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White noise driven PDE’s

Space time white noise ξ(t , x)

Eξ(t ′, x ′)ξ(t , x) = δ(t ′ − t)δ(x ′ − x)

I Interface growth φ(t , x) interface height (KPZ )

∂tφ = ∆φ+ (∇φ)2 + ξ

I Ginzburg-Landau (GL) model φ(t , x) magnetization

∂tφ = ∆φ− λφ3 + ξ

I Fluctuating hydrodynamics φ = (φ1, φ2, φ3)

∂t ~φα = ∆φα + Mβγ
α ∂xφβ∂xφγ + ξα



ξ is very rough, are these non-linear equations well-posed?

I Given a realization ξ of noise, is there a φ(ξ) solving these
equations?

I How is φ(ξ) distributed? Is there a stationary state?

In general we need to renormalize the equations to make them
well posed.



Linear case

Linear equation x ∈ Td = (R/Z)d

∂tφ = ∆φ+ ξ

φ(0, x) = φ0(x)

solved by
φ(t , x) = (et∆φ0)(x) + η(t , x)

with

η(t) =

∫ t

0
e(t−s)∆ξ(s)ds



Free field

η(t , x) is a random field with covariance

Eη(t , x)η(t , y) = Ct (x , y)

where Ct (x , y) is the integral kernel of the operator∫ t

0
e2t∆dt = −1

2
1− e2t∆

∆

Ct (x , y) is singular in short scales:

Eη(t , x)η(t , y) � 1
|x − y |d−2 .

I η(t , x) is a.s. not a function in d ≥ 2
I ∇η(t , x) has same regularity as white noise for all d .



Integral equation

Consider nonlinear equation

∂tφ = ∆φ+ V (φ) + ξ, φ(0, x) = 0.

Rewrite it as integral equation

φ(t) =

∫ t

0
e(t−s)∆(V (φ(s)) + ξ(s))ds

= η(t) +

∫ t

0
e(t−s)∆V (φ(s))ds

where η(t , x) is the solution to the linear equation.

Fix a realization of the random field η(t , x) and try to solve this
fixed point problem in some (Banach) space of functions φ(t , x).



Perturbation theory

Study the solution iteratively:

φ(t) = η(t) +

∫ t

0
e(t−s)∆V (η(s))ds + . . . .

This fails:
I For KPZ equation

V (η(s)) = (∂xη(s, x))2

and ∂xη(s, x) = derivative of BM =∞ almost surely.
I For GL equation

V (η(s)) = η(s, x)3 =∞

almost surely if d ≥ 2.



Quantum Field Theory

Such divergencies are familiar from quantum field theory.

Formally the equation

∂tφ = ∆φ− λφ3 + ξ

has a stationary law

Pλ(dφ) ∝ e−
λ
4

∫
Td φ(x)4dxP0(dφ)

where P0 is the law of GFF.

Under GFF φ(x)4 =∞ almost surely so we have a problem.

For d < 4 Pλ can be constructed by renormalization.



Renormalization

Regularize e.g. by lattice φ(x), x ∈ (εZ)d , ∆→ ∆ε, P0 → P(ε)
0

Renormalize by adding a counter term

S(ε)(φ) :=

∫
Td

(
λ

4φ
4 + 1

2 rεφ2)

Then
Pλ ∝ lim

ε→0
e−S(ε)

P(ε)
0

exists with

rε = m log ε d = 2
rε = m1ε

−1 + m2 log ε d = 3

Story of 60-70’s.



Regularized dynamics

Consider a regularized equation

∂tφ = ∆εφ+ V (ε)(φ) + ξε

where
I ξε(t , x) is white noise on R× (εZ)d

I V (ε) has ε-dependent terms added to V
Determine V (ε) so that solutions converge as ε→ 0 a.s.



Renormalized dynamics

Renormalize:

(∂xφ)2 → (∂xφ)2 + aε−1

Mβγ
α ∂xφβ∂xφγ → Mβγ

α ∂xφβ∂xφγ + aαε−1 + bα log ε

φ3 → φ3 + φ

{
m log ε d = 2
m1ε

−1 + m2 log ε d = 3

Theorem. The following holds almost surely in ξ:
There exists T > 0 s.t. the regularized equation has a unique
solution φε(t , x) for t ≤ T and

φε → φ ∈ D′([0,T ]× Td )

where φ is independent of the cutoff function ρ.

