetry under the Lie-group SU(2) which
implies that its generator H written as a matrix commutes with the representation
matrices of the Lie algebra sl(2). In order to exploit this fact for deriving duality
relations we first write the generator in matrix form.

2.2.1 Generator of the SSEP in matrix form

Definition 2.7 Let Λ be a finite set of cardinality L, ηj ∈ {0, 1} for j ∈ Λ the
occupation number of an exclusion process, ΩL = {0, 1}L, the state space and η =
{ηj : j ∈ Λ} be a configuration of an exclusion process. For a pair 〈k, l〉 ∈ Λ × Λ
the 〈k, l〉-permutation of a configuration η ∈ ΩL is the mapping πkl : ΩL → ΩL such
that πkl(η) 7→ ηkl with interchanged occupation numbers

ηklj = ηj + (ηk − ηl) (δj,l − δk,l) . (82)
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The informal description of the SSEP on the Graph Γ means that the transition
rates are given by

wη′,η =
∑
〈k,l〉∈Υ

wkl (ηk(1− ηl) + (1− ηk)ηl) δη′,ηkl = wkl (83)

for all links 〈k, l〉. Thus the generator reads

Lf(η) =
∑
〈k,l〉∈Υ

wkl
[
f(ηkl)− f(η)

]
=
∑

η′∈ΩL

∑
〈k,l〉∈Υ

wkl
(
δη′,ηkl − δη′,η

)
f(η′) (84)

from which one reads off the matrix elements

Hη′,η = −
∑
〈k,l〉∈Υ

wkl
(
δη′,ηkl − δη′,η

)
(85)

of the generator H of the SSEP.
In order to fix the canonical basis vectors 〈η | = 〈 eι(η) | and|η 〉 = 〈η |T for the

intensity matrix, i.e., the matrix form of the generator, we choose the enumeration
function

ι(η) = 1 +
L∑
k=1

ηk2
L−k. (86)

Thus ι(η) is the decimal value plus 1 of the binary number η1η2 . . . ηL. By the defini-
tion of the Kronecker product (1.2) this choice of enumeration function corresponds
to the tensor basis

〈η | = 〈 η1, . . . , ηL | ≡ 〈 η1 | ⊗ · · · ⊗ 〈 ηL | (87)

with the one-site basis vectors

〈 ηk | = (1− ηk, ηk). (88)

This yields the constant summation vector in the tensor form

〈 s | = (1, 1)⊗L. (89)

In order to write the generator as a matrix it is useful to introduce the unit
matrix 1 and three Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (90)

where i is the imaginary unit. From these we construct the so-called spin-lowering
and raising operator

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1

2
(σx − iσy) =

(
0 0
1 0

)
(91)
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which are nilpotent of degree 2 and the projectors

n̂ =
1

2
(1 + σz) =

(
0 0
0 1

)
, v̂ =

1

2
(1− σz) =

(
1 0
0 0

)
(92)

on a particle and vacancy vector respectively.
From the action of these matrices on the single-site basis vectors one reads off

(1 + σ+
k σ
−
l + σ−k σ

+
l − n̂kv̂l − v̂kn̂l)|η 〉 = |ηkl 〉. (93)

The orthogonality relations 〈η′|ηkl 〉 = δη′,ηkl and 〈η′|η 〉 = δη′,η then yields from
the matrix elements (85) the matrix representation

Hη′,η = −
∑
〈k,l〉

wkl〈η′ |(σ+
k σ
−
l + σ−k σ

+
l − n̂kv̂l − v̂kn̂l))|η 〉. (94)

of the generator of the SSEP in terms of spin operators. In quantum mechanics this
matrix is known as the Hamiltonian of the spin-1/2 Heisenberg ferromagnet. We
can write

H =
∑
〈k,l〉

wklhkl (95)

with the hopping matrices

hkl = −
(
σ+
k σ
−
l + σ−k σ

+
l − n̂kv̂l − v̂kn̂l

)
(96)

= −1

2
(σxkσ

x
l + σykσ

y
l + σzkσ

z
l − 1) . (97)

2.2.2 Equilibrium measures

Since H is symmetric it follows that |u 〉 = 〈 s |T is a stationary measure. Moreover,
the SSEP obviously satisfies detailed balance (68) w.r.t. this measure. Thus the
uniform measure

|u∗ 〉 :=
1

|ΩL|
| s 〉 = 2−L| s 〉 (98)

is an equilibrium measure with an energy E(η) = const that does not depend on
the configuration η. Since particle number is conserved the SSEP defined on Ω is
trivially non-ergodic. However, since the dynamics is a sequence of permutations,
the SSEP restricted to the state space ΩL,N := {η ∈ ΩL :

∑
k∈Λ ηk = N} of fixed

particle number N ∈ {0, . . . , L} is ergodic. Since there are |ΩL,N | =
(
L
N

)
ways of

distributing N exclusion particles on L sites, the canonical uniform measure

| πL,N 〉 =
∑

η∈ΩL,N

|η 〉, | π∗L,N 〉 =
1

Z

∑
η∈ΩL,N

|η 〉 (99)

with canonical partition function

ZL,N =

(
L

N

)
(100)
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is the unique equilibrium measure π∗L,N on ΩL,N . One has for η ∈ ΩL

π∗L,N(η) =

(
L

N

)−1

δN,N(η) (101)

where
N(η) =

∑
k∈Λ

ηk (102)

is the number of particles in the configuration η. The canonical partition function
(100) yields the canonical free energy

FL,N = − lnZL,N . (103)

Clearly, any normalized convex combination of the unnormalized canonical in-
variant measure uL,N(η) := δN,N(η) defines an equilibrium measure. Of particular
importance is the grandcanonical measure

π∗L,φ(η) :=
1

ZL(φ)

L∑
N=0

eϕNuL,N(η) (104)

with so-called chemical potential φ and grandcanonical partition function

ZL(φ) :=
∑
η∈ΩL

L∑
N=0

eφNuL,N(η) =
L∑

N=0

eφNZL,N =
(
1 + eφ

)L
. (105)

The simple form of this partition function comes from the fact that the grandcanon-
ical measure can be written in product form as

π∗L,φ(η) :=
1

ZL(φ)

∏
k∈Λ

(
1− ηk + eφηk

)
(106)

which is a Bernoulli product measure.
By construction the particle number N(η) in this grandcanonical ensemble of

configuration is not a fixed number even though for any given realization of the
process it is. Instead one has

ρ(φ) :=
〈N 〉φ
L

=
1

L

∑
η∈ΩL

N(η)πL,φ(η) =
1

L

d

dφ
lnZL(φ) =

eφ

1 + eφ
(107)

Defining the inverse function

φ(ρ) = ln ρ− ln (1− ρ) (108)

one finds for the composite function Z̃L(ρ) = (ZL ◦ φ)(ρ) the density dependence

Z̃L(ρ) = ZL(φ(ρ)) = (1− ρ)−L. (109)
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of the grandcanonical partition function and the corresponding ρ-parametrization

π̃∗L,ρ(η) := π∗L,φ(ρ)(η) =
L∑

N=0

(1− ρ)L−NρNuL,N(η) (110)

of the grandcanonical measure (104).
One realizes that – as expected – the grandcanonical free energy

G(L, φ) := − lnZL,φ = −L ln (1 + eφ) (111)

is extensive in L. In the associated canonical free energy defined by the Legendre
transform

F (L, ρ) = G(L, φ(ρ)) + Lρφ(ρ) = L [(1− ρ) ln (1− ρ) + ρ ln ρ] (112)

one recognizes the thermodynamic limit (103)

lim
L→∞

FL,ρL = F (L, ρ) (113)

of the canonical free energy. This indicates equivalence of the canonical ensem-
ble with N = ρL particles and the grandcanonical ensemble at density ρ in the
thermodynamic limit.

The grandcanonical probability vector | π∗L,φ 〉 is obtained from (99). Defining
the unnormalized canonical stationary probability vector

| πL,N 〉 =
∑

η∈ΩL,N

|η 〉 (114)

and the particle number operator

N̂ =
∑
η∈ΩL

N(η)|η 〉〈η | (115)

one gets f(N)| πL,N 〉 = f(N̂)|πL,N 〉 since each component in | πL,N 〉 with non-zero

weight has exactly N particles which means that N |πL,N 〉 = N̂ |πL,N 〉. Thus

| π∗L,φ 〉 = Z−1
L (φ)

L∑
N=0

eφN | πL,N 〉

= Z−1
L (φ)

L∑
N=0

eφN̂ | πL,N 〉

= Z−1
L (φ)eφN̂

L∑
N=0

∑
η∈ΩL,N

|η 〉

= Z−1
L (φ)eφ

∑L
k=1 n̂k |u 〉
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= Z−1
L (φ)

L∏
k=1

(v̂k + eφn̂k)|u 〉

=
(
1 + eφ

)−L (
(1, eφ)T

)⊗L
=

1

(1 + eφ)L

(
1
eφ

)⊗L
=

(
1− ρ(φ)
ρ(φ)

)⊗L
(116)

which is an L-fold tensor product.
This tensor structure of the grandcanonical probability vector makes the com-

putation of correlations trivial. From (38) one has

〈 ηk1 . . . ηkm 〉φ = ρm(φ) (117)

when all ki are mutually different. Therefore one finds the static structure function

Ck,l := 〈 ηkηl 〉φ − ρ
2(φ) = ρ(φ)(1− ρ(φ))δk,l. (118)

This yields the compressibility

K(ρ) =
1

L

∑
k∈Λ

∑
l∈Λ

Ck,l =
1

L
〈 (N − ρL)2 〉 = ρ(1− ρ). (119)

Of course, this result could directly have been obtained from the usual thermody-
namic relation

K̃(φ) =
d

dφ
ρ(φ) =

eφ

(1 + eφ)2
(120)

and using (108).

