Model reduction of diffusion process along reaction coordinate and related issues

Wei Zhang

Freie Universität Berlin

joint work with Carsten Hartmann and Christof Schütte

Stochastic Dynamics Out of Equilibrium, Apr. 20, IHP, Paris

Outline

• Introduction

- Model reduction : effective dynamics
- Application : eigenvalue estimation

SDE on \mathbb{R}^n

$$dx_s = -\nabla V(x_s)ds + \sqrt{2\beta^{-1}}dw_s$$

SDE on \mathbb{R}^n

$$dx_s = -
abla V(x_s) ds + \sqrt{2eta^{-1}} dw_s$$

Generator
$$\mathcal{L} = -\nabla V \cdot \nabla + \frac{1}{\beta} \Delta$$

SDE on \mathbb{R}^n

$$dx_s = -
abla V(x_s) ds + \sqrt{2eta^{-1}} dw_s$$

Generator
$$\mathcal{L} = -\nabla V \cdot \nabla + \frac{1}{\beta} \Delta$$

Invariant measure $d\pi = \rho(x)dx$, where

$$\rho(x) = \frac{1}{Z} e^{-\beta V(x)}, \quad \text{with } Z = \int_{\mathbb{R}^n} e^{-\beta V(x)} dx.$$

 $\begin{array}{ll} \text{Hilbert space} & H = L^2(\mathbb{R}^n,\pi),\\ \text{Inner product} & \langle f,g\rangle_\pi = \int_{\mathbb{R}^n} f(x)\,g(x)\rho(x)\,dx\,, \quad \forall f,g\in H\,, \end{array}$

 $\implies \langle \mathcal{L} f, g \rangle_{\pi} = \langle f, \mathcal{L} g \rangle_{\pi}.$

Hilbert space $H = L^2(\mathbb{R}^n, \pi)$, Inner product $\langle f, g \rangle_{\pi} = \int_{\mathbb{R}^n} f(x) g(x) \rho(x) dx$, $\forall f, g \in H$,

$$\implies \langle \mathcal{L} f, g \rangle_{\pi} = \langle f, \mathcal{L} g \rangle_{\pi}.$$

Eigenvalues of $-\mathcal{L}$: $\lambda_i \in \mathbb{R}$ with

$$\mathbf{0}=\lambda_{\mathbf{0}}<\lambda_{\mathbf{1}}\leq\cdots\leq\lambda_{k}\leq\cdots,$$

and $-\mathcal{L}\varphi_i = \lambda_i \varphi_i$, $\varphi_0 \equiv 1$.

Hilbert space $H = L^2(\mathbb{R}^n, \pi)$, Inner product $\langle f, g \rangle_{\pi} = \int_{\mathbb{R}^n} f(x) g(x) \rho(x) dx$, $\forall f, g \in H$, $\longrightarrow \langle f, g \rangle_{\pi} = \langle f, f, g \rangle_{\pi}$

$$\implies \langle \mathcal{L} f, g \rangle_{\pi} = \langle f, \mathcal{L} g \rangle_{\pi}.$$

Eigenvalues of $-\mathcal{L}$: $\lambda_i \in \mathbb{R}$ with

$$\mathbf{0}=\lambda_{\mathbf{0}}<\lambda_{\mathbf{1}}\leq\cdots\leq\lambda_{k}\leq\cdots,$$

and $-\mathcal{L}\varphi_i = \lambda_i \varphi_i$, $\varphi_0 \equiv 1$.

Question : How to estimate $\lambda_1, \lambda_2, \cdots$ numerically when $n \gg 1$?

Operators

Semigroup operator

$$(T_s f)(x) = \mathbf{E}(f(x_s) \mid x_0 = x), \quad f \in H, \ s \ge 0.$$

Operators

Semigroup operator

$$(T_s f)(x) = \mathbf{E}(f(x_s) \mid x_0 = x), \quad f \in H, \ s \ge 0.$$

Transfer operator

$$(\mathcal{T}_{\tau}u)(y) = rac{1}{
ho(y)}\int_{\mathbb{R}^n} p(x,y;\tau)u(x)
ho(x)dx, \quad y\in\mathbb{R}^n,$$

where $p(x, \cdot; \tau)$ is the p.d.f. at time $\tau \ge 0$.

