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Setting

Goal: present microscopic models for the dynamics between
particles to obtain the macroscopic laws for the evolution of
some quantity of interest in a physical system.



Historical context
It all started with
Ludwig Eduard Boltzmann
(1844-1906) who was an Austrian
physicist and philosopher whose
greatest achievement was in the
development of statistical
mechanics.

"Statistical mechanics explains
and predicts how the
properties of atoms determine
the physical properties of
matter."



Historical context
Suppose we are interested in
analyzing the evolution of a fluid
or a gas. Since the number of
components is huge one cannot
give a precise description of the
microscopic state of the system.
Then we should:

examine the equilibrium states
of a system;
characterize them through
macroscopic quantities:
pressure, temperature,
density, etc;
examine the system out of
equilibrium.



Physical motivation

Find the invariant states of a system.
Characterize them by a quantity ρ(·).
Fix a point u ∈ V and a neighborhood Vu (big
microscopically). Due to interaction, the system reaches an
equilibrium ρ(u).
Let time evolve and now the equilibrium close to u is given
by ρ(t, u). How does ρ(t, u) evolve?



From microscopic to macroscopic



The scenario
Underlying scenario: we look for the evolution of a physical
system, e.g. the spread of a gas confined to a finite volume.
Two scales are considered:

a macroscopic one.
a microscopic one.

Due to the huge number of molecules it is hard to describe
precisely the microscopic state of a system.
Goal: describe the macroscopic evolution from the
microscopic interaction between particles.
Assumption: each particle performs a random walk subject
to some restriction.



Question?
The process for the random motion of particles is an
interacting particle system.
Two scales for space/time and a volume V .
We discretize the volume according to a parameter N .
In each cell we put a random number of particles.
The dynamics conserves some quantity.
The waiting times are given by independent Poisson
processes so that the particle system becomes a Markov
chain - loss of memory.

What is the law describing the evolution
of the conserved quantity of the system?



Example
Let us fix our space as the set of points {1, 2, 3, 4}. This is the
microscopic space. Add two end points at 0 and 5.

0 1 2 3 4 5

Now, for fixing the initial state we can do the following. Toss a
coin, if we get head we put a particle at the site 1 and if we get
a tail we leave it empty. Repeat this for each site of the discrete
set. Suppose we got at the end to:

0 1 2 3 4 5

Note that 0 and 5 are occupied to mimic the role of the
reservoirs.
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The dynamics



Particle system
1 N is a scaling parameter;
2 Microscopic space /macroscopic space;

3 Microscopic time tθ(N)/macroscopic time t;
4 Each site has an exponentially distributed clock/ clocks at

different sites are independent;

5 Fix a transition probability p(x, y) = p(y − x).

6 ηt(x) denotes the quantity of particles at the site x.
7 Markov process for which the quantity of particles

∑
x η(x)

is conserved;



Some examples of dynamics



Exclusion processes: the
initial configuration
The dynamics:

After the ring of a clock the particle jumps from x to y at rate
p(y − x) if y is empty, otherwise the particle waits a new
random time.



Exclusion processes: a ring
of a clock

p(2)



Exclusion processes: after
the ring of the clock



Exclusion processes:
forbidden jumps
The dynamics:
Jumps to occupied sites are forbidden!

not allowed



This cannot happen



Zero-Range processes:
initial configuration
The dynamics:

After the ring of a clock a particle jumps from x to y at rate
g(η(x))p(y − x).



Zero-Range processes: a
ring of a clock

g(3)p(−4)



Zero-Range processes:
after the ring of the clock



Zero-Range processes:
another ring of a clock

g(1)p(2)



Zero-Range processes:
after the ring of the clock



Simulation of Zero-Range:
symmetric/asymmetric



Simulation of Zero-Range:
symmetric/asymmetric



The hydrodynamic equation:



The hydrodynamic equation 1

1Thanks to F. Hernandez for the simulations.



Outline of the lectures:

Lecture 1 + Lecture 2: We will analyze the hydrodynamic
limit for the symmetric simple exclusion process (SSEP) in
contact with stochastic (slow/fast) reservoirs.

Lecture 3: We will analyze the hydrodynamic limit for an
exclusion process in contact with stochastic reservoirs when
jumps are long range given by a symmetric probability
transition rate:

with finite variance;
with infinite variance.



SSEP in contact with reservoirs



SSEP in contact with
reservoirs
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SSEP in contact with
reservoirs
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The dynamics:
For N ≥ 1 let ΛN = {1, . . . , N − 1}.
We denote the process by {ηt : t ≥ 0} which has state space
ΩN := {0, 1}ΛN .
The infinitesimal generator LN = LN,0 + LN,b is given on
f : ΩN → R, by

(LN,0f)(η) =
N−2∑
x=1

(
f(ηx,x+1)− f(η)

)
,

(LN,bf)(η) = κ

N θ

∑
x∈{1,N−1}

crx(η(x))
(
f(ηx)− f(η)

)
,

where for x = 1 and x = N − 1,
crx(η(x)) = rx(1− η(x)) + (1− rx)η(x), r1 = α and
rN−1 = β.



Goal: analyze the impact of changing the strength of the
reservoirs (by changing θ) on the macroscopic behavior of

the system.



Invariant measures:

If α = β = ρ the Bernoulli product measures are invariant
(equilibrium measures): νρ(η : η(x) = 1) = ρ.
To prove this we claim that

∫
ΩN LNf(η)νρ(dη) = 0 for any f .

Since η(x) ∈ {0, 1} any f can be rewritten as a weighted sum of
products of η(x) or 1− η(x). By linearity, in order to prove the
claim it is enough to prove it for functions of the form
f(η) = η(x1) · · · η(xk), where x1, ..., xk ∈ ΛN .

Let us see the action of the generator! ->



Stationary measures:

If α 6= β the Bernoulli product measure is no longer invariant,
but since we have a finite state irreducible Markov process we
know that there exists a UNIQUE invariant measure: the
stationary measure (non-equilibrium) denoted by µss.

By the matrix ansatz method one can get information on this
measure.



Hydrodynamic Limit:
• For η ∈ ΩN let πNt (η, du) = 1

N

∑N−1
x=1 ηtN2(x)δx/N (du) be the

empirical measure. (Note the diffusive time scaling!)

• Fix a measurable profile g : [0, 1]→ [0, 1] and a sequence of
probability measures {µN}N≥1 such that for every δ > 0 and
every continuous function H : [0, 1]→ R,

1
N

N−1∑
x=1

H( xN ) η(x)→N→∞

∫ 1

0
H(q) g(q)dq,

wrt µN . Then for any t > 0, πNt → ρ(t, q)dq, as N →∞, where
ρ(t, q) evolves according to a PDE (the hydrodynamic
equation).



Hydrodynamic Limit:

Definition
Definition: Let g : [0, 1]→ [0, 1] be a measurable function. We
say that a sequence of probability measures {µN}N≥1 in ΩN is
associated to a profile g(·) if for any continuous function
H : [0, 1]→ R and every δ > 0

lim
N→∞

µN

η :

∣∣∣∣∣∣ 1
N

∑
x∈ΛN

H
(
x
N

)
ηx −

∫ 1

0
H(q)g(q)dq

∣∣∣∣∣∣ > δ

 = 0.



Hydrodynamic Limit:

Theorem
Theorem: Let g : [0, 1]→ [0, 1] be a measurable function and let
{µN}N≥1 be a sequence of probability measures in ΩN

associated to g(·). Then, for any 0 ≤ t ≤ T ,

lim
N→∞

PµN
(
η· :

∣∣∣∣∣∣ 1
N

∑
x∈ΛN

H
(
x
N

)
ηtN2(x)−

∫ 1

0
H(q)ρt(q)dq

∣∣∣∣∣∣ > δ
)

= 0,

and ρt(·) is the unique weak solution of the heat equation with
different types of boundary conditions depending on the range of
the parameter θ with initial condition ρ0(·) = g(·).



Hydrodynamic equations:
• θ < 1: The heat equation with Dirichlet boundary conditions{

∂tρt(q) = ∂2
qρt(q) , for t > 0 , q ∈ (0, 1) ,

ρt(0) = α, ρt(1) = β , for t > 0.

• θ = 1: The heat equation with Robin boundary conditions
∂tρt(q) = ∂2

qρt(q) , for t > 0 , q ∈ (0, 1) ,
∂qρt(0) = κ(ρt(0)− α) , for t > 0 ,
∂qρt(1) = κ(β − ρt(1)) , for t > 0.

• θ > 1: The heat equation with Neumann boundary conditions{
∂tρt(q) = ∂2

qρt(q) , for t > 0 , q ∈ (0, 1) ,
∂qρt(0) = ∂qρt(1) = 0 , for t > 0.



θ

θ = 0

θ = 1
Heat eq. with Robin b.c.

Heat eq. with Neumann b.c.

Heat eq. with Dirichlet b.c.

Figure: The three different hydrodynamic regimes in terms of θ.



The proof:

How do we prove the results?

Two things to do:
Tightness;
Characterization of limit points: limit points are
concentrated on trajectories of measures that are
absolutely continuous wrt the Lebesgue measure and the
density is a weak solution of the corresponding PDE.

Let us focus on the second point.



The notion of weak solution:
Let g : [0, 1]→ [0, 1] be a measurable function. We say that
ρ : [0, T ]× [0, 1]→ [0, 1] is a weak solution of the HEDBC if:
1. ρ ∈ L2(0, T ;H1);
2. ρ satisfies the weak formulation:∫ 1

0
ρt(q)Ht(q) dq −

∫ 1

0
g(q)H0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(
∂2
q + ∂s

)
Hs(q) ds dq

+
∫ t

0
β∂qHs(1)− α∂qHs(0) ds = 0,

for all t ∈ [0, T ] and any function H ∈ C1,2
0 ([0, T ]× [0, 1]).



Other notion of solution:
Let g : [0, 1]→ [0, 1] be a measurable function. We say that
ρ : [0, T ]× [0, 1]→ [0, 1] is a weak solution of the HEDBC if:
1. ρ ∈ L2(0, T ;H1);
2. ρ satisfies the weak formulation:∫ 1

0
ρt(q)Ht(q) dq −

∫ 1

0
g(q)H0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(
∂2
q + ∂s

)
Hs(q) ds dq = 0,

for all t ∈ [0, T ] and any function H ∈ C1,2
c ([0, T ]× [0, 1]);

3. ρt(0) = α and ρt(1) = β, for t ∈ (0, T ].



The notion of weak solution:
Let g : [0, 1]→ [0, 1] be a measurable function. We say that
ρ : [0, T ]× [0, 1]→ [0, 1] is a weak solution of the HERBD if:
1. ρ ∈ L2(0, T ;H1),
2. ρ satisfies the weak formulation:∫ 1

0
ρt(q)Ht(q) dq −

∫ 1

0
g(q)H0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(
∂2
q + ∂s

)
Hs(q) ds dq

+
∫ t

0
{ρs(1)∂qHs(1)− ρs(0)∂qHs(0)} ds

− κ
∫ t

0
{Hs(0)(α− ρs(0)) +Hs(1)(β − ρs(1))} ds = 0,

for all t ∈ [0, T ] and any function H ∈ C1,2([0, T ]× [0, 1]).



Characterizing limit points:
Theorem
Dynkin’s formula: Let {ηt}t≥0 be a Markov process with
generator L and with countable state space E. Let
F : R+ × E → R be a bounded function such that

∀η ∈ E,F (·, η) ∈ C2(R+),
there exists a finite constant C, such that
sup(s,η) |∂jsF (s, η)| ≤ C, for j = 1, 2.

For t ≥ 0, let

MF
t =F (t, ηt)− F (0, η0)−

∫ t

0
(∂s + L)F (s, ηs)ds.

Then, {MF
t }t≥0 is a martingale wrt Fs = σ(ηs; s ≤ t).



Characterizing limit points:
Let us fix a test function H : [0, 1]→ R and apply Dynkin’s
formula with

F (t, ηt) = 〈πNt , H〉 = 1
N

N−1∑
x=1

ηtN2(x)H
(
x
N

)
.

Note that F does not depend on time. A simple computation
shows that

N2LN 〈πNs , H〉 = 〈πNs ,∆NH〉
+∇+

NH(0)ηsN2(1)−∇−NH(1)ηsN2(N − 1)

+ κN1−θH
(

1
N

)
(α− ηsN2(1))

+ κN1−θH
(
N−1
N

)
(β − ηsN2(N − 1))



θ ∈ [0, 1):
Take a function H : [0, 1]→ R such that H(0) = H(1) = 0 and
then we get

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0
〈πNs ,∆NH〉ds

−
∫ t

0
∇+
NH(0)ηsN2(1)−∇−NH(1)ηsN2(N − 1)ds+O(N−θ).

If we can replace ηsN2(1) by α and ηsN2(N − 1) by β (this will
be made rigorous ahead but only works for θ < 1!) then above
we have

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0
〈πNs ,∆NH〉ds

−
∫ t

0
∇+
NH(0)α−∇−NH(1)βds+O(N−θ).

Compare with the PDE (note that H does not depend on time).



Still θ ∈ [0, 1):
Take the expectation above to get

1
N

N−1∑
x=1

H
(
x
N

)(
ρNt (x)− ρN0 (x)

)
−
∫ t

0

1
N

N−1∑
x=1

∆NH
(
x
N )ρNs (x)ds

−
∫ t

0
∇+
NH(0)α−∇−NH(1)βds+O(N−θ) = 0.