2.2.3 Duality functions for the SSEP

From the structure of the hopping matrices in (97) it is clear that the generator is
symmetric under the action of the Lie-algebra su(2) [4], i.e., H satisfies the commu-
tation relations

[H , Spm ] = [H , Sz ] = 0 (121)

with the representation matrices

S± =
∑
k∈Λ

σ±k , Sz =
1

2

∑
k∈Λ

σzk (122)

which satisfy the su(2) commutation relations

[S+ , S− ] = 2Sz, [Sz , S± ] = ±S±. (123)

Using the symmetry approach to duality discussed above, the well-known self-duality
of the SSEP [96, 61] stated in a generalized form in the following theorem becomes
a trivial corollary of the su(2) symmetry.
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Theorem 2.8 The SSEP on a lattice Λ with state space Ω = {0, 1}Λ is selfdual
w.r.t. the duality function

D(ζ,η) =
∏
k∈Λ

(α + βηk)
γ+δζk (124)

for all η, ζ ∈ {0, 1}Λ and α, β, γ, δ ∈ R.

Remark 2.9 For γ = 0 the duality function (124) can be written in alternative
form as follows. Let x(ζ) := {k : ζk = 1} be the set of occupied sites xi ∈ Λ of the
configuration ζ and N(x) = |x| be the number of particles in the configuration x.
This mapping induces an obvious bijection between the state space Ω = {0, 1}Λ and
the coordinate set Ξ of possible distinct occupied sites and thus allows for describing
the ASEP in terms of the evolution xt of particle coordinates. With a = αδ, b =
(α + β)δ − αδ the duality function (124) then becomes

D̃(x,η) =

N(x)∏
i=1

(a+ bηxi) (125)

for all x ∈ Ξ and η ∈ Ω. For α = 0, β = δ = 1 corresponding to a = 0 and b = 1
one recovers the well-known duality function formulated and proved in a different
way in [61] and which goes back to [96].

Proof: The SU(2)-symmetry implies that the L-fold Kronecker product D̂ = A⊗L

is a symmetry operator for any ×2 matrix A. Since the SSEP is reversible with
uniform invariant measure (98) this yields the duality function D(ζ,η) = 〈 ζ |D̂|η 〉.
The factorization of the symmetry operator and also of the dual pairing (see (38))
yields

D(ζ,η) =
∏
k∈Λ

〈 ζk |A| ηk 〉 (126)

Explicit computation of the two-dimensional bilinear form

〈 ζk |A| ηk 〉 = (1− ζk, ζk)
(
A11 A12

A21 A22

)(
1− ηk
ηk

)
(127)

yields (α+ βηk)
γ+δζk with A11 = αγ, A12 = (α+ β)γ, A12 = αγ+δ, A22 = (α+ β)γ+δ.

�

Remark 2.10 The duality function (124) is not unique. Any measurable function
of the symmetry operators S±,z (122) yields a duality function.

One realizes that the mapping to the quantum Hamiltonian immediately reveals
the well-known sl(2) symmetry of the generator of the SSEP and therefore pro-
vides instantly self-duality functions. Moreover, the matrix formulation reduces to
proof of selfduality to elementary multilinear algebra. The sl(2) symmetry allows
for the derivation of similarly strong results for multi-time correlation functions
〈ni1(t1) . . . nik(tk) 〉.
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Remark 2.11 Any Markov process whose generator is a function of the hopping
matrices ek,l = σxkσ

x
l + σykσ

y
l + σzkσ

z
l − 1 is sl(2) symmetric and therefore self-dual

w.r.t. the same duality functions as the SSEP. The approach can be straightforwardly
generalized to the partial symmetric exclusion process [84, 53]. The partial exclusion
process is the spin-s version of this model where each lattice site i can be occupied
by at most 2si particles and where single-particle hopping from site i to site j occurs
with rate ni(2sj − nj).

2.2.4 Density profile and dynamical structure function

We focus now on the case α = γ = 0 and β = δ = 1 in the duality function (124).
The self-duality has the remarkable consequence that for any initial measure with
support on configurations with any number of particles the joint expectations of n
occupation numbers can be expressed in terms of transition probabilities for initial
states with only n particles. In particular, for the density profile ρk(t) = Eµtηk
one finds by inserting the duality function in the form (125) for N = 1 into the
definition (77) of duality. Inserting D(x,η) = ηx into the r.h.s. of (77) and using
the propagator representation (62) of the transition probability yields for an initial
configuration η∑

η′

ηx〈η′ |e−Ht|η 〉 =
∑
η′

〈η′ |n̂xe−Ht|η 〉 = 〈 s |n̂xe−Ht|η 〉 (128)

since 〈η′ |n̂x = ηx〈η′ |. On the other hand, the l.h.s. of (77) becomes∑
x′∈Λ

ηx′P (x′, t|x, 0) =
∑
x′∈Λ

〈 s |n̂x′|η 〉P (x, t|x′, 0) (129)

since for a single particle one has Ξ = Λ and since the generator for the SSEP is
symmetric.

This yields for an arbitrary initial measure µ the density profile

ρx(t) = 〈 s |ηxe−Ht|µ 〉 =
∑
x′∈Λ

ρx′(0)P (x, t|x′, 0). (130)

This means that irrespective of the lattice and of the jump rates between lattice
points the time evolution of the local density in a system of any number of inter-
acting particles is completely determined by the (non-interacting) time evolution
of a single particle. Specifically, on the d-dimensional hypercubic lattice Zd with
translation-invariant nearest-neighbour hopping the single-particle propagator sat-
isfies a discrete diffusion equation which can be solved in explicit form in terms of
modified Bessel functions

In(t) =
1

2π

∫ π

−π
dp eipn−t cos p. (131)

On Zd with hopping rates wi in each direction one then has for point ~x = (x1, . . . , xd)

ρ~x(t) =
d∏
j=1

∑
x′j∈Z

ρx′j(0)e−wjtIxj−x′j(wjt). (132)
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As a corollary of (130) we note

〈 s |ηxe−Ht =
∑
x′∈Λ

P (x, t|x′, 0)〈 s |n̂x′ . (133)

For the dynamical structure function defined by

Sx,y(t) := Eρ (ηx(t)ηy(0))− ρ2 (134)

this yields

Sx,y(t) = 〈 s |ηxe−Htηy| ρ 〉 − ρ2

=
∑
x′∈Λ

P (x, t|x′, 0)〈 s |n̂x′n̂y| ρ 〉 − ρ2

=
∑
x′∈Λ

P (x, t|x′, 0)
(
ρ2 + ρ(1− ρ)δx′,y

)
− ρ2

= ρ(1− ρ)P (x, t|y, 0) (135)

where we have used reversibility of the SSEP and conservation of probability which
gives

∑
x′∈Λ P (x, t|x′, 0) =

∑
x′∈Λ P (x′, t|x, 0) = 1 for the single-particle process.

On the translation-invariant hypercubic lattice with nearest-neighbour jumps
with rates wi in direction i the dynamical structure function S~x(t) := S~x,~0(t) becomes

S~x(t) =
d∏
j=1

e−2wjtIxj−x′j(2wjt). (136)

In the scaling limit xi(t) = ri
√

4wit and t→∞ the modified Bessel function becomes
a Gaussian. Thus

d∏
j=1

√
4πwj lim

t→∞
td/2S~x(t)(t) = e−

∑d
j=1 r

2
j . (137)

We read off the dynamical exponent z = 2 and the universal Gaussian scaling
function with diagonal diffusion matrix Dij = 2wiδij.

Higher order correlation functions can be studied using the Bethe ansatz [35,
52, 87]. One finds that all n-point correlation functions of the symmetric exlusion
process are, to leading order in time, identical to the same n-point correlators of non-
interacting particles. Corrections are of order 1/

√
t, see [14] for a related rigorous

result. Hence diffusive scaling with dynamical exponent z = 2 leaves finite-order
correlation functions invariant up to an overall amplitude.

2.3 Selfduality of the 1-d ASEP

The ASEP on the graph Γ is the asymmetric generalization of the SSEP with di-
rected hopping rates wkl for jumps from site k to site l and wlk for the reversed
jump. Little is known about this process on general graphs where it does not have
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a symmetry analogous to the sl(2)-symmetry of the SSEP and where not even the
invariant measure is known. We restrict our attention to the most-studied one-
dimensional finite integer lattice Λ = [L−, L+] \ Z with nearest-neighbour jumps
with rates rk ≡ wkk+1 > 0, `k+1 ≡ wk+1k > 0 for constant hopping bias .

2.3.1 Periodic boundary conditions with constant rates

For constant bond hopping rates rk = r, `k = ` it is straightforward to prove that
for periodic boundary conditions the product measure (106) is a family of stationary
distribution of the ASEP [96]. Therefore the stationary distribution is the same as
the equilibrium distribution of the SSEP, even though the ASEP does not satisfy
detailed balance and hence is not an equilibrium process. The lack of reversibility
is reflected in the fact that the stationary current

j = r〈ηk (1− ηk+1)〉 − `〈ηk+1 (1− ηk) = (r − `)ρ(1− ρ) (138)

is non-zero.