Operators

Semigroup operator

$$(T_s f)(x) = \mathbf{E}(f(x_s) \mid x_0 = x), \quad f \in H, \ s \ge 0.$$

Transfer operator

$$(\mathcal{T}_{\tau}u)(y) = rac{1}{
ho(y)}\int_{\mathbb{R}^n} p(x,y;\tau)u(x)
ho(x)dx\,,\quad y\in\mathbb{R}^n\,,$$

where $p(x, \cdot; \tau)$ is the p.d.f. at time $\tau \ge 0$.

Connections :

$$T_{ au} = \mathcal{T}_{ au} = oldsymbol{e}^{-\mathcal{L} au}$$

Outline

- Introduction
- Model reduction : effective dynamics
- Application : eigenvalue estimation

Motivation : Butane

Motivation : Butane

Question : How to study the dynamics of the dihedral angle ?

$$dx_s = -\nabla V(x_s)ds + \sqrt{2\beta^{-1}}dw_s$$

Reaction coordinate $\xi : \mathbb{R}^n \to \mathbb{R}^m$

$$dx_s = -\nabla V(x_s)ds + \sqrt{2\beta^{-1}}dw_s$$

Reaction coordinate $\xi : \mathbb{R}^n \to \mathbb{R}^m$

 $z \in \mathbb{R}^m$, $f \in H$, consider $\Omega_z = \{x \in \mathbb{R}^n | \xi(x) = z\}$,

$$dx_s = -\nabla V(x_s)ds + \sqrt{2\beta^{-1}}dw_s$$

Reaction coordinate $\xi : \mathbb{R}^n \to \mathbb{R}^m$

 $z \in \mathbb{R}^m$, $f \in H$, consider $\Omega_z = \{x \in \mathbb{R}^n \, | \, \xi(x) = z\}$,

$$\mathbf{P}f(z) = \int_{\Omega_z} f(x) d\mu_z(x) = \mathbf{E}_{\pi}(f(x) \mid \xi(x) = z),$$

$$= \frac{1}{Q(z)} \int_{\mathbb{R}^n} \rho(x) f(x) \delta(\xi(x) - z) dx,$$

$$Q(z) = \int_{\mathbb{R}^n} \rho(x) \delta(\xi(x) - z) dx, \quad \int_{\mathbb{R}^m} Q(z) dz = 1$$

8/22

Apply Ito's formula to $\xi(x_s) \Longrightarrow$

$$d\xi_l(x_s) = \mathcal{L}\xi_l(x_s)ds + \sqrt{2\beta^{-1}}\sum_{i=1}^n \frac{\partial\xi_l}{\partial x_i}(x_s) dw_s^i, \quad 1 \leq l \leq m.$$

Apply Ito's formula to $\xi(x_s) \Longrightarrow$ $d\xi_l(x_s) = \mathcal{L}\xi_l(x_s)ds + \sqrt{2\beta^{-1}}\sum_{i=1}^n \frac{\partial\xi_l}{\partial x_i}(x_s) dw_s^i, \quad 1 \le l \le m.$

This motivates the effective dynamics¹

$$dz_s = \widetilde{b}(z_s) \, ds + \sqrt{2\beta^{-1}} \widetilde{\sigma}(z_s) \, dw_s \,, \quad z_s \in \mathbb{R}^m \,,$$

$$\widetilde{b}_{l}(z) = \mathbf{P}(\mathcal{L}\xi_{l}),$$
with
$$\widetilde{a}_{ll'}(z) = (\widetilde{\sigma}\widetilde{\sigma}^{T})_{ll'}(z) = \mathbf{P}\left(\sum_{i=1}^{n} \frac{\partial\xi_{l}}{\partial x_{i}} \frac{\partial\xi_{l'}}{\partial x_{i}}\right).$$

1. Legoll and Lelièvre, Nonlinearity, 2010.

Alternative expressions :

$$\begin{split} \widetilde{b}_l(z) &= \lim_{s \to 0+} \mathsf{E}\Big(\frac{\xi_l(x_s) - z_l}{s} \mid x_0 \sim \mu_z\Big) \,, \\ \widetilde{a}_{ll'}(z) &= \frac{\beta}{2} \lim_{s \to 0+} \mathsf{E}\Big(\frac{(\xi_l(x_s) - z_l)(\xi_{l'}(x_s) - z_{l'})}{s} \mid x_0 \sim \mu_z\Big) \,. \end{split}$$

Alternative expressions :

$$\begin{split} \widetilde{b}_l(z) &= \lim_{s \to 0+} \mathsf{E}\Big(\frac{\xi_l(x_s) - Z_l}{s} \mid x_0 \sim \mu_z\Big) \,, \\ \widetilde{a}_{ll'}(z) &= \frac{\beta}{2} \lim_{s \to 0+} \mathsf{E}\Big(\frac{(\xi_l(x_s) - Z_l)(\xi_{l'}(x_s) - Z_{l'})}{s} \mid x_0 \sim \mu_z\Big) \,. \end{split}$$

Infinitesimal generator of z_s is

$$\widetilde{\mathcal{L}} = \sum_{l=1}^{m} \widetilde{b}_{l} \frac{\partial}{\partial z_{l}} + \frac{1}{\beta} \sum_{l,l'=1}^{m} \widetilde{a}_{ll'} \frac{\partial^{2}}{\partial z_{l} \partial z_{l'}},$$

We have

$$f = \widetilde{f} \circ \xi \quad \Longrightarrow \quad \mathbf{P}\mathcal{L}f = \left(\widetilde{\mathcal{L}}\,\widetilde{f}\,\right) \circ \xi\,.$$

Unique invariant measure of z_s is $d\nu = Q(z) dz$. $\widetilde{\mathcal{L}}$ is self-adjoint on space $\widetilde{H} = L^2(\mathbb{R}^m, \nu)$.

Let

$$0=\widetilde{\lambda}_0<\widetilde{\lambda}_1\leq\widetilde{\lambda}_2\leq\cdots\,.$$

be the eigenvalues of $-\widetilde{\mathcal{L}}$ and $\widetilde{\varphi}_i \in \widetilde{H}$ be orthonormal eigenfunctions.

Effective dynamics — Time scales

Proposition 1 For $i \ge 0$, we have

$$\lambda_i \leq \widetilde{\lambda}_i \leq \lambda_i + \frac{1}{\beta} \int_{\mathbb{R}^n} |\nabla(\varphi_i - \widetilde{\varphi}_i \circ \xi)(x)|^2 \rho(x) dx.$$

Effective dynamics — Time scales

Proposition 1 For $i \ge 0$, we have

$$\lambda_i \leq \widetilde{\lambda}_i \leq \lambda_i + \frac{1}{\beta} \int_{\mathbb{R}^n} |\nabla(\varphi_i - \widetilde{\varphi}_i \circ \xi)(x)|^2 \rho(x) dx.$$

Especially, let

$$\xi(x) = (\varphi_1(x), \varphi_2(x), \cdots, \varphi_m(x)) \in \mathbb{R}^m,$$

Then $\widetilde{\lambda}_i = \lambda_i, \quad 0 \le i \le m.$

Effective dynamics — Time scales

Proposition 1 For $i \ge 0$, we have

$$\lambda_i \leq \widetilde{\lambda}_i \leq \lambda_i + \frac{1}{\beta} \int_{\mathbb{R}^n} |\nabla(\varphi_i - \widetilde{\varphi}_i \circ \xi)(x)|^2 \rho(x) dx.$$

Especially, let

$$\xi(\mathbf{x}) = (\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \cdots, \varphi_m(\mathbf{x})) \in \mathbb{R}^m,$$

Then $\widetilde{\lambda}_i = \lambda_i$, $0 \le i \le m$.

\implies Optimal reaction coordinate function.

Effective dynamics — Algorithms

Key issue : estimate coefficients in

$$dz_s = \widetilde{b}(z_s) \, ds + \sqrt{2\beta^{-1}} \widetilde{\sigma}(z_s) \, dw_s$$
.

Effective dynamics — Algorithms

Key issue : estimate coefficients in

$$dz_s = \widetilde{b}(z_s) \, ds + \sqrt{2\beta^{-1}} \widetilde{\sigma}(z_s) \, dw_s$$
.