Gubinelli, Imkeller, and Perkowski, Catellier and Chouk, Hairer,
A.K.



Wilson RG

We prove this result using the "Wilsonian" approach to
renormalization

I Proceed scale by scale to derive effective equation on
that scale

I No new theory of distributions needed
I Standard contraction mapping theorem
I A general method to derive counterterms for subcritical

nonlinearities
I A general method to study universality



Counter terms

Given a nonlinearity S(φ) or V (φ) how to find the
counterterms?

Why is this natural ?

Both questions can be answered by considering scale
dependent effective actions and effective equations.



Effective Actions

Let
φ

law
= P(ε) = e−S(ε)(φ)P(ε)

0

Pick a larger scale ε′ > ε

Let φ′ := average of φ on ε′ cubes. Call its law by P(ε)
ε′ and

define S(ε)
ε′ (φ′) by

P(ε)
ε′ = e−S(ε)

ε′ (φ′)P(ε′)
0

S(ε)
ε′ (φ′) is called the Effective Action for scales ≥ ε′

Reformulation of ε→ 0 limit:

• Prove: limε→0 S(ε)
ε′ (φ′) exists for all scales ε′ > 0.

Good control of this limit amounts to control of limε→0 P(ε)



Effective Equations

Regularized equation

∂tφ = ∆εφ+ V (ε)(φ) + ξε (1)

Let φ′ := average of φ on ε′ cubes.

Derive an Effective Equation

∂tφ
′ = ∆ε′φ

′ + V (ε)
ε′ (φ′) + ξε′

• Prove: a.s. limε→0 V (ε)
ε′ (φ′) exists for all scales ε′ > 0.

Good control of this limit amounts to control of solutions of (1)



Dimensionless variables

Scale invariance of GFF: let

ϕ(x) = ε
d−2

2 φ(εx)

then

φ
law
= P(ε)

0 =⇒ ϕ
law
= P(1)

0

Similarly if
φ̇ = ∆εφ+ ξε

then
ϕ(t , x) := ε

d−2
2 φ(ε2t , εx)

satisfies
ϕ̇ = ∆1ϕ+ ξ1

Note: ϕ defined on ε−1Td ∩ Zd : UV cutoff 1, IR cutoff ε−1



Subcritical nonlinearity

φ
law
= e−S(ε)

P(ε)
0 =⇒ ϕ

law
= e−S

(ε)
P(1)

0

with
S(ε)(ϕ) =

∑
x∈Zd∩ε−1Td

(
λ

4 ε
4−dϕ4 + 1

2 ε
2r (ε)ϕ)

and for GL equation

ϕ̇ = ∆1ϕ− λε4−dϕ3 − ε2r (ε)ϕ+ ξ1

and for KPZ
ϕ̇ = ∆1ϕ+ ε

2−d
2 (∇ϕ)2 + ξ1

In dimensionless variables nonlinearity is small if d < 2 (KPZ),
d < 4 (GL)



Renormalization Group
In the same way define effective action S(ε)

ε′ and effective
equation V(ε)

ε′ by going to dimensionless variables:

S(ε)
ε′ (ϕ(·)) = S(ε)

ε′ (ε′
d−2

2 φ(ε′·))

We need to study the renormalization group flow

ε′ → S(ε)
ε′ ,V

(ε)
ε′

describing in dimensionless variables how the physics changes
with scale.

We do this incrementally by fixing L > 1 and defining RG map
R:

RS(ε)
ε′ = S(ε)

Lε′ , RV
(ε)
ε′ = V(ε)

Lε′

so that if ε = L−N and ε′ = L−n

lim
ε→0
S(ε)
ε′ = lim

N→∞
RN−nS(ε)



RG for QFT

R maps
e−S(ϕ)P(1)

0 → e−RS(ϕ′)P(1)
0

Decompose GFF ([·] denotes integer part)

ϕ(x) = L−
d−2

2 ϕ′([
x
L ]) + z(x) := ϕ′L(x) + z(x)

where ϕ,ϕ′ law
= P(1)

0 and z fluctuates on scale L. Then

e−RS(ϕ′) = Eze−S(φ′L+z)

I The z(x) variables have correlation length L
I S is small
I =⇒ R can be studied perturbatively