2.3.2 Generator of the ASEP with reflecting boundaries

For reflecting boundaries where hopping between the boundary sites L− and L+ is
not allowed it is convenient to define the parameters

q ≡ ef =

√
rk
`k+1

, wk =
√
rk`k+1 (139)

and define the system size
L = L+ + 1− L−. (140)

With the local hopping rates

wkk+1(η) = wk
(
qηk(1− ηk+1) + q−1(1− ηk)ηk+1

)
, k ∈ {L−, . . . , L+ − 1} (141)

the transition rate from a configuration η to a configuration η′ is given by

wη′,η =
L+−1∑
k=L−

wkk+1(η)δη′,ηkk+1 . (142)

and the generator reads

Lf(η) =
L+−1∑
k=L−

wkk+1(η)[f(ηkk+1)− f(η)]. (143)

Using the Pauli matrices (90) one finds

H =
L+−1∑
k=L−

wkhk (144)

with non-symmetric hopping matrices

hk = −q
(
σ+
k σ
−
k+1 − n̂kv̂k+1

)
− q−1

(
σ−k σ

+
k+1 − v̂kn̂k+1

)
. (145)
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2.3.3 Grandcanonical equilibrium measure

The hopping matrices can be symmetrized by the ground state transformation

V := q
∑L+

k=L− kn̂k . (146)

One has

hTk = V −2hkV
2 (147)

h̃k := V −1hkV = h̃Tk . (148)

This implies that this ASEP is reversible and together with particle number conser-
vation one concludes that

π∗L,φ(η) =
1

ZL,φ
〈η |V 2|η 〉 =

1

ZL,φ
q2

∑L+

k=L− (k−κ(φ))ηk , κ(φ) = −φ/(2f) (149)

is an equilibrium measure2 for any chemical potential φ ∈ R, corresponding to a
linear potential

U(x) = −ε
N(x)∑
i=1

xi (150)

with ε = 2kBTf for a configuration x with particles at sites xi. This is a product
measure with grandcanonical partition function

ZL,φ =
L+∏

k=L−

(
1 + q2k−2κ(φ)

)
. (151)

Correspondingly the associated probability vector is a tensor product

|π∗L,φ 〉 =
1

ZL,φ
eφN̂V 2| s 〉 = | ρ1 〉 ⊗ · · · ⊗ | ρL 〉 (152)

with marginals

| ρk 〉 =
(
1 + q2k−2κ(φ)

)−1
(

1
q2k−2κ(φ)

)
. (153)

This is the blocking measure [61] restricted to Λ.
The stationary particle density is not uniform, but given by

ρk =
q2k−2κ(φ)

1 + q2k−2κ(φ)
=

1

2
(1 + tanh (f(k − κ(φ))) , (154)

see Fig. (??). This means that the stationary local density is approximately equal
to 1/2 near the lattice point k∗ = [κ(φ)] provided that k∗ ∈ Λ. The density ap-
proaches 1(0) to the right(left) on a length scale of order 1/f 2. Thus on macro-
scopic scale the density has a shock discontinuity at x∗ = κ(φ)/L ∈ [b−, b+] where
b± = limL→∞ L

±/L.

2The measure (149) as well as all related measures and functions introduced below depend both
on L− and L+. In order to avoid heavy notation we indicate this dependence only by the volume
L.
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Figure 6: Stationary density profile of the ASEP with reflecting boundaries with 100
sites. The position of the step is determined by the particle number, its width depends on
the driving field. Here we have chosen βf = 1/2, corresponding to q =

√
e.

2.3.4 Duality functions for the 1-d ASEP

The process is symmetric under the quantum algebra Uq[gl(2)] [68] which is the
q-deformed universal enveloping algebra of gl(2) [47, 48]. This implies that the
generator H given by (144) commutes with the symmetry operators S±(q) and Sz

where [86]

S+(q) =
L+∑

k=L−

qN̂kσ+
k , S−(q) =

L+∑
k=L−

q−V̂kσ−k (155)

with the non-local particle balance operators

N̂k =
L+∑

j=k+1

n̂k −
k−1∑
j=L−

n̂k, V̂k =
L+∑

j=k+1

v̂k −
k−1∑
j=L−

v̂k, (156)

The particle balance function

Nk(η) :=
L+∑

j=k+1

ηk −
k−1∑
j=L−

ηk (157)

gives the difference between the number of of particles to right and left of site k.
Hence Nk(ηt)−Nk(η0) is the integrated particle current across site k up to time t.

By the duality theorem (2.4) the ASEP with reflecting boundary conditions
defined by (144) is self-dual w.r.t.

Dgen(ζ,η) = π−1
L,0(ζ)〈 ζ |F (S+(q), S−(q), Sz)|η 〉 (158)

where F (S+(q), S−(q), Sz) is some bounded function of the symmetry operators and
π−1
L,0(ζ) = q−2

∑
k∈Λ ζk is the unnormalized equilibrium measure of the ASEP.

The computation of the matrix elements of F (S+(q), S−(q), Sz) is less forward
than in the sl(2) case. We note [6]

Proposition 2.12 For all q ∈ C \ 0 the symmetry operator

Y +(q) =
L∑
r=0

(S+(q))r

[r]q!
(159)
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with the q-numbers

[x]q =
qx − q−x

q − q−1
, x ∈ C, [n]q! =

n∏
k=1

[k]q, k ∈ N (160)

has matrix elements

〈 ζ |Y +(q)|η 〉 =
L+∏

k=L−

(Qk(η))ζk (161)

with Qk(η) = ηkq
−Nk(η).

This result yields from (158) the duality function of [86] in the coordinate rep-
resentation x of the configuration ζ:

Corollary 2.13 The ASEP defined by (144) is selfdual w.r.t. the duality function

Dω(x,η) =

N(x)∏
i=1

ηxiq
−2

∑xi−1

k=L−
(1−ηk)+ωN(η). (162)

To see this notice first that Proposition (2.12) together with (158) implies that

D̃(x,η) =

N(x)∏
i=1

q−2xiηxiq
−Nxi (η) (163)

is a duality function. Because of particle conservation this duality function can be
multiplied with any function of the particle numbers N(x) and N(η) to obtain a
new duality function. So in particular we have that

D̃(x,η)qN(x)((1+ω)N(η)+2L−−1) =

N(x)∏
i=1

q(1+ω)N(η)+2L−−1−2xiηxiq
−Nxi (η) = Dω(x,η)

(164)
is also a duality function.

2.3.5 Microscopic structure of shocks in the ASEP

This duality function is not local and therefore it cannot be used to compute the
dynamical structure of the ASEP. However, it carries non-trivial information about
the distribution of the time-integrated current [41] and for constant bond hopping
rates wk = w also about the microscopic structure and dynamics of shocks [5, 7].
It turns out that just as in the SSEP the time evolution of an n-point density
correlation is given by the transition probabilities of only n particles in the SSEP,
the time evolution of a shock measure for the ASEP defined on the infinite integer
lattice Z with n microscopic shocks is given by the transition probabilities of a
modified ASEP with only n particles. To be precise, we state the result of [5] for
a single microscopic shock where the modified ASEP reduces to a biased random
walk.
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Definition 2.14 (Shock measure) A shock measure νx on {0, 1}Z indexed by the
microscopic shock position x ∈ Z is the product measure given by the marginals

νx(ηk) =


1 k = x
ρ0δηk,1 + (1− ρ−)δηk,0 k < x
ρ1δηk,n + (1− ρ+)δηk,0 k > x

(165)

The restriction to Λ for x ∈ Λ

µLx(η) :=
L+∏

k=L−

νkx(ηk) (166)

is also called shock measure with microscopic shock position x.

Then one has [5, 3, 7]:

Theorem 2.15 Let νx(t) denote the measure at time t of the ASEP on Z with
constant rates r = wq > 0, ` = wq−1 > 0, starting from a shock measure νx defined
in (2.14) with

ρ+(1− ρ−)

ρ−(1− ρ+)
= q2. (167)

Then, for any x ∈ Z
νx(t) =

∑
y∈Z

P (y, t|x, 0) νy (168)

where P (y, t|x, 0) is the transition probability of a biased random walk with jump
rates

p± = (r − `)ρ±(1− ρ±)

ρ+ − ρ−
(169)

to the right (+) and left (-) respectively.

Corollary 2.16 The shock is microscopically sharp at all times and performs on
macroscopic scale a diffusive motion with drift velocity

vs = p+ − p− = (r − `)(1− ρ+ − ρ−) (170)

and diffusion coefficient

Ds =
1

2
(p+ + p−) = (r − `)ρ−(1− ρ−) + ρ+(1− ρ+)

ρ+ − ρ−
. (171)

Remark 2.17 The microscopic sharpness follows from the product structure of the
shock measure (166). One recognizes in the microscopic shock velocity (170) the
Rankine-Hugoniot velocities (6) since j± := w(q− q−1)ρ±(1− ρ±) is the expectation
of the particle current to the right and to the left of shock. The shock diffusion
coefficients (171) are consistent with the general result (7) of [29] on shock motion
in the ASEP on diffusive scale.
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We outline the proof and refer for the technical details to [5, 7]. Al alternative
probabilistic proof is given in [3].