Assume that ρNt (x) ∼ ρt(x/N) and take the limit in N to get∫ 1

0
ρt(q)H(q)− ρ0(q)H(q)dq −

∫ t

0

∫ 1

0
∂2
qH(q)ρs(q)dqds

−
∫ t

0
∂qH(0)α− ∂qH(1)βds = 0

Compare with the PDE (note that H does not depend on time).



θ < 0:

Recall that the previous error blows up when N →∞. So now,
we take a function H : [0, 1]→ R with compact support and
then we get

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0
〈πNs ,∆NH〉ds.

Again compare with the PDE but note that H does not depend
on time.
In this case we do not see the Dirichlet boundary conditions
and we need extra results to conclude.



θ = 1:
Now, we take a function H : [0, 1]→ R and we get

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0
〈πNs ,∆NH〉ds

−
∫ t

0
∇+
NH(0)ηsN2(1)−∇−NH(1)ηsN2(N − 1)ds

− κ
∫ t

0
H
(

1
N

)
(α− ηsN2(1)) +H

(
N−1
N

)
(β − ηsN2(N − 1))ds.

If we can replace ηsN2(1) (resp. ηsN2(N − 1)) by the average in
a box around 1 (resp. N − 1) (this works for any θ ≥ 1):

−→η εNsN2(1) := 1
εN

1+εN∑
x=1

ηsN2(x), ←−η εNsN2(N−1) := 1
εN

N−1−εN∑
x=N−1

ηsN2(x)

and noting that −→η εNsN2(1) ∼ ρs(0) (resp. −→η εNsN2(N − 1) ∼ ρs(1))
we would get the terms in the PDE (compare).



θ > 1:
Again we take a function H : [0, 1]→ R and in this case the
terms from the boundary vanish. So we get

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0
〈πNs ,∆NH〉ds

−
∫ t

0
∇+
NH(0)ηsN2(1)−∇−NH(1)ηsN2(N − 1)ds+O(N1−θ).

As before, if we can replace ηsN2(1) (resp. ηsN2(N − 1)) by the
average in a box around 1 (resp. N − 1) and noting that
−→η εNsn2(1) ∼ ρs(0) (resp. −→η εNsN2(N − 1) ∼ ρs(1)) we would get the
terms in the PDE (compare).



The replacement lemmas:
Recall that we need to prove that

Lemma
For any t > 0, we have that:

for θ ∈ [0, 1)

lim sup
N→∞

EµN
[∣∣∣ ∫ t

0
(ηsN2(1)− α) ds

∣∣∣] = 0;

for θ ≥ 1

lim sup
N→∞

EµN
[∣∣∣ ∫ t

0
(ηsN2(1)−−→η εNsN2(1)) ds

∣∣∣] = 0;

and the similar result for the point N − 1.



Replacing by α:
From entropy’s and Jensen’s inequality, the expectation is
bounded from above by

H(µN |νNh(·))
BN

+ 1
BN

logEνN
h(·)

[
eBN |

∫ t
0 (ηsN2 (1)−α)ds|

]
.

Above B is a positive constant and h(·) is a profile to choose
later on. We remove the absolute value inside the exponential
since e|x| ≤ ex + e−x and

lim sup
N→∞

log(aN + bN )≤max
{

lim sup
N→∞

log(aN ), lim sup
N→∞

log(bN )
}
.

Note that if α ≤ h(·) ≤ β , then:

H(µN |νNh(·)) ≤ NC(α, β).



Apply FK formula:
Theorem
The Feynmann-Kac’s formula: Assume that L is the generator
of a Markov process {ηt}t≥0 on a countable state space E. Let ν
be a p.m. on E and V : [0,∞)× E → R a bounded function.
Define

Γt = sup
{f :||f ||2=1}

{〈Vt, f2〉ν + 〈Lf, f〉ν}.

Then Eν
[
e
∫ t

0 V (r,ηr)dr
]
≤ e{

∫ t
0 Γsds}.

Then we have to estimate:

sup
f

{
〈η(1)− α, f〉νN

h(·)
+ N

B
〈LN

√
f,
√
f〉νN

h(·)

}
,

where the supremum is carried over all the densities f with
respect to νNh(·).



Controlling Dirichlet forms:
For a probability measure µ on ΩN , we define

DN (
√
f, µ) := (DN,0 +DN,b)(

√
f, µ)

where DN,0(
√
f, µ) :=

1
2
∑N−2
x=1 Ix,x+1(

√
f, µ), with

Ix,x+1(
√
f, µ) =

∫ (√
f(ηx,x+1)−

√
f(η)

)2
dµ and

DN,b(
√
f, µ) : = κ

2N θ

(
Ir1

1 (
√
f, µ) + I

rN−1
N−1 (

√
f, µ)

)
with Irxx (

√
f, µ) :=

∫
crx(η(x))

(√
f(ηx)−

√
f(η)

)2
dµ.



We claim that for any positive constant B if h(·) is a Lipschitz
function with h(0) = α, h(1) = β and locally constant at 0 and
1, then, there exists a constant Cα,β,h > 0 such that

N

B
〈LN

√
f,
√
f〉νN

h(·)
≤ − N

4BDN (
√
f, νNh(·)) + Cα,β,h

B
.

Lemma
Lemma: Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation and
c : η → c(η) be a positive local function. Let f be a density with
respect to a p.m. µ on ΩN . Then:〈
c(η)[

√
f(T (η))−

√
f(η)],

√
f(η)

〉
µ

≤ −1
4

∫
c(η)

([√
f(T (η))

]
−
[√

f(η)
])2

dµ

+ 1
16

∫ 1
c(η)

[
c(η)−c(T (η))µ(T (η))

µ(η)

]2([√
f(T (η))

]
+
[√

f(η)
])2

dµ.



So far we have to bound

sup
f

{
〈η(1)− α, f〉νN

h(·)
− N

4BDN (
√
f, νNh(·)) + Cα,β,h

B

}
,

where the supremum is carried over all the densities f with
respect to νNh(·). To finish we use

Lemma
Lemma: For any density f with respect to νNh(·) and any positive
constant A, we have that∣∣∣∣〈η(1)− α, f〉νN

h(·)

∣∣∣∣ .
1
A
Ir1

1 (
√
f, νNh(·)) +A+ [h( 1

N )− α].

The same result holds if α is replaced by β.

Now take A = BCN θ−1κ−1, which is the final error and note
that it vanishes, as N →∞, if θ < 1.



Hydrostatic Limit:
Theorem
Theorem: Let {µN}N≥1 be the stationary measure for the
process {ηt}t≥0 with generator N2LN . Then, {µN}N≥1 is
associated to the profile ρ̄ : [0, 1]→ [0, 1] which is given for
q ∈ (0, 1) by

ρ̄(q) =


(β − α)q + α ; θ < 1,
κ(β−α)

2+κ q + α+ β−α
2+κ ; θ = 1,

β+α
2 ; θ > 1.

Note that this is a stationary solution of the hydrodynamic
equation.



The empirical profile:
Fix an initial measure µN in ΩN . For x ∈ ΛN and t ≥ 0, let

ρNt (x) = EµN [ηtN2(x)] .

We extend this definition to the boundary by setting

ρNt (0) = α and ρNt (N) = β , for all t ≥ 0 .

A simple computation shows that ρNt (·) is a solution of{
∂tρ

N
t (x) =

(
N2BNρNt

)
(x) , x ∈ ΛN , t ≥ 0 ,

ρNt (0) = α , ρNt (N) = β , t ≥ 0 ,

where the operator BN acts on functions f : ΛN ∪{0, N} → R as
N2(BNf)(x) = ∆Nf(x) , for x ∈ {2, · · · , N − 2} ,
N2(BNf)(1) = N2(f(2)− f(1)) + κN2

Nθ (f(0)− f(1)) ,
N2(BNf)(N−1) = N2(f(N−2)− f(N−1)) + κN2

Nθ (f(N)− f(N−1)).



Stationary empirical profile:
The stationary solution of the previous equation is given by

ρNss(x) = Eµss [ηtN2(x)] = aNx+ bN

where aN = κ(β−α)
2Nθ+κ(N−2) and bN = aN (Nθ

κ − 1) + α.

From where we get that

lim
N→∞

max
x∈ΛN

∣∣ρNss(x)− ρ̄(x/N)
∣∣ = 0.

Moreover, the following estimate holds

max
1≤x<y≤N−1

|Eµss [η(x); η(y)]| ≤ C

N θ +N
.

If we put both results together then the proof of the hydrostatic
limit follows.



