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Overview

1. Motivation

2. Definition of the timescales of interest: convergence rates and mean
first exit times

3. Review of results for overdamped Langevin equation

4. Approach for linear but irreversible systems: entropy production
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Origin of the scaling cascades in protein dynamics

Proteinstructure (Source: MaxPlanckForschung 4/2003)

Observation:

I single point mutations → large non-local effects

Trying to understand the observations:

I study parameter sensitivies of timescales

I study relations between timescales
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A model to simulate molecular dynamics

Overdamped Langevin equation

dXt = −∇V (Xt)dt +
√

2β−1dBt

where

I X ∈ R3N : positions of the atoms

I V : R3N → R is the interaction potential

I Bt is standard N−dimensional Brownian motion

I β−1 ∈ R+ is the temperature.
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Illustration of the model

Overdamped Langevin equation

dXt = −∇V (Xt)dt +
√

2β−1dBt

Associated probability density ρt and equilibrium distribution ρ∞ ∼ e−Vβ
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Quantities of interest

Convergence to equilibrium: Mean first exit times (MFET):

‖ρt − ρ∞‖ ≤ c γ(t) E(τx(∂D)) = E(inf {t > 0 : Xt /∈ D})
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Decay towards equilibrium in L2
µ−1
∞

dXt = −∇V (Xt)dt +
√

2β−1dBt

Generator: L = β−1∇2 −∇V · ∇
I describes evolution of expectation values and probability densities

I is self-adjoint wrt dµ∞ = 1
Z e−βV (x)dx , i.e. 〈Lf , g〉µ∞ = 〈f ,Lg〉µ∞

I spec(−L) ⊂ {0} ∪ [λ,∞)

I this implies convergence towards equilibrium in L2
µ−1
∞

, i.e.

‖ρt − ρ∞‖2
L2

µ
−1
∞

=

∫
|ρt(x)− ρ∞(x)|2 ρ−1

∞ (x)dx ≤ e−2λt ‖ρ0 − ρ∞‖2
L2

µ
−1
∞

Problems:

I λ is not known

I ρ0 ∈ L2
µ−1
∞
⇔
∫
ρ0(x)2eβV (x)dx <∞
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Mean first exit times and eigenvalues of L
Theorem [Bovier et al. 2004]: Assumptions

I V has n minima x1, . . . , xn
I ordering of minima according to energy barrier height possible

Define τxk (Sk−1) = inf {t ≥ 0 : Xt ∈ Sk−1,X0 = xk} ,Sk−1 =
k−1⋃
j=1

B 1
β

(xj).

Then L has n eigenvalues 0 = Λ1 > Λ2 > . . . > Λn and ∃ δ > 0 such that

Λk = − 1

E(τxk (Sk−1))

(
1 +O(1 + e−βδ)

)
= −c exp (−β∆(xk , {x1, . . . , xk−1}))

(
1 +O(1 +

√
β−1

∣∣log β−1
∣∣)) , c > 0.
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What we would like to do

Convergence in terms of relative entropy instead of L2
µ−1
∞

:

Relative entropy H(ρt |ρ∞) =

∫
ρt(x) log

(
ρt(x)

ρ∞(x)

)
dx

I Relation to L1norm via Csizsàr-Kullback/Pinsker inequality:

‖ρt − ρ∞‖L1 ≤
√

2H(ρt |ρ∞)

I L1 is the natural norm for probability densities

I relation to measurable quantities

I applicable for any process that admits a pdf,
not only reversible processes

I H is computable from simulation data
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Linear but possibly irreversible processes

dXt = AXtdt + σ
√

2β−1dBt , X ∈ Rn, A ∈ Rn×n,

σ ∈ Rn×m,Bt ∈ Rm, m ≤ n.

Conditions

(i) spec(A) ⊂ C− = {λ ∈ C : <(λ) < 0}
(ii) A and σ fulfill the Kalman rank condition

rank(
[
σ,Aσ, . . . ,An−1σ

]
) = n

=⇒ existence of unique positive invariant measure ρ∞ = N (0,Σ).

Theorem[Arnold, Erb 2014]

H(ρt |ρ∞) ≤c · H(ρ0|ρ∞)e−2λ∗At ,

λ∗A = min {|<(λ)‖ : λ ∈ spec(A)} , c ≥ 1.
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Mean first exit times and eigenvalues of the covariance

dXt = AXtdt + σ
√

2β−1dBt

Interested in: τx(∂D) = inf {t > 0 : Xt /∈ D} , D = {x : |x | < 1} .

Theorem [Zabczyk ’85]
Assume that conditions (i) and (ii) are fulfilled s. th. ρ∞ = N (0,Σ)
exists. Let λ∗Σ = max {λ : λ ∈ spec(Σ)} > 0, E = {v : Σv = λ∗Σv}.
Then for large β, i.e. small temperature

lim
β→∞

β−1 logE(τx(∂D)) =
1

2λ∗Σ
−→ exit time

and for any η > 0 lim
β→∞

P(dist(Xτx (∂D),E ) ≤ η) = 1 −→ exit path

We can show that

λ∗A ≥ (2λ∗Σ)−1 λ+
σ , λ+

σ = min{λ > 0 : λ ∈ spec(σσT )}.
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Analysis of relaxation behaviour

Splitting up:

H(ρt |ρ∞) =

∫
log

(
ρt(x)

ρ∞(x)

)
ρt(x) dx

=
1

2

[
Tr(ΣtΣ

−1
∞ )− n︸ ︷︷ ︸

=a(t)

−Tr(log(ΣtΣ
−1
∞ ))︸ ︷︷ ︸

=b(t)︸ ︷︷ ︸
Covariance

+ µT
t Σ−1
∞ µt

]︸ ︷︷ ︸
=c(t)︸ ︷︷ ︸
Mean

.

Same structure in all terms: zT eAT tΣ−1
∞ eAtz .

For a(t) and b(t) : z = (Σ0 − Σ∞)
1
2 ,

for c(t) : z = x0.

Lara Neureither On different notions of timescales in molecular dynamics



Some examples for different relaxation behaviour

high temperature low temperature, x0 = EVec(A)
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Understanding plateaus in the entropy decay

Necessary and sufficient condition for the existence of a plateau:
→ degeneracy of the noise, i.e. detσσT = 0.

For c(t) this translates to:
ċ(t) = 0⇔ ż · ∇p = 0⇔ z moves along contour lines of the potential p

Here zi (t) = e−λi t(Sx0)i , p(z) = zTS−TΣ−1
∞ S−1z with S such that

SAS−1 = diag(λ1, . . . , λn).

det(σσT ) = 0
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From degenerate to isotropic noise

c(t) = zTS−TΣ−1
∞ S−1z , zi = e−λi tzi (0), λ1 = 1, λ2 = 10.

det(σσT ) = 0
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Identification of slow and fast?

I Can we identify slow and fast dof?

I Can we get estimates on the marginals?

I Can we get hierarchichal order of timescales?
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