RG for SPDE
R maps equation

ϕ̇ = ∆1ϕ+ V(ϕ) + ξ1

to new equation

ϕ̇′ = ∆1ϕ
′ +RV(ϕ′) + ξ1

Decompose

ϕ(t , x) = L−
d−2

2 ϕ′(
t

L2 , [
x
L ]) + z(t , x) := ϕ′L(t , x) + z(t , x)

Solve
ż = ∆1z + V(ϕ′L + z) + ξ1

for z = z(ϕ′) to get

RV(ϕ′) = V(φ′L + z(ϕ′))

I z has scales ∈ [1,L] =⇒ ∆1 > L−2

I V is small =⇒ R can be studied perturbatively



Hierarchical QFT

Hierarchical GFF

ϕ(x) = L−
d−2

2 ϕ′([
x
L ]) + z(x) := ϕ′L(x) + z(x)

z(x), z(y) independent if [ x
L ] 6= [ y

L ]

R preserves local actions:

S(ϕ) =
∑

x

s(ϕ(x)) =⇒ RS(ϕ) =
∑

x

Rs(ϕ(x))

with s : R→ R and

e−Rs(ϕ) = Ee−
∑Ld

y=1 s(L−
d−2

2 ϕ′+z(y))

where E is expectation over Ld Gaussian random variables z(y)



Hierarchical SPDE

Let −∆−1
H := covariance of hierarchical GFF and consider

ϕ̇ = ∆Hϕ+ V(ϕ) + ξ1

Then R preserves local equations:

V(ϕ) =
∑

x

v(t , x , ϕ(·, x)) =⇒ RV(ϕ) =
∑

x

Rv(t , x , ϕ(·, x))

with v(t , x , ·) : R→ R and with ϕ = sLϕ
′ + z

Rv(t , x , ϕ′) = L−
d−2

2
∑

[ y
L ]=x

v(L2t , y , ϕ)

ż(t , x) = −L−2z(t , x) + v(L2t ,Lx , ϕ) + ξ1

z = z(t , x , ϕ′) is solution of Ld weakly nonlinear SDE’s



Linear RG flow-QFT

For small s

Rs(ϕ) =
Ld∑

y=1

Es(L−
d−2

2 ϕ+ z(y)) +O(s2)

so that

R(λϕ4 + rϕ2) = L4−dλϕ4 + (L2r + a1λ)ϕ2 + a2 +O(λ2, r2)

λ and r are relevant: they increase under the flow.
However, λ starts very small: let ε = L−N and ε′ = L−n and
denote s(ε)

ε′ by s(N)
n . Then the initial condition is:

s(N) = λNϕ
4 + rNϕ

2 λN = L−(4−d)Nλ, rN = L−2Nµ(N)

We try to fix µ(N) so that s(N)
n stays small for all scales n.



Linear RG flow-QFT
We get s(N)

n (ϕ) = λnϕ
4 + rnϕ

2 with

λn = L−(4−d)nλ

rn−1 = L2rn + a1λn.

λn stays small but rn blows up

rn ∼ LN−n, d = 3, log(N − n), d = 2

unless fine tune initial condition: if we take

rN = λN(1− Ld−2)−1Ld−4a1

then rn = O(λn). The dimensional counterterm blows up:

µ(ε) ∝ ε−1λ, d = 3, µ(ε) ∝ λ log ε, d = 3

However, dimensionless s(N)
n = O(λn) is small for all n



Linear RG flow SPDE

Rv(t , x , ϕ) = L−
d−2

2
∑

[ y
L ]=x

v(L2t , y , (L−
d−2

2 ϕ+ z(ϕ))

To lowest order z is solution of a linear equation

ż(t , x) = −L−2z(t , x) + ξ(t , x)

for x in a Ld cube in Zd so z is an O-U process. Upshot:

vn(t , x ;ϕ) = λn(ϕ(t , x)3+An(t , x)ϕ(t , x)+Bn(t , x))+L2(N−n)rNϕ(t , x).

An(t , x) and Bn(t , x)) are random processes.

They are i.i.d. for different x , An(t , x)
law
= An(t) etc

EAn(t) blows up as in QFT, cancelled by rN and EBn(t) = 0



Probabilistic bounds
The variance of Ãn = An − EAn

EÃn(t)Ãn(s) = Gn(t − s)

iterates as
Gn−1(t) = Ld−4Gn(L2t) + ge−ct

Upshot: Gn(t) is bounded as N →∞ and Hