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Overview

1. Motivation

2. Definition of the timescales of interest: convergence rates and mean
first exit times

3. Review of results for overdamped Langevin equation

4. Approach for linear but irreversible systems: entropy production
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Origin of the scaling cascades in protein dynamics
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Proteinstructure (Source: MaxPlanckForschung 4/2003)

Observation:

» single point mutations — large non-local effects

Trying to understand the observations:
» study parameter sensitivies of timescales

» study relations between timescales
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A model to simulate molecular dynamics

Overdamped Langevin equation

dX; = —VV(X,)dt + /28 1dB,

where
» X € R3N : positions of the atoms
V : R3M — R is the interaction potential
B; is standard N—dimensional Brownian motion

B~ € RY is the temperature.

vV v v
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[llustration of the model

Overdamped Langevin equation

dXt = —VV(Xt)dt + \V ZﬁfldBt

PPN

Associated probability density p; and equilibrium distribution ps ~ e~"5
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Quantities of interest

Convergence to equilibrium: Mean first exit times (MFET):

e = pocl < € A(2) E(«(9D)) = E(inf {t > 0: X, ¢ D})

p(x.)

Lara Neureither On different notions of timescales in molecular dynamics



Decay towards equilibrium in L,zr.l

dXt = —VV(Xt)dt + \V 2ﬁildBt

Generator: £ = f"1V2-VV.V
> describes evolution of expectation values and probability densities
> is self-adjoint wrt due, = 3~ V™dx, ie. (Lf,g), = (f,Lg),
> spec(—L) C {0} U [\, o0)
>

this implies convergence towards equilibrium in lefl’ ie.
oo

2 2 — 2
e pelfe = [1) = e o2 (6)eb < €210 — pc
m w

-1
oo oo
Problems:
» )\ is not known

> po € Li,l & [ po(x)2e?VPdx < oo
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Mean first exit times and eigenvalues of L

Theorem [Bovier et al. 2004]: Assumptions
» V has n minima xq,..., X,
» ordering of minima according to energy barrier height possible

k—1
Define 7y (Sk—1) =inf{t > 0: X¢ € Sk_1,Xo = xk}, Sk—1= U B%(Xj).
j=1

Then L has n eigenvalues 0 =A; > Ay > ... > A, and 3§ > 0 such that

A = (1+0(1+e 7))

(7, (Sk-1))
= —c exp(—BA(xi, {x1s .. xk1))) (1 L O(1+ /BT \logﬁ—1|)) , c>0.

TN
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What we would like to do

Convergence in terms of relative entropy instead of Lffl:

Relative entropy  H(pt|poo) = /pt(X) log <pt((X))> o
PoolX

» Relation to L'norm via Csizsar-Kullback /Pinsker inequality:

Pt = pocllis < V2H(pelpoc)

» [ is the natural norm for probability densities
» relation to measurable quantities

» applicable for any process that admits a pdf,
not only reversible processes

v

H is computable from simulation data
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Linear but possibly irreversible processes

dX; = AXidt + o+/2871dB;, X € R", Ac R™",
c e R™™ B, e R”, m< n.

Conditions
(i) spec(A) cC~ ={AeC:R(N) <0}
(i) A and o fulfill the Kalman rank condition
rank( [07 Ao,... ,A”_lo}) =n

— existence of unique positive invariant measure p,, = N (0, X).

Theorem[Arnold, Erb 2014]

H(pt|poo) <+ H(polpoo)e 2 4t

Aa =min{|R(N)| : X € spec(A)}, ¢ >1.
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Mean first exit times and eigenvalues of the covariance

dX; = AXidt + o+/28-1dB;

Interested in: 7,(0D) =inf{t >0: X, ¢ D}, D={x:|x| <1}.

Theorem [Zabczyk '85]

Assume that conditions (i) and (ii) are fulfilled s. th. poo = N(0,X)
exists. Let A\f = max{A: X €spec(X)} >0, E={v:Xv=Aiv}.
Then for large 3, i.e. small temperature

1
lim B~ !logE(m(0D)) = — exit time

and for any n > Oﬁlim P(dist(X-, (op), E) <) =1 — exit path
— 00

We can show that

Ma > (2A5) 7P AL, AL =min{A > 0: ) € spec(oo )}
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Analysis of relaxation behaviour

Splitting up:

H(ptlpec) /log(

) pe(x) dx

1 _
=5 [Tr(z S = Tr(log(Ze. ) + pd Todpe] -
=b(1) =c(t)
Covariance Mean
Same structure in all terms: z7e? 'ty 1Atz

For a(t) and b(t): z = (Zo — Loo)?,
for c(t): z = xo.
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Some examples for different relaxation behaviour

high temperature

HH}

© relative entropy
+ H)e 2t
—=a(t)

—b(t)

o relative entropy
+ H(o)'e 2t

= cH(Oye 2!
—=a(t)

—b(t)
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low temperature, x; = EVec(A)

o relative entropy
“ HO)e 2t
—=a(t)

—b(t)

—c(t)

00000

R )

o relative entropy
* H(o)'e 2t
==a(t)

=—c(t)
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Understanding plateaus in the entropy decay

Necessary and sufficient condition for the existence of a plateau:
— degeneracy of the noise, i.e. detoo’ = 0.

For c(t) this translates to:

&(t) =0« z-Vp =0« z moves along contour lines of the potential p

Here z(t) = e Nt(Sx0);, p(z) = z7S™TE1S~1z with S such that
SAS~! = diag(\1, .., An).

T
det(cc’) =0
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From degenerate to isotropic noise

C(t) = ZTS_TZ(;OIS_lz, zi = e_)"'tz,-(O), A1 =1, =10.

det(co’) =0
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Identification of slow and fast?

€=0.4, A, (A) =-1.25
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» Can we identify slow and fast dof?
» Can we get estimates on the marginals?
» Can we get hierarchichal order of timescales?

Lara Neureither On different notions of timescales in molecular dynamics