Long range jumps



Exclusion in contact with
infinitely many reservoirs

κβp(z)/N θ

κ(1− β)p(z)/N θκ(1− α)p(z)/N θ

καp(z)/N θ



The finite variance case



If jumps are arbitrarily big?
Let γ > 2 and p(·) be a translation invariant transition
probability given at z ∈ Z by

p(z) =


cγ
|z|γ+1 , z 6= 0,

0, z = 0,

where cγ is a normalizing constant. Since p(·) is symmetric it is
mean zero, that is: ∑

z∈Z
zp(z) = 0

and since γ > 2 we define its variance by

σ2
γ =

∑
z∈Z

z2p(z) <∞.



The infinitesimal generator:
LN = LN,0 + LN,r + LN,` where

(LN,0f)(η) =
1
2

∑
x,y∈ΛN

p(x− y)[f(ηx,y)− f(η)],

(LN,`f)(η) = κ

N θ

∑
x∈ΛN
y≤0

p(x− y)cx(η;α)[f(ηx)− f(η)],

(LN,rf)(η) = κ

N θ

∑
x∈ΛN
y≥N

p(x− y)cx(η;β)[f(ηx)− f(η)]

where
cx(η;α) := (1− ηx)α+ (1− α)ηx.

cx(η;β) := (1− ηx)β + (1− β)ηx.



Hydrodynamic Limit:
Theorem
Theorem: Let g : [0, 1]→ [0, 1] be a measurable function and let
{µN}N≥1 be a sequence of probability measures in ΩN

associated to g(·). Then, for any 0 ≤ t ≤ T ,

lim
N→∞

PµN
(∣∣∣ 1
N

∑
x∈ΛN

H
(
x
N

)
ηtΘ(N)(x)−

∫ 1

0
H(q)ρt(q)dq

∣∣∣ > δ
)

= 0,

where the time scale is given by

Θ(N) =
{
N2, if θ ≥ 2− γ,
Nγ+θ, if θ < 2− γ,

and ρt(·) is the unique weak solution of the corresponding
hydrodynamic equation with initial condition ρ0(·) = g(·).



Hydrodynamic equations:
• θ < 2− γ: The reaction equation with Dirichlet boundary
conditions∂tρt(q) = κ

{
V0(q)− V1(q)ρt(q)

}
, for t > 0 , q ∈ (0, 1) ,

ρt(0) = α, ρt(1) = β, for t > 0,

where V1(q) = r−(q) + r+(q) and V0(q) = αr−(q) + βr+(q),
r−(q) = cγγ

−1q−γ and r+(q) = cγγ
−1(1− q)−γ .

• θ = 2− γ: The reaction-diffusion equation with Dirichlet
boundary conditions∂tρt(q) =σ2

2 ∂
2
q ρt(q) + κ

{
V0(q)−V1(q)ρt(q)

}
, for t > 0 , q ∈ (0, 1) ,

ρt(0) = α, ρt(1) = β, for t > 0.



Hydrodynamic equations:
• 2− γ < θ < 1: The heat equation with Dirichlet boundary
conditions{

∂tρt(q) = σ2

2 ∂
2
qρt(q) , for t > 0 , q ∈ (0, 1) ,

ρt(0) = α ρt(1) = β , for t > 0.

• θ = 1: The heat equation with Robin boundary conditions
∂tρt(q) = σ2

2 ∂
2
qρt(q) , for t > 0 , q ∈ (0, 1) ,

∂qρt(0) = 2mκ
σ2 (ρt(0)− α) , for t > 0 ,

∂qρt(1) = 2mκ
σ2 (β − ρt(1)) , for t > 0.

Above m =
∑
y≥1 yp(y).

• θ > 1: The heat equation with Neumann boundary conditions{
∂tρt(q) = σ2

2 ∂
2
qρt(q) , for t > 0 , q ∈ (0, 1) ,

∂qρt(0) = ∂qρt(1) = 0 , for t > 0.



θ

γθ = 0, γ = 2

θ = 1, γ = 2

Heat eq. with reaction term
&
Dirichlet b.c.

Heat eq. with Robin b.c.

Heat eq. with Neumann b.c.

Heat eq. with Dirichlet b.c.

Reaction eq. with Dirichlet b.c.

θ = 2− γ

Figure: The five different hydrodynamic regimes in terms of γ and θ.



The notion of weak solution:
Let us see the notion of weak solution in the new cases, the
other ones have been defined before.