Consider first the finite lattice Λ. We recall (77) which reads for the duality
function (162) with a single-particle configuration ζ∑

y∈Λ

Dω(y,η)P (y, t|x, 0) =
∑
η′∈Ω

η′xq
−2

∑x−1

k=L−
(1−η′k)+ωN(η′)〈η′ |e−Ht|η 〉

=
∑
η′∈Ω

〈η′ |n̂xq−2
∑x−1

k=L−
(1−n̂k)+ωN̂e−Ht|η 〉

= 〈 s |n̂xq−2
∑x−1

k=L−
(1−n̂k)+ωN̂e−Ht|η 〉

= 〈η |e−HT tn̂xq
−2

∑x−1

k=L−
(1−n̂k)+ωN̂ | s 〉 (172)

On the other hand, for the l.h.s. we have

Dω(y,η) = ηyq
−2

∑y−1

k=L−
(1−ηk)+ωN(η) = 〈 η |n̂yq−2

∑y−1

k=L−
(1−n̂k)+ωN̂(η)| s 〉 (173)

Next we observe that

n̂xq
−2

∑x−1

k=L−
(1−n̂k)+ωN̂(η)| s 〉 = Z−1

x | νx 〉 (174)

with densities

ρ− =
qω

q−2 + qω
, ρ+ =

qω

1 + qω
(175)

and normalization constant

Zx =
(
q−2 + qω

)x−L−
(1 + qω)L

+−x =
(1 + qω)L

+

(q−2 + qω)L
−

(
ρ+

ρ−

)x
(176)

Thus selfduality yields∑
y∈Λ

Z−1
y | νy 〉P (y, t|x, 0) = e−H

T tZ−1
x | νx 〉. (177)

or equivalently ∑
y∈Λ

| νy 〉
(
ρ+

ρ−

)x−y
P (y, t|x, 0) = e−H

T t| νx 〉. (178)

Notice now the trivial random walk property that up to a boundary term(
ρ+

ρ−

)x−y
P (y, t|x, 0) = e−λtP̃ (y, t|x, 0) (179)

where P̃ (y, t|x, 0) is the transition probability of a random walk with rates p̃± =
(qρ−/ρ+)±1 and λ = p+ + p− − q − q−1. Thus∑

y∈Λ

P̃ (y, t|x, 0)| νy 〉 = e−(HT−λ)t| νx 〉. (180)
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On the other hand, H̃ = HT − λ is, up to another boundary term, the generator of
the ASEP with inverse hopping asymmetry q−1. Using coupling arguments it can
be shown that in the thermodynamic limit these boundary terms are irrelevant [5].
Thus we arrive at ∑

y∈Z

P̃ (y, t|x, 0)| νy 〉 = | νx(t) 〉/ (181)

where the upper left-pointing triangle indicates the evolution under the ASEP on Z
with reversed bias.

The densities satisfy
ρ+(1− ρ−)

ρ−(1− ρ+)
= q−2. (182)

Therefore

q − q−1 = q(1− q−2) =
p+

w

ρ− − ρ+

ρ+(1− ρ+)
(183)

= q−1(q2 − 1) =
p−
w

ρ− − ρ+

ρ−(1− ρ−)
(184)

which yields the transition rates

p± = (r − `) ρ− − ρ+

ρ±(1− ρ±)
(185)

for the random walk. Substituting q → q−1 then proves the theorem.

2.4 Recipe for the quantum Hamiltonian of exclusion pro-
cesses

To construct H for a given process without going through the explicit matrix mul-
tiplications we note that any changes of the state of the system are represented
by offdiagonal matrices. To be precise, they represent attempts rather than actual
changes: Acting on a state with an already occupied site with σ− yields zero, i.e.
no change in the probability vector. This reflects the rejection of any attempt at
creating a second particle on a given site. Thus the exclusion of double occupancy
is encoded in the properties of the Pauli matrices.

Simultaneous events are represented by products of Pauli matrices acting on
different sites. E.g. hopping of a particle from site i to site j is equivalent to
annihilating a particle at site i and at the same time creating one at site j. Thus
it is given by the matrix σ+

i σ
−
j . The hopping attempt is successful only if site i

is occupied and site j is empty. Otherwise acting with σ+
i σ
−
j on the state gives

zero and hence no change. The rate of hopping (or of any other possible stochastic
event) is the numerical prefactor of each hopping matrix (or other attempt matrix).
Of course, in principle the rate may depend on the configuration of the complete
system. Suppose the hopping rate is given by a function w(η) where η is the
configuration prior to hopping. In this case the hopping matrix is given by σ+

i σ
−
j ŵ
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where the diagonal operator ŵ is obtained form the rate w(η) by replacing any ηi
by the projector hatni. If e.g. for some reason hopping from site i to site j should
occur only if a third site site k is empty, then the hopping matrix would be given by
σ+
i σ
−
j (1− nk). For a hopping rate which is proportional to the number of particles

on neighboring sites one finds the matrix σ+
i σ
−
j (1 + w

∑
k n̂k). The construction of

the attempt matrices for other processes or for n-states model is analogous.
For two-states models one notes the useful identities

〈 s |σ+
i = 〈 s |n̂i , 〈 s |σ−i = 〈 s |(v̂i (186)

which follow immediately from the tensor structure of the summation vector and
the definition of the local Pauli matrices. With these relations it is easy to construct
the diagonal part of the quantum Hamiltonian in order ensure conservation of prob-
ability. To each off-diagonal attempt matrix one constructs a diagonal matrix by
replacing all σ+

i by n̂i and by replacing all σ−i by v̂i. E.g. to hopping from i to j with
rate w represented by −wσ+

i σ
−
j one adds wn̂iv̂j. The (negative) sum of all attempt

matrices minus their diagonal counterparts is then the full generator. In the same
way one constructs the diagonal parts of n-states models by using the analogues of
Eqs. (186). Conservation of probability (59) is then automatically satisfied.

3 Fluctuations of current and density

Fluctuation theorems relate the probability of a positive value of some observable
to the probability of the negative of that quantity [26, 38, 91, 40]. Prominent
examples for such relations include the Jarzynski relation for the distribution of non-
equilibrium work [44] and the Gallavotti-Cohen theorem [30] for the distribution of
the entropy production in deterministic dynamics and a related result by Lebowitz
and Spohn for the particle current in stochastic interacting particle systems [59].
The latter two have been established in a mathematically rigorous fashion.

It has become clear that currents play an important role in understanding the
non-equilibrium properties of a particle system. Therefore we consider here fluctu-
ation theorems that concern currents such as the current of particles in a particle
system such as the ASEP (cf. (2)). To this end we keep track of the trajectory of
a process, i.e., the whole sequence of transitions from an initial configuration η0 at
time 0 to a final state ηt at time t > 0. In order to do so we first need to introduce
some more tools.

3.1 Tools

3.1.1 Counting processes

The time-integrated particle current provides an example of what we shall call a
counting process Ct with state space R, defined informally by the following proper-
ties [38].
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Property 1: The value of Ct changes only at a transition of the underlying process
with an increment rη′,η ∈ R for a transition η → η′.

Property 2: The transition rates wη′,η of the process ηt do not depend on Ct.

We also introduce the extended counting process by adding “boundary values”
that do not depend on Ct:

Property 3: For given functions ri : Ω → R, rF : Ω → R the extended counting
process is the random number Rt = riη0

+ Ct + rfηt .

Notice that in general a counting process Ct is not Markovian. The joint process
σt = (ηt, Ct) with state space Ξ = Ω× R, however, is Markov with generator

Sf(η, C) =
∑
η′∈Ω\η

wη′,η [f(η′, C + rη′,η)− f(η, C)] . (187)

The values Ct, Rt of a counting process at time t can be regarded as a functional of
the trajectories of the underlying process ηt as we note in the following proposition
which is an immediate consequence of the definition of the counting process, see
Fig. 7 illustration.

0

t

τ

τ1

2

r

r

1,0

2,1

ln f

−ln g

σ0 σ1 σ2

Figure 7: A stochastic trajectory with the sequence of configurations {σ0, σ1, σ2}
such that σt = σ2. Time points upwards, the horizontal direction is the abstract
space of configurations. The increment rσi,σj(τ) is abbreviated as ri,j and the bound-
ary values are ri = ln f(σ0) and rf = − ln g(σ2). Therefore Ct = r0,1 + r1,2 and
Rt = ln f(σ0) + r0,1 + r1,2 − ln g(σ2).
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Proposition 3.1 Let ηt be a Markov process with finite state space Ω and C0 = 0.
Then for a trajectory η[0,t] of the process with nt ≥ 0 transitions at random times
tk ∈ (0, t), 1 ≤ k ≤ nt and ητ = ηtk for tk ≤ τ < tk+1 ≤ t, 0 ≤ k < nt and ητ = ηt
for tnt ≤ τ ≤ t one has

Ct =
nt∑
k=1

rηtk ,ηtk−1
(188)

and

Rt = riη0
+

nt∑
k=1

rηtk ,ηtk−1
+ rfηt . (189)

The physical scenario described by a counting process is the following. One
imagines that besides the physical random process described by ηt there is some
physical property such as the energy of a heat reservoir that can be measured and
whose value is Ct. This quantity does not directly depend on the state ηt but changes
by an amount rη′,η whenever the underlying transition η → η′ occurs. Moreover, it
is assumed that this physical property does not perturb the dynamics of the process.
The extended counting process then yields a physical property that depends also on
the boundary states of the physical random process. Here “boundary” refers to the
temporal boundaries of the trajectory at times τ = 0 and τ = t (Fig. 7). Concrete
examples of physical importance will be discussed below.