1. HMM-like, Blue Moon, constrained dynamics, ... $\widetilde{b}_l(z) = \mathbf{P}(\mathcal{L}\xi_l),$ $\widetilde{a}_{ll'}(z) = (\widetilde{\sigma}\widetilde{\sigma}^T)_{ll'}(z) = \mathbf{P}\Big(\sum_{i=1}^n \frac{\partial \xi_l}{\partial x_i} \frac{\partial \xi_{l'}}{\partial x_i}\Big).$

2. Equation-free, ...

$$\widetilde{b}_{l}(z) = \lim_{s \to 0+} \mathbf{E} \left(\frac{\xi_{l}(x_{s}) - z_{l}}{s} \mid x_{0} \sim \mu_{z} \right),$$

$$\widetilde{a}_{ll'}(z) = \frac{\beta}{2} \lim_{s \to 0+} \mathbf{E} \left(\frac{(\xi_{l}(x_{s}) - z_{l})(\xi_{l'}(x_{s}) - z_{l'})}{s} \mid x_{0} \sim \mu_{z} \right).$$

3. Extended system, TAMD, ...

Outline

- Introduction
- Model reduction : effective dynamics
- Application : eigenvalue estimation

Eigenvalue estimation¹

Suppose *N* basis functions $\psi_I = \widetilde{\psi}_I \circ \xi$, $1 \le I \le N$, are given.

We want to apply Galerkin method to solve the eigenvalue problem

$$-\mathcal{L}f = \lambda f \,, \tag{1}$$

in the subspace span{ $\psi_1, \psi_2, \cdots, \psi_N$ }.

Eigenvalue estimation¹

Suppose *N* basis functions $\psi_I = \widetilde{\psi}_I \circ \xi$, $1 \le I \le N$, are given.

We want to apply Galerkin method to solve the eigenvalue problem

$$-\mathcal{L}f = \lambda f \,, \tag{1}$$

in the subspace span{ $\psi_1, \psi_2, \cdots, \psi_N$ }.

Write
$$f = \sum_{i=1}^{N} \omega_i \psi_i$$
,
then (1) $\implies CX = \lambda SX$, with

$$C_{II'} = \langle -\mathcal{L}\psi_I, \psi_{I'} \rangle_{\pi}, \quad S_{II'} = \langle \psi_I, \psi_{I'} \rangle_{\pi}, \quad 1 \le I, I' \le N,$$

 Noé and Nüske, Multiscale Model. Simul. 2013. Pérez-Hernández, Paul, et al. J. Chem. Phys. 2013.

Using
$$\psi_I = \widetilde{\psi}_I \circ \xi$$
 and $\mathbf{P}\mathcal{L}\psi_I = (\widetilde{\mathcal{L}} \,\widetilde{\psi}_I) \circ \xi$, we have
 $S_{II'} = \langle \psi_I, \psi_{I'} \rangle_{\pi} = \langle \widetilde{\psi}_I, \widetilde{\psi}_{I'} \rangle_{\nu}$,
 $C_{II'} = \langle -\mathcal{L}\psi_I, \psi_{I'} \rangle_{\pi} = \langle -\widetilde{\mathcal{L}}\widetilde{\psi}_I, \widetilde{\psi}_{I'} \rangle_{\nu}$.

Using
$$\psi_I = \widetilde{\psi}_I \circ \xi$$
 and $\mathbf{P}\mathcal{L}\psi_I = (\widetilde{\mathcal{L}} \,\widetilde{\psi}_I) \circ \xi$, we have
 $S_{II'} = \langle \psi_I, \psi_{I'} \rangle_{\pi} = \langle \widetilde{\psi}_I, \widetilde{\psi}_{I'} \rangle_{\nu}$,
 $C_{II'} = \langle -\mathcal{L}\psi_I, \psi_{I'} \rangle_{\pi} = \langle -\widetilde{\mathcal{L}}\widetilde{\psi}_I, \widetilde{\psi}_{I'} \rangle_{\nu}$.

Since ν is the invariant measure of z_s ,

$$egin{aligned} S_{II'} &= \lim_{T o +\infty} rac{1}{T} \int_0^T \widetilde{\psi}_I(z_s) \widetilde{\psi}_{I'}(z_s) ds \ &pprox rac{1}{M - M_0} \sum_{i=M_0+1}^M \widetilde{\psi}_I(z_{i\Delta t}) \widetilde{\psi}_{I'}(z_{i\Delta t}) \,. \end{aligned}$$

Similarly, let τ be a small parameter,

$$C_{II'} = -\lim_{s \to 0} \lim_{T \to +\infty} \frac{1}{T} \int_0^T \frac{\widetilde{\psi}_{I'}(z_{t+s}) - \widetilde{\psi}_{I'}(z_t)}{s} \widetilde{\psi}_I(z_t) dt$$

$$\approx -\frac{1}{2(M - M_0)\tau} \sum_{i=M_0+1}^M \left[\widetilde{\psi}_I(z_{i\Delta t+\tau}) \widetilde{\psi}_{I'}(z_{i\Delta t}) + \widetilde{\psi}_I(z_{i\Delta t}) \widetilde{\psi}_{I'}(z_{i\Delta t+\tau}) - 2\widetilde{\psi}_I(z_{i\Delta t}) \widetilde{\psi}_{I'}(z_{i\Delta t}) \right].$$

Similarly, let τ be a small parameter,

$$C_{II'} = -\lim_{s \to 0} \lim_{T \to +\infty} \frac{1}{T} \int_0^T \frac{\widetilde{\psi}_{I'}(z_{t+s}) - \widetilde{\psi}_{I'}(z_t)}{s} \widetilde{\psi}_I(z_t) dt$$

$$\approx -\frac{1}{2(M - M_0)\tau} \sum_{i=M_0+1}^M \left[\widetilde{\psi}_I(z_{i\Delta t+\tau}) \widetilde{\psi}_{I'}(z_{i\Delta t}) + \widetilde{\psi}_I(z_{i\Delta t}) \widetilde{\psi}_{I'}(z_{i\Delta t+\tau}) - 2\widetilde{\psi}_I(z_{i\Delta t}) \widetilde{\psi}_{I'}(z_{i\Delta t}) \right].$$

 \implies We can approximate eigenvalues of $CX = \lambda SX$, and therefore $-\mathcal{L}f = \lambda f$, by simulating the effective dynamics.

Eigenvalue estimation — A simple 2D example

Potential
$$V(x) = V_1(\theta) + \frac{1}{\epsilon}V_2(r,\theta),$$

$$V_{1}(\theta) = \begin{cases} \left[1 - \frac{9}{\pi^{2}} \left(\theta - \frac{\pi}{3}\right)^{2}\right]^{2} & \theta > \frac{\pi}{3} ,\\ \frac{3}{5} - \frac{2}{5} \cos 3\theta & -\frac{\pi}{3} < \theta < \frac{\pi}{3} \\ \left[1 - \frac{9}{\pi^{2}} \left(\theta + \frac{\pi}{3}\right)^{2}\right]^{2} & \theta < -\frac{\pi}{3} , \end{cases} \\ V_{2}(r, \theta) = \left(r^{2} - 1 - \frac{1}{1 + 4r\theta^{2}}\right)^{2} . \end{cases}$$

Dynamics $dx_s = -\nabla V(x_s)ds + \sqrt{2\beta^{-1}}dw_s$.

 $\beta = 4.0, \epsilon = 0.05, \quad \xi(x) = \theta(x) \in [-\pi, \pi].$ 9 Gaussian basis functions. $\tau = 20\Delta t.$

Eigenvalue estimation — A simple 2D example

19/22

Eigenvalue estimation — A simple 2D example

£	0.0000	0.0102	0.0438	1.4579
$\widetilde{\mathcal{L}}$	0.0000	0.0123	0.0430	2.0676
Eff-MC	$2.02 imes 10^{-7}$	0.0154	0.0444	2.3409

Table: First 4 eigenvalues.

Conclusions

Summary :

- 1. Introduction
- 2. Model reduction : effective dynamics
- 3. Application : eigenvalue estimation

Conclusions

Summary :

- 1. Introduction
- 2. Model reduction : effective dynamics
- 3. Application : eigenvalue estimation

Related topics & future work :

- 1. How to choose reaction coordinate, basis functions
- 2. Langevin dynamics
- 3. Algorithms for simulating effective dynamics.

Thank you !