Let σ̂ ≥ 0 and κ̂ ≥ 0 be some parameters. Let g : [0, 1]→ [0, 1]
be a measurable function. We say that ρ : [0, T ]× [0, 1]→ [0, 1]
is a weak solution of the RDEDBC

∂tρt(q) = σ̂2

2 ∆ ρt(q) + κ̂
{
V0(q)−V1(q)ρt(q)

}
, (t, q) ∈ [0, T ]× (0, 1),

ρt(0) = α, ρt(1) = β, t ∈ [0, T ],
ρ0(·) = g(·),

if:



The notion of weak solution:
1. ρ ∈ L2(0, T ;H1) if σ̂ > 0 and∫ T

0
∫ 1

0

{
(α−ρt(q))2

qγ + (β−ρt(q))2

(1−q)γ
}
dq dt <∞ if κ̂ > 0,

2. ρ satisfies the weak formulation:∫ 1

0
ρt(q)Ht(q) dq −

∫ 1

0
g(q)H0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

( σ̂2

2 ∆ + ∂s
)
Hs(q) ds dq

− κ̂
∫ t

0

∫ 1

0
Hs(q) (V0(q)− V1(q)ρs(q)) ds dq = 0,

for all t ∈ [0, T ] and any function H ∈ C1,2
c ([0, T ]× [0, 1]),

3. if σ̂ > 0 then ρt(0) = α, ρt(1) = β for all t ∈ (0, T ].



Stationary solutions:
θ > 1

θ = 1

2− γ < θ < 1

θ = 2− γ

θ < 2− γ

1
20 1

β

α

α+β
2

(α+β)σ2+2αmκ
2(mκ+σ2)

(α+β)σ2+2βmκ
2(mκ+σ2)

Figure: Profiles of the stationary solution of the hydrodynamic
equations according to the value of θ.



Characterizing limit points:
A simple computation shows that

Θ(N)LN (〈πNs , H〉) =
Θ(N)
N

∑
x,y∈ΛN

p(y − x)
[
H( yN )−H( xN )

]
ηs(x)

+
κΘ(N)
N1+θ

∑
x∈ΛN

(Hr−N )( xN )(α− ηs(x))

+
κΘ(N)
N1+θ

∑
x∈ΛN

(Hr+
N )( xN )(β − ηs(x),

where for all x ∈ ΛN
r−N ( xN ) =

∑
y≥x

p(y), r+
N ( xN ) =

∑
y≤x−N

p(y).

Extend H to R in such a way that it remains two times
continuously differentiable, and the first term at the RHS is



Θ(N)
N

∑
x∈ΛN

(KNH)( xN )ηs(x)

−
Θ(N)
N

∑
x∈ΛN

∑
y≤0

[
H( yN )−H( xN )

]
p(x− y)ηs(x)

−
Θ(N)
N

∑
x∈ΛN

∑
y≥N

[
H( yN )−H( xN )

]
p(x− y)ηs(x)

where (KNH)( xN ) =
∑
y∈Z p(y − x)

[
H( yN )−H( xN )

]
.

Lemma

Remark: Let H : R→ R be a two times continuously
differentiable function with compact support. We have
lim supN→∞ supx∈ΛN

∣∣∣N2KNH
(
x
N

)
− σ2

2 ∆H( xN )
∣∣∣ = 0.

As a consequence when Θ(N) = N θ+γ and θ < 2− γ the first
term above vanishes as N →∞.



The infinite variance case



What about γ ∈ (1, 2):
This is in progress. So far we know that for any κ > 0 and
θ = 0, we get the fractional heat equation with Dirichlet
boundary conditions given by{

∂tρt(q) = −(−∆)γ/2ρt(q) + (1− κ)V1(q)ρt(q)− (1− κ)V0(q),
ρt(0) = α, ρt(1) = β.

See κ = 1! Above, (−∆)γ/2 is the fractional Laplacian of
exponent γ/2 which is defined on the set of functions
H : R→ R such that∫ ∞

−∞

|H(q)|
(1 + |q|)1+γdu <∞

by (provided the limit exists)

(−∆)γ/2H (q) = cγ lim
ε→0

∫ ∞
−∞

1|u−q|≥ε
H(q)−H(u)
|u− q|1+γ du.



The notion of weak solution:
Let L be the regional fractional Laplacian on [0, 1], whose
action on functions H ∈ C∞c (0, 1) is given by

(LH)(q) = −(−∆)γ/2H (q) + V1(q)H(q)

= cγ lim
ε→0

∫ 1

0
1|u−q|≥ε

H(u)−H(q)
|u− q|1+γ dy, q ∈ (0, 1).

Observe that for any G,H ∈ C∞c (0, 1) we have that
〈G,−LH〉 = 〈−LG,H〉 = 〈G,H〉γ/2,

where 〈G,H〉γ/2 =
cγ

2
s

[0,1]2
(H(q)−H(u))(G(q)−G(u))

|q − u|1+γ dqdu.

The Sobolev space Hγ/2 consists of all square integrable
functions G : (0, 1)→ R such that ‖G‖γ/2 <∞ and the ‖ · ‖Hγ/2

norm is defined by
‖G‖2Hγ/2 := ‖G‖2L2 + ‖G‖2γ/2.



The notion of weak solution:
Let g : [0, 1]→ [0, 1] be a measurable function. We say that
ρ : [0, T ]× [0, 1]→ [0, 1] is a weak solution of the PDE above if:

i) ρ ∈ L2(0, T ;Hγ/2) and∫ T
0
∫ 1

0

{
(α−ρt(q))2

qγ + (β−ρt(q))2

(1−q)γ
}
dq dt <∞,

ii) For all t ∈ [0, T ] and any function H ∈ C1,∞
c ([0, T ]× (0, 1)):∫ 1

0
ρt(q)Ht(q) dq −

∫ 1

0
g(q)H0(q) dq −

∫ t

0

∫ 1

0
ρs(q)

(
∂s + L

)
Hs(q) dqds

− κ
∫ t

0

∫ 1

0
V0(q)Hs(q)dq ds+ κ

∫ t

0

∫ 1

0
V1(q)Hs(q)ρs(q)dq ds = 0,

iii) ρt(0) = α and ρt(1) = β, for t ∈ (0, T ].



Characterizing limit points:

NγLN (〈πNs , H〉) =
Nγ

N

∑
x,y∈ΛN

p(y − x)
[
H( yN )−H( xN )

]
ηs(x)

+
κNγ

N

∑
x∈ΛN

(Hr−N )( xN )(α− ηs(x)) +
κNγ

N

∑
x∈ΛN

(Hr+
N )( xN )(β − ηs(x)).

For H with compact support in [a, 1− a] for a ∈ (0, 1) we have

lim
N→∞

Nγ
∑
y∈ΛN

p(y − x)
[
H( yN )−H( xN )

]
= (LH)( xN ),

lim
N→∞

Nγ(r−N )( xN ) = r−( xN ),

lim
N→∞

Nγ(r+
N )( xN ) = r+( xN )

uniformly in [a, 1− a].



Characterizing limit points:
Thus, the first term on the right hand side above can be
replaced by

〈πNt ,LH〉 →
∫ 1

0
(LH)(q)ρt(q)dq,

as N goes to ∞.
The other terms can be replaced by
κ〈α− πNt , Hr−〉+ κ〈β − πNt , Hr+〉 which converges to

κ

∫ 1

0
H(q)r−(q)(α− ρt(q))dq + κ

∫ 1

0
H(q)r+(q)(β − ρt(q))dq

=κ
∫ 1

0
H(q)V0(q)dq − κ

∫ 1

0
H(q)V1(q)ρt(q)dq,

as N goes to ∞.



Uniqueness of weak solution:
To prove it we do the following. Let ρ̄ = ρ1 − ρ2, where ρ1 and
ρ2 are two weak solutions starting from g. We have
ρ̄t(0) = ρ̄t(1) = 0. Then,

〈ρ̄t, Ht〉 −
∫ t

0
〈ρ̄s,

(
∂s + L

)
Hs〉ds+ κ

∫ t

0
〈V1Hs, ρ̄s〉ds = 0.

Take now HN (s, q) =
∫ t
s GN (r, q) dr where (GN )N≥0 is a

sequence of functions in C1,∞
c ([0, T ]× (0, 1)) converging to ρ̄.

Plug HN in the equation and take N →∞ to get∫ t

0

∫ 1

0
ρ̄2
s(q) dqds+

1
2

∥∥∥ ∫ t

0
ρ̄sds

∥∥∥2

γ/2
+
κ

2

∥∥∥ ∫ t

0
ρ̄sds

∥∥∥2

V1
= 0.

From this we conclude the uniqueness.



Uniqueness of weak solution:

Lemma
Lemma: Let (HN )N be defined as above. We have
i) limN→∞

∫ t
0
∫ 1

0 ρ̄s(q) (∂sHN )(s, q) dqds = −
∫ t

0
∫ 1

0 ρ̄
2
s(q) dqds.

ii) limN→∞
∫ T

0
∫ 1

0 ρ̄s(q)LHN (s, q) dqds = −
1
2

∥∥∥ ∫ t0 ρ̄sds∥∥∥2

γ/2
.

iii) limN→∞
∫ t

0 V1(q)HN (s, q)ρ̄s(q) ds =
1
2

∥∥∥ ∫ t0 ρ̄sds ∥∥∥2

V1
<∞.
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Thank you!
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