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Overview

Evolution of equilibrium space-time correlations of conserved
quantities in Hamiltonian systems −→ insight of non-equilibrium
properties.

Detailed prediction of the form of correlation function in case of
non-integrable system was made in [Spohn2014] by non-linear
fluctuating hydrodynamics.

We study the form and scaling of correlation functions in integrable
system. In some of the limits, we are able to compute analytic
correlation functions.

We compare the correlation functions of integrable and non-integrable
models in normal modes.
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The system

The Nearest-neighbor 1-D Hamiltonian defined as :

H =
N∑

x=1

p2x
2

+ V (rx) =
N∑

x=1

ex , rx = qx+1 − qi

Periodic boundary conditions: qN+1 = q1 + L, q0 = qN − L.

Equation of Motions: q̇x = px , ṗx = (V ′(rx)− V ′(rx−1)),

The particles can cross each other. The nearest neighbor is
determined by their original identity and not on actual position!
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Potentials

(a) Integrable case (Toda potential):

V (rx) =
a

b
e−brx

{
b � 1 Hard Particle Gas

b � 1 Harmonic potential
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→ Conserved quantities:

I0 =
N∑

x=1

rx , I1 =
N∑

x=1

px , I2 =
N∑

x=1

ex , I3 =
N∑

x=1

[
p3x
3

+ (px + px+1) V (rx)

]
.

(b) Non-Integrable case

Vtr (rx) =
r2x
2
− r3x

6
+

r4x
24
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Initial state and Equlibrium fluctuations

We consider initial system prepared in Gibbs ensemble with given
Temperature (1/β) and pressure P

Prob({rx , px}) =
e−β

∑N
x=1[p2x/2+V (rx )+Prx ]

Z
,

Z = [
∫∞
−∞ dp

∫∞
−∞ dre−β(p

2/2+V (r)+Pr)]N .

Equilibrium fluctuations are defined as:
u1(x , t) = rx(t)− 〈r〉, u2(x , t) = px(t), u3(x , t) = ex(t)− 〈e〉.

Spatio-temporal dynamic correlation functions are defined as
Cαν(x , t) = 〈uα(x , t)uν(0, 0)〉 , (α, ν) ∈ 1, 2, 3.
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Numerical Details

The initial state is sampled using Inverse transform sampling.

The Hamiltonian is evolved using velocity-Verlett algorithm with a
small time-step dt < 0.01.

Energy and few higher conservation laws are checked to be constant
to good approximation.

The spatio-temporal correlation functions are computed by averaging
over 106 − 107 initial conditions.
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Exact correlation functions exactly in the two limiting cases.

(a) Harmonic
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(b)exact Cee

ω2Crr (x , t) = Cpp(x , t) = TJ2|x|(2ωt), (J : Bessel functions of 1st kind)

Crp(x , t) = Cpr (−x ,−t) = T

[
−
J2|x|−1(2ωt)

ω
θ(−x) +

J2|x|+1(2ωt)

ω
θ(x)

]
Cee(x , t) =

1

2

[
C 2
rr (x , t) + C 2

rp(x , t) + C 2
pr (x , t) + C 2

pp(x , t)
]
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Exact correlation functions exactly in the two limiting cases.

(b) Hard Particle gas
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where ρ = P/T is the average density and σt = ρv̄ t, v̄2 = T .
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Hydrodynamic description

Hydrodynamic equation to linear order: (Spohn, 2014)
∂tuα(x , t) + ∂x(Aαβuβ(x , t)) = 0.

Normal mode variables φ = Ru , where RAR−1 = diag(−c , 0, c), c is
sound velocity of the system with two propagating sound modes (φ±) and
one heat mode (φ0).

The normal mode correlations are: Crs = 〈φr (x , t)φs(0, 0)〉 ,
r , s = +, 0,−.

Predictions from non-linear fluctuating hydrodynamics for non-integrable

systems, C++(x , t) ∼ 1
t2/3

fKPZ

[
(x±ct)
t2/3

]
, C00(x , t) ∼ 1

t3/5
fLevy

[
(x)

t3/5

]
Integrable systems ? Crs(x , t) ∼ 1

t1
f
[
(x±ct)

t1

]
,
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Results in integrable case
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Figure : Normal mode correlations at different times in Toda chain
(V (rx) = e−rx ) with a = 1, b = 1,P = 1 and T = 5 and system size of
N = 1024. Black dots are sound velocity as predicted from theory.
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Results in integrable case
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Figure : Sound (Left) and Heat (Right) modes for T = 5
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Results in integrable case
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Figure : Sound (Left) and Heat (Right) modes for T = 1
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Results in non-integrable case
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Figure : Normal mode correlations at different times in truncated Toda

chain Vtr (rx) =
r2x
2 −

r3x
6 +

r4x
24 with P = 0 and T = 0.5 and system size of

N = 8192.
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Results in non-integrable case
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Figure : Sound (Left) and Heat (Right) modes for T = 5
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Conclusions

Integrable case has excellent ballistic scaling and the form of
correlation function is non-universal.

The speed of sound can be derived from hydrodynamic theory.

Unlike non-integrable systems, the normal modes have peaks with
large width and overlap.

Open questions: Can the correlation functions for Toda chain be
computed exactly in all parameter regime?

Proving rigorously integrable systems have ballistic scaling.
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Thank you!
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Figure : Left: Cross correlations in Toda chain. Right: Cross correlations in
Truncated Toda chain in normal modes.
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