As a direct consequence of (187) we note the factorization property

S
(
f(η)e−λC

)
= e−λCL̃λf(η) (190)

with the tilted generator

L̃λf(η) =
∑
η′∈Ω\η

wη′,η
[
e−λrη′,ηf(η′)− f(η)

]
. (191)

This factorization property of the generator has the important consequence that for
a factorized initial measure µ(η, C) = µ(η)δC,0 one has

〈 fte−λCt 〉µ = e−λC0

∑
η∈Ω

f(η)µ̃λ,t(η) (192)

where the tilted measure µ̃λ,t with µ̃λ,0 = µ derives from the time evolution of the
initial measure µ = under the semigroup generated by the tilted generator L̃λ [16].

In matrix form one has

H̃λ = −
∑
η∈Ω

∑
η′∈Ω\η

wη′η

(
e−λrη′,ηEη′η − 1̂η

)
(193)

with the transition matrix Eη′η defined in (53). Even though H̃ is not a stochastic
generator the evolution under H̃ has a straightforward stochastic interpretation by
appealing to the interpretation of Ct as a trajectory functional. Each stochastic
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trajectory generated by the underlying process H gets weighted under the evolution
of H̃ by a factor e−λrη′,η whenever a transition η → η′ occurs. Hence the tilted
transition probability, or equivalently the generating function (192) of the counter
Ct for f(·) = 1η′(·) and initial measure concentrated on η,

Pλ(η
′; t|η; 0) = 〈 η′ |e−H̃λt| η 〉 (194)

can be interpreted as a measure for the weighted trajectories from a configuration
η to a configuration η′ for a time interval of length t.

Thus, taking ft(η) = 1 and arbitrary initial measure µ(η) one obtains the gen-
erating function

G(λ, t) := 〈 e−λCt 〉µ = 〈 s |e−H̃λt|µ 〉 (195)

of the counting function Ct. Likewise, the tilted correlation function

C12(λ, t) := 〈 s |f̂2e−H̃λtf̂1|µ 〉 (196)

is the measure for the weighted trajectories drawn from an initial distribution µ
with boundary weights riη0

= ln (f1(η0)) and rfηt = ln (f2(ηt)). Therefore, choosing
f1(η) = f−λ(η), f2(η) = gλ(η) and initial measure µ(η) = f(η)/Z with partition
function Z = 〈 s| f 〉, one thus finds for the extended counting process

〈 e−λRt 〉f = 〈 s |ĝλe−H̃λtf̂−λ| f 〉 (197)

which means that the generating function of the extended counting process is a
tilted correlation function.

3.1.2 Time-dependent transition rates

Above we have tacitly assumed that the transition rates of the Markov process were
independent of time. When we make them explicitly time-dependent the finite-time
transition matrix is no longer exp (−Ht), but given by the time-ordered exponential

T
[
exp (−

∫ t
0

dτH(τ))
]

defined for general square matrices as follows.

Definition 3.2 Let H(t) be a finite-dimensional square matrix parametrized by time
t. The time-ordered exponential of

∫ t
0

dτH(τ) is the infinite sum

T
[
e−

∫ t
0 dτH(τ)

]
=
∞∑
n=0

(−1)nGn(t) (198)

where the matrix Gn(t) is defined recursively by

Gn(t) :=

∫ t

0

dτH(τ)Gn−1(τ), n ≥ 1 (199)

and G0(t) = 1.
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For illustration we write out explicitly the first few terms:

T
[
e−

∫ t
0 dτH(τ)

]
= 1−

∫ t

0

dτH(τ) +

∫ t

0

dτ1H(τ1)

∫ τ1

0

dτ2H(τ2)− . . . (200)

Evidently one has d
dt
Gn(t) = H(t)Gn−1(t) for n ≥ 1 and d

dt
G0(t) = 0. Thus, with

the short-hand notation
P (t) = T

[
e−

∫ t
0 dτH(τ)

]
, (201)

one has
d

dt
P (t) = −H(t)P (t). (202)

Since also limt↘0 P (t) = 1 we find that

|µ(t) 〉 = P (t)|µ 〉 (203)

is the time-dependent measure satisfying the master equation

d

dt
|µ(t) 〉 = −H(t)|µ(t) 〉 (204)

of a time-inhomogeneous Markov process with time-dependent transition rates wη′,η(t).
Thus the time-ordered exponential yields the transition matrix of the time-inhomogeneous
Markov process. We shall refer to the time-dependence of the rates as protocol of
the process since we have in mind an experiment where one changes a process in
time in some specific way (called protocol) by means of some technical device.

For a similarity transformation (not dependent on t) one has

AP (t)A−1 = T
[
e−

∫ t
0 dτAH(τ)A−1

]
. (205)

Notice that transposition yields

P T (t) = T
[
e−

∫ t
0 dτHT (t−τ)

]
(206)

with transposition and time-reversal of the protocol inside the exponential.
Since in defining the time-ordered exponential we have nowhere used that H is

the generator of a stochastic process the formulas (204) - (206) apply also to the tilted
generator, including the case where the increments are explicitly time-dependent.
We write rη′,η(t) to make such a dependence clear.

3.2 The fundamental fluctuation relation

Loosely speaking, fluctuation relations arise from comparing the probability of a
trajectory of a process to the probability of a “time-reversed” trajectory. Here we
prove a single master fluctuation theorem from which many fundamental fluctuation
relations that have appeared in the literature follow as simple corollaries. It turns
out that with the machinery developed above the proof of this master fluctuation
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theorem itself reduces to a mathematical triviality. The significance of this master
fluctuation relation and its famous corollaries is not mathematical depth but lies in
the rather general applicability in physics, the validity arbitrarily far from equilib-
rium, and a unifying description of the various fluctuation theorems available for
stochastic dynamics.

We are mostly interested in currents and therefore focus on antisymmetric in-
crements satisfying rη′,η(t) = −rη,η′(t). We denote the associated counting process
by Jt. Since fluctuation theorems arise from time reversal we differentiate between
a forward process ηFt and a backward process ηBt .

Definition 3.3 (Forward and backward process) Fix an observation time t > 0
and let ηFτ be a Markov process with countable state space Ω and time-dependent
transition rates wFη′η(τ) such that for all τ ∈ [0, t] and all η, η′ ∈ Ω × Ω either

wFη′η(τ)wFηη′(τ) > 0 or wη′η(τ) = wηη′(τ) = 0. We say that for τ ∈ [0, t] the process

ηBτ with transition rates wBη′η(τ) = wFη′η(t − τ) is the backward process associated

to the forward process ηFt and the set of functions wBη′η(τ) is the backward protocol

associated with the forward protocol wFη′η(τ).

Remark 3.4 The backward process should not be confused with the time-reversed
process defined by the reversed and weighted transition rates (71).

Expectations for the forward and backward process w.r.t. some initial measure µ
are denoted by EX

µ with X ∈ {F,B} indicating the process (forward or backward).
For expectations with initial measure µ(η) = δη,η0 concentrated on a fixed initial
configuration η0 we use the notation EX

η0
. Sums over such expectations are denoted

by

〈 · 〉Xf :=
∑
η0∈Ω

f(η0)EX
η0

(·). (207)

The central result from which the various fluctuation theorems derive is the following
[38].

Theorem 3.5 (Fundamental fluctuation relation) Fix t > 0 and let ηXτ with X ∈
{F,B} be forward and backward Markov processes according to Definition (3.3) with
finite state space Ω and associated counting processes JXτ with antisymmetric incre-
ments

rXη′η(τ) = ln

(
wXη′η(t)

wXηη′(τ)

)
(208)

for transitions satisfying wXη′η(τ)wXηη′(τ) > 0 and rXη′η(τ) = 0 otherwise. Furthermore,
let

RF
t := ln f(ηF0 ) + JFt − ln g(ηFt ), RB

t := ln g(ηB0 ) + JBt − ln f(ηBt ) (209)

with f(η), g(η) 6= 0 for all η ∈ Ω be the associated extended counting processes at
time t. Then the generating functions

ΦF (λ, t) := 〈 e−λRFt 〉Ff , ΦB(λ, t) := 〈 e−λRBt 〉Bg (210)
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of the trajectory functionals RF,B
t obey the symmetry

ΦF (λ, t) = ΦB(1− λ, t) (211)

for all λ ∈ R.

Proof: First we note

Lemma 3.6 Let HF be the generator of the forward process ηFτ and HB be the
generator of the backward process ηBτ according to Definition (3.3) and let JF,Bτ

be the associated counting processes with increments (208). Then tilted evolution
operators satisfy (

P̃ F
λ (τ)

)T
= P̃B

1−λ(τ). (212)

for all τ ∈ [0, t] and λ ∈ R.

Proof: We recall the matrix representation (193) from which we obtain for the time-
dependent case(
H̃F
λ (t− τ)

)T
= −

∑
η∈Ω

∑
η′∈Ω\η

wFη′η(t− τ)
(

e
−λrF

η′,η(t−τ)
Eηη′ − 1̂η

)

= −
∑
η∈Ω

∑
η′∈Ω\η

wFη′η(t− τ)

(wFηη′(t− τ)

wFη′η(t− τ)

)λ

Eηη′ − 1̂η


= −

∑
η∈Ω

∑
η′∈Ω\η

wFηη′(t− τ)

(
wFηη′(t− τ)

wFη′η(t− τ)

)λ−1

Eηη′ − wFη′η(t− τ)1̂η


= −

∑
η∈Ω

∑
η′∈Ω\η

wBηη′(τ)

(
wBηη′(τ)

wBη′η(τ)

)λ−1

Eηη′ − wBη′η(τ)1̂η


= −

∑
η∈Ω

∑
η′∈Ω\η

wBηη′(τ)

(
wBη′η(τ)

wBηη′(τ)

)1−λ

Eηη′ − wBη′η(τ)1̂η


= −

∑
η∈Ω

∑
η′∈Ω\η

wBη′η(τ)

(wBηη′(τ)

wBη′η(τ)

)1−λ

Eη′η − 1̂η


= −

∑
η∈Ω

∑
η′∈Ω\η

wBηη′(τ)
(

e
−(1−λ)rB

η′,η(t−τ)
Eη′η − 1̂η

)
. (213)

where we have used the antisymmetry of the increments. Thus(
H̃F
λ (t− τ)

)T
= H̃B

1−λ(τ). (214)

The transposition property (206) of the time-ordered exponential then proves the
Lemma. �
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Continuing with the proof of Theorem (3.5) we include now the boundary terms.
We have

ΦF (λ, t) = 〈 s |ĝλP̃ F
λ (t)f̂−λ| f 〉, ΦB(λ, t) = 〈 s |f̂λP̃B

λ (t)ĝ−λ| g 〉 (215)

with | f 〉 =
∑

η∈Ω f(η)| η 〉 and | g 〉 =
∑

η∈Ω g(η)| η 〉. By transposition we obtain

ΦF (λ, t) = 〈 f |f̂−λ
(
P̃ F
t (λ)

)T
ĝλ| s 〉 = 〈 s |f̂ 1−λ

(
P̃ F
t (λ)

)T
ĝ−(1−λ)| g 〉. (216)

Lemma (3.6) then concludes the proof. �

Remark 3.7 We required the functions f and g to be non-vanishing for all η. How-
ever, one can generalize Theorem (3.5) by introducing indicator functions 1X , 1Y
on subsets X, Y ∈ Ω. Going through the same steps as above one obtains for

ΦF
Y X(λ, t) := 〈 IY (ηt)e

−λRFt IX(η0) 〉Ff , ΦB
YX(λ, t) := 〈 IX(ηt)e

−λRBt IY (η0) 〉Bg (217)

the extended fluctuation theorem

ΦF
Y X(λ, t) = ΦB

XY (1− λ, t) (218)

In particular, choosing X = | ηa 〉〈 ηa | and Y = | ηb 〉〈 ηb | one obtains a symmetry
relation for trajectories between fixed configurations ηa, ηb. This yields the detailed
fluctuation theorems introduced in [45].

3.3 Some specific fluctuation theorems

In applications one thinks of a stochastic transition as being triggered by thermal
processes in the physical environment into which the system described by the process
is embedded. The choice of increments (208) then means that Jt is the change of
entropy ∆Senv of the physical environment along a trajectory of the process [90].
Since for thermal systems at temperature T , the dissipated heat is given by

Q = T∆Senv (219)

we can also think of this current Jt as defining a non-equilibrium heat term. Different
physical scenarios are then described an appropriate choice of the boundary terms
ri(η) and rf (η) in the extended process Rt. We list some well-known cases.

3.3.1 Integral fluctuation relations

Setting λ = 1 in (211) gives the “integral fluctuation relation” [65]

〈 e−RFt 〉Ff = 1 (220)
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with any normalized choice of ri = ln f and rf = − ln g. The specific choice of f
and g determines the physical interpretation of RF

t .

1) Jarzynski equality

Consider a process in which the rates obey detailed balance (68) at all times w.r.t.
a time-dependent distribution

µ∗τ (η) = e−βUτ (η)/Zτ (221)

with temperature T = 1/β, internal energy Uτ (η) of the configuration η, partition
function

Zτ =
∑
η∈Ω

e−βUτ (η) (222)

and free energy
Fτ = −T lnZτ . (223)

Now we imagine preparing an experiment in which we start with initial distribution
f(η) = µ∗0(η) and measure at some fixed time t > 0 the quantity

g(η) = µ∗t (η). (224)

Then (220) reads

〈 e−RFt 〉Ff =
Z0

Zt
〈 s |e−βÛ P̃1(t)eβÛ |µ∗0 〉 (225)

In this case RF
t is proportional to the dissipated work, which can be seen as follows.

Using the Boltzmann form of the time-dependent pseudo-equilibrium distribu-
tion µ∗τ the boundary part of the functional RF

t becomes

ln f(η0)− ln g(ηt) =
∆U

T
− ∆F

T
(226)

with the changes of internal energy ∆U := U(ηt) − U(η0) and free energy ∆F :=
Ft − F0 resp. during the exerimental time span t. Since the current part Jt is
proportional to dissipated heat (219) one finds

RF
t =

Q

T
+

∆U

T
− ∆F

T
(227)

According to the first law of thermodynamics the work is given by W = (Q+∆U)/T
and hence RF

t is the dissipated work.
Thus (220) yields the Jarzynski relation [44]

〈 e−W/T 〉 = e−∆F/T . (228)

Notice that it is not assumed that the system during its time evolution is in its
time-dependent pseudo-equilibrium state µ∗τ , not even at the final measurement
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time τ = t. This is important as it implies one can measure equilibrium free ener-
gies from an average of the non-equilibrium work performed. The Jarzynski equality
can also be related to some earlier work theorems [11, 12, 13]. A discussion of the
connections can be found in [46].

2) Integral fluctuation theorem for entropy

Now consider a different experimental scenario. Prepare experimentally an initial
distribution µ = f and measure a quantity g chosen to correspond to the final
probability distribution of the process, i.e.,

g(η) = 〈 η |Pt| f 〉. (229)

Then the boundary term of RF
t can be written as

f(η0)− g(ηt) = lnµ(η0, 0)− lnµ(ηt, t) (230)

where µ(ηt, t) is the solution of the time-dependent master equation (204).
Using the general definition

S = Eµ lnµ(η) =
∑
η∈Ω

µ(η) lnµ(η) (231)

of entropy these boundary terms can be interpreted as the change in “system”
entropy ∆Ssys := Ssys(t)−Ssys(0) along a trajectory [90]. Hence in this case we have

RF
t = ∆Senv + ∆Ssys =: ∆Stot, (232)

and (220) becomes an integral relation for the total entropy change [90]

〈 e−∆Stot 〉 = 1. (233)

Jensen’s inequality then implies 〈∆Stot 〉 ≥ 0. In other words, the fluctuation theo-
rem is entirely consistent with the Second Law of Thermodynamics which, properly
interpreted, is a statement about averages, not individual trajectories.

3.3.2 Detailed fluctuation relations

For general λ the master theorem (3.5) leads to various “stronger” fluctuation rela-
tion. To fix the idea we write the generating-function relation (211) formally as∑

R

ProbF (RF
t = R)e−λR =

∑
R

ProbB(RB
t = R)e−(1−λ)R. (234)

where ProbF (RF
t = R) denotes the probability RF

t = R in the forward process (with
initial distribution µF ) and analogously for the backward process. This is trivially
equivalent to ∑

R

ProbF (RF
t = R)e−λR =

∑
R

ProbB(RB
t = R)e(1−λ)R. (235)
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Validity for all λ ∈ R implies

ProbB(RB
t = −R)

ProbF (RF
t = R)

= e−R (236)

which is time-reversal symmetry of the extended forward and backward counting
processes, or, equivalently, of the generating function of the forward and backward
trajectory functionals.

We point that if ri and rf are related by reversal of protocol, then RF
t and RB

t

measure the same physical quantity in forward and reverse processes (with initial
distributions f and g respectively). We can then denote this quantity by Rt without
subscript and write (236) in the simplified form

pB(−Rt)

pF (Rt)
= e−Rt (237)

which is known as the transient fluctuation theorem, see [38] for a more detailed
discussion. Here pF (Rt) denotes the probability distribution for the physical quan-
tity R in the forward process and pB(Rt) is the corresponding distribution for the
backward process. We point out some examples.

1) Crooks’ fluctuation theorem

Choose for rates obeying time-dependent detailed balance,

f(η0) = µ∗(η0) and g(ηt) = µ∗(ηt). (238)

which allows the identification of Rt as proportional to the dissipated work Wd =
Q+ ∆U −∆F . 237 then becomes the fluctuation theorem

pB(−Wd)

pF (Wd)
= e−Wd/T , (239)

which is due to [17].

2) Evans-Searles fluctuation theorem

For constant rates the forward and reverse processes are obviously identical. If we
also take f = g then we can drop the subscripts on the probability distributions
pF (Rt) and pB(Rt) and one obtains the Evans-Searles fluctuation theorem [25, 89,
26].

A special case corresponds to taking f = g = µ∗. Experimentally, this simply
means allowing a system (with time-independent rates) to relax to stationarity be-
fore starting the measurement. In this case we can identify Rt with the total entropy
change. This yields a fluctuation theorem for entropy changes in the steady state
[90]

p(−∆Stot)

p(∆Stot)
= e−∆Stot , (240)
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which is essentially a stochastic form of the original fluctuation theorem proposed
by [24].

3.3.3 Gallavotti-Cohen-Theorem for stochastic interacting particle sys-
tems

In this subsection we focus on time-independent rates (in which case backward and
forward processes are identical) and discuss the limit t → ∞ of the fundamental
fluctuation relation (218). For finite state space the result is quite simple [59] and
the analogue of the Gallavotti-Cohen theorem [30].

Theorem 3.8 (Gallavotti-Cohen symmetry) Let ηt be an ergodic Markov process
with finite state space Ω and transition rates wη′η satisfying either wη′ηwηη′ > 0
or wη′η = wηη′ = 0. Furthermore, let Jt be the associated counting processes with
antisymmetric increments

rη′η = ln

(
wη′η
wηη′

)
(241)

for transitions where wη′ηwηη′ > 0 and rη′η = 0 otherwise and let

Rt := ln f(ηF0 ) + Jt − ln g(ηFt ) (242)

with f(η), g(η) 6= 0 for all η ∈ Ω be the associated extended counting process at time
t. Then for the generating function

Φµ(λ, t) := 〈 e−λRt 〉µ (243)

with any initial measure µ one has the asymptotic behaviour

lim
t→∞

1

t
ln Φµ(λ, t) = −E0(λ) ∀λ ∈ R (244)

and the Gallavotti-Cohen symmetry

E0(λ) = E0(1− λ) ∀λ ∈ R (245)

where E0(λ) ∈ R is the lowest eigenvalue of the tilted generator H̃λ.

Proof: By definition

Φµ(λ, t) = 〈 s |ĝλe−H̃λtf̂−λ|µ 〉. (246)

The spectral decomposition

e−H̃λt =
∑
k

e−Ek(λ)t|Φk(λ) 〉〈Ψk(λ) | (247)

into the dyadic product of biorthogonal left and right eigenvectors of H̃λ yields

Φµ(λ, t) = e−E0(λ)t
∑
k

e−(Ek(λ)−E0(λ))tak(λ)bk(λ) (248)
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where E0(λ) denotes the lowest eigenvalue of H̃λ and

ak(λ) := 〈 s |ĝλ|Φk(λ) 〉, bk(λ) := 〈Ψk(λ) |f̂−λ|µ 〉. (249)

By Perron-Frobenius the lowest eigenvalue corresponding to index k = 0 in the
decomposition is unique. Thus <(Ek(λ) − E0(λ)) > 0 for all k 6= 0. Since in finite
state space ak(λ) and bk(λ) are bounded (244) is proved. The Gallavotti-Cohen
symmetry (244) then follows from (214) which here reduces to H̃T

λ = H̃1−λ. �

Remark 3.9 The assumption of finite state space is not a minor technicality, but
essential for the validity of the theorem. For infinite state space the coefficients a0(λ)
and/or b0(λ) may diverge so that (244) is not valid. A simple lattice gas model
where this happens is the zero-range process where each lattice site can occupied by
an arbitrary number of particles, see [37, 78, 39].

Remark 3.10 If (244) holds then the symmetry relation (245) for the lowest eigen-
value implies the more popular (but not precise) version of the Gallavotti-Cohen
symmetry

p(J, t)

p(−J, t)
= e−Jt (250)

for the probability density p(J, t) = Prob [ Jt = J ] of the entropy production Jt.

Notice the independence of (244) and (245) of boundary terms. Heuristically
this corresponds to the intuition that Jt ∝ tα for large t with some positive power
α, while the boundary terms (which depend only one point in time) are bounded as
t→∞.

As pointed out in [59] the existence of the limit (244) implies a large deviation
property for the probability distribution p(j, t) := Prob [ jt = j ] of the observed
“average” current jt = Jt/t. Specifically, the long-time limiting behaviour is given
by

p(j, t) ∼ e−tÊ(j) (251)

where the large deviation function Ê(j) is the Legendre transformation , i.e.,

Ê(j) = max
λ
{E0(λ)− λj}. (252)

of E0(λ).

4 Dynamical universality classes

In the SSEP we have seen that local perturbation spread diffusively with dynamical
exponent z = 2 while in the ASEP the spreading is superdiffusive and the KPZ-
universality class with dynamical exponent z = 3/2. For a long time these were
the only universality known to appear in driven diffusive systems. However, based
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Figure 8: Schematic representation of the two-lane partially asymmetric simple
exclusion process. A particle on lane 1 (2) hops to the neighbouring site (provided
this target site is empty) with to the right or left with rates (253) that depend on
the particle configuration on the adjacent sites of the other lane that are marked by
a cross.

on numerical evidence and analytical results for other types of models also a dy-
namical exponent z = 5/3 has been reported [15, 100]. Thus the question arises
which dynamical exponent can generally arise and what universal scaling functions
describe the dynamical structure function. Of course, this question is posed rather
imprecisely and very generally. We shall narrow down the quest for an answer to
systems with n locally conserved species of particles and dynamics whose large scale
behaviour is determined by the slow relaxation of these densities and not by other
local kinetic constraints on the transition rates for the particles.

4.1 Multi-lane exclusion processes

We consider a two-lane asymmetric simple exclusion process on two parallel chains
with L sites each and periodic boundary conditions. Particles do not change lanes.
We denote the particle occupation number on site k in the first (upper) lane by

η
(1)
k ∈ {0, 1} , and on the second (lower) lane by η

(2)
k ∈ {0, 1}. The total particle

number is conserved in each lane and denoted Nλ.
The jump rates for particle on lane λ depend on the particle configuration on the

adjacent lane. Particles on lane λ jump from site k to site k+1 with rate rλ(k, k+1)
and from site k + 1 to site k with rate `λ(k + 1, k) (Fig. 8) as given by [72]

r1(k, k + 1) = p1 + b1n
(2)
k + c1n

(2)
k+1 + d1n

(2)
k n

(2)
k+1

`1(k + 1, k) = q1 + e1n
(2)
k + f1n

(2)
k+1 + g1n

(2)
k n

(2)
k+1

r2(k, k + 1) = p2 + b2n
(1)
k + c2n

(1)
k+1 + d2n

(1)
k n

(1)
k+1

`2(k + 1, k) = q2 + e2n
(1)
k + f2n

(1)
k+1 + g2n

(1)
k n

(1)
k+1.

(253)

The stationary distribution for this model is uniform distribution if b1 − e1 =
c2 − f2, b2 − e2 = c1 − f1, d1 = g1 and d2 = g2. Corresponingly one has stationary
grandcanonical product measures where each site of lane λ is occupied independently
of the other sites with probability ρλ ∈ [0, 1]. Hence the ρλ are the conserved
densities. From the hopping rates (253) and the product form of the grandcanonical

55



distribution one thus obtain the stationary current vector ~j with components

j1(ρ1, ρ2) = ρ1(1− ρ1)(a+ γρ2),
j2(ρ1, ρ2) = ρ2(1− ρ2)(b+ γρ1).

(254)

where
a = p1 − q1, b = p2 − q2, γ = b1 + c1 − e1 − f1. (255)

For b = 1 we recover the totally asymmetric two-lane model of [70] which is a special
case of the multi-lane model of [71]. We consider a = 1, γ 6= 0.

The fluctuation of the total particle number in the grandcanonical ensemble are
described by the compressibility matrix K with matrix elements

Kλµ :=
1

L
〈(Nλ − ρλL)(Nµ − ρµL)〉 = ρλ(1− ρλ)δλ,µ. (256)

where λ, µ ∈ {1, 2}. This corresponds to

κλ := Kλλ = ρλ(1− ρλ), κ̄ := K12 = 0. (257)

4.2 Brief outline of nonlinear fluctuating hydrodynamics

In order to study fluctuations in this process we follow [94] and take the non-linear
fluctuating hydrodynamics approach together with a mode-coupling analysis of the
non-linear equation. We summarize here the main ingredients of this well-established
description.

Let us denote microscopic time by the symbol τ rather than t as done in the
previous section. We begin by describing the large-scale dynamics of the process
under Eulerian scaling where the lattice spacing a is taken to zero such that the
macroscopic coordinate x = ka remains finite and where the microscopic time τ is
taken to infinity such that the macroscopic time t = τa is finite. One then assumes
the validity of a law of large numbers such that the local distribution of particles
can be described by a coarse-grained local density ρλ(x, t) of the particle component
λ. This leads the system of conservation laws [92, 54]

∂

∂t
~ρ(x, t) +

∂

∂x
~j(x, t) = 0 (258)

which follow rigorously or heuristically from the microscopic local conservation of
the particle number. Here ρλ(x, t) is a component of the density vector ~ρ(x, t),
and jλ(x, t) is a component of the current vector ~j(x, t) which we regard as column
vectors.

According to the assumption of local stationarity the current is a function of x
and t only through its dependence on the local conserved densities. Therefore

∂

∂t
~ρ(x, t) + J

∂

∂x
~ρ(x, t) = 0 (259)
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where J is the current Jacobian with matrix elements Jλµ = ∂jλ/∂ρµ. The product
JK of the Jacobian with the compressibility matrix (256) is symmetric [34] which
guarantees hyperbolicity of the system (259) [98]. The eigenvalues vα of J are
the characteristic velocities of the system. If v1 6= v2 the system is called strictly
hyperbolic.

In order to extract information from this non-linear system of PDE’s one expands
the local densities ρλ(x, t) = ρλ + uλ(x, t) around their long-time stationary values
ρλ. To linear order one gets

∂t~u = −J∂x~u. (260)

where J is now fixed at the values stationary values ρλ. We transform to normal
modes ~φ = R~u where RJR−1 = diag(vα) and the transformation matrix R is nor-
malized such that RKRT = 1. Thus we get, since we have a linear system,

φα(x, t) = φ0(x+ vαt) (261)

with initial data φα(x, 0) = φ0(x). This result demonstrates the significance of
the eigenvalues of the current Jacobian which are called characteristic velocities vα.
They are the velocities at which perturbations of the flat stationary density profile
move.

In order to study the effect of the non-linearity we now expand to second order.
This yields

∂t~u = −∂x
(
J~u+

1

2
~uT ~H~u

)
(262)

where ~H is a column vector whose entries ( ~H)λ = Hλ are the Hessians with matrix
elements Hλ

µν = ∂2jλ/(∂ρµ∂ρν). The term ~uTHλ~u denotes the inner product in
component space. One recognizes in (262) a system of coupled Burgers equations.

Finally, the effect of fluctuations, which occur on finer space-time scales where t =
τaz with dynamical exponent z > 1, can be captured by adding phenomenological
diffusion matrix D and white noise terms ξi(x, t). For quadratic nonlinearities (259)
then yields

∂t~u = −∂x
(
J~u+

1

2
~uT ~H~u−D∂x~u+B~ξ

)
. (263)

If the quadratic non-linearity is absent one has diffusive behaviour, up to possible
logarithmic corrections that may arise from cubic non-linearities [22]. In normal
modes one has

∂tφα = −∂x
(
vαφα + ~φTGα~φ− ∂x(D̃~φ)α + (B̃~ξ)α

)
(264)

with D̃ = RDR−1, B̃ = RB and

Gα =
1

2

∑
λ

Rαλ(R
−1)THλR−1 (265)

are the called the mode coupling matrices.
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Consider now the dynamical structure matrix S̄k(t) of the microscopic model
defined on the lattice. Its matrix elements are the dynamical structure functions

S̄λµk (t) := 〈 (n(λ)
k (t)− ρλ)(n(µ)

0 (t)− ρµ) 〉 (266)

which measure density fluctuations in the stationary state. In normal modes one
then has

Sαβk (t) = [RS̄k(t)R
T ]αβ = 〈φαk (t)φβ0 (0) 〉 (267)

where the transformation R acts on the lattice density vector.
We focus from now on on strictly hyperbolic systems where all characteristic

velocities are different. Then one expects that the off-diagonal elements of S decay
quickly and for long times and large distances the diagonal elements which we denote
by

Sα(x, t) := Sαα(x, t) (268)

with initial value Sα(x, 0) = δ(x) remain significant. One expects the the scaling
form

Sα(x, t) ∼ t−1/zαfα((x− vαt)zα/t) (269)

with a dynamical exponent zα that may be different for the different modes. The
exponent in the power law prefactor is determined by mass conservation.

The dynamical structure function can interpreted as describing the stationary
two-time correlations of the local density fluctuations. Alternatively, it can regarded
as the expectation of the local density evolving from an initial initial distribution
that is microscopically peaked around the origin k = 0 [72], corresponding to a
δ-peak on macroscopic scale. Thus the characteristic velocity describes the velocity
at which the center of mass of these peaks move [70] and the dynamical exponent
describes the spreading around the center of mass.

4.3 Fibonacci universality classes

In order to analyze the system of nonlinear stochastic PDE’s in more detail we
employ mode coupling theory [94, 74]. The starting point for computing the Sα(x, t)
are the one-loop mode coupling equations

∂tSα(x, t) = (−vα∂x +Dα∂
2
x)Sα(x, t) +

∫ t

0

ds

∫ ∞
−∞

dy Sα(x− y, t− s)∂2
yMαα(y, s)

(270)
with the diagonal element Dα := D̃αα of the phenomenological diffusion matrix and
the memory kernel

Mαα(y, s) = 2
∑
β,γ

(Gα
βγ)

2Sβ(y, s)Sγ(y, s). (271)

The strategy is to rewrite this equation in terms of the Fourier transform

Ŝα(p, t) :=
1√
2π

∫ ∞
−∞

dx e−ipxSα(x, t). (272)
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and then to plug into this equation the scaling ansatz

Ŝα(p, t) ∼ e−ivαptf̂α(pzαt). (273)

Remarkably, the coupled system of equation then becomes exactly solvable [73, 74].
One obtains equations for the dynamical exponents arising from requiring non-trivial
scaling solutions and using the known results z = 3/2 for KPZ and z = 2 for
diffusion. In a next step one can then solve for the actual scaling functions.

The scaling behaviour of the solutions of (270) is turns out to be determined by
the diagonal terms Gα

ββ of the mode coupling matrices Gα. We define the set

Iα := {β : Gα
ββ 6= 0} (274)

of non-zero diagonal mode coupling coefficients. This means that Iα is the set of
modes β that give rise to a non-linear term in the time evolution of the mode α
whose dynamical exponent and scaling function one wishes to compute.

The equations that determine the dynamical exponents for a system with n
modes are then:

zα =


2 if Iα = ∅
3/2 if α ∈ Iα
minβ∈Iα

[(
1 + 1

zβ

)]
else

(275)

and
1 < zα ≤ 2 ∀α (276)

Remarkably the solution to this non-linear recursion yields as possible dynamical ex-
ponents the Kepler ratios of neighbouring Fibonacci numbers zα = 2, 3/2, 5/3, 8/5, . . .
or its limiting value which is the golden mean zα = (1 +

√
5)/2.

Specifically, if all self-coupling term Gα
αα vanish then mode α is diffusive with

zα = 2 and Gaussian scaling function (except for possible logarithmic corrections).
If Gα

αα 6= 0 and there is no diffusive mode β such that Gα
ββ 6= 0 then the mode is KPZ

with zα = 3/2 and Prähofer-Spohn scaling function [75, 76]. If Gα
αα 6= 0, but there is

a diffusive mode β such that Gα
ββ 6= 0 then again zα = 3/2, but the scaling function

is unknown [95]. If the self-coupling Gα
αα = 0 but some Gα

ββ 6= 0 then the mode
is a Fibonacci mode where the scaling function is an asymmetric Lévy distribution
[73, 74]. The lowest Fibonacci mode has z = 3/2 like KPZ, but is not KPZ. The
scaling function for this mode satisfies a fractional diffusion equation which has
been proved rigorously in a system of harmonic oscillators that are perturbed by a
conservatve noise [8].

Thus non-linear hydrodynamics yields an infinite discrete family of dynamical
universality classes. The ubiquitous diffusive universality class and the celebrated
KPZ universality class are the lowest members of this family. We stress that this
result is not confined to lattice gases but generally to any system with slow relaxation
of the conserved modes.
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4.4 Ballistic universality class in conditioned dynamics

Finally we consider the question whether one can have a “ballistic” universality
class with z = 1. Such a universality class indeed exists as shown by Spohn for
an exclusion process with long-range interactions [93]. No models with short-range
interactions and z = 1 are known. However, the model of Spohn arises as “con-
ditioned” dynamics of the usual ASEP, viz. the ASEP conditioned on carrying a
large current. This observation then points to the existence of a much larger family
of models with z = 1 with the conjecture that all stationary space-time correlation
functions can be predicted from conformal invariance [51]. This conjecture arises
from the mapping to quantum spin systems and then using well-established proper-
ties of the quantum ground state which is known to be described by conformal field
theory.

5 Conclusions

It has been realized in recent years that the stochastic time evolution of many
stochastic interacting particle systems can be mapped to quantum spin systems,
and in special one-dimensional cases to integrable quantum chains. This insight
has made available the tool box of quantum mechanics for these interacting particle
systems far from equilibrium. With these methods many new exact results for their
dynamical and stationary properties have been derived. It is also amusing to note
that the Hamiltonians for such systems are mostly not hermitian and therefore
from a quantum mechanical point of view not interesting. Stochastic interacting
particle systems which can be described in this way comprise a large variety of
phenomena in physics and beyond. In this way one obtains detailed information
about the microscopic properties and large-scale fluctuations of lattice gas models
with conserved particle species.

Going beyond these exact results we have shown that non-linear fluctuating hy-
drodynamics predicts an infinite discrete family of dynamical universality classes
whose dynamical exponents are the Kepler ratios of neighbouring Fibonacci num-
bers. This fact encourages the search for other discrete families of nonequilibrium
universality classes.
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[5] V. Belitsky and G.M. Schütz, Diffusion and coalescence of shocks in the par-
tially asymmetric exclusion process, Electron. J. Prob. 7, Paper No. 11, 1–21
(2002).
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une dimension. Physica 16, 137–143 (1950).

[100] H. van Beijeren, Exact results for anomalous transport in one-dimensional
Hamiltonian systems, Phys. Rev. Lett. 108, 108601 (2012).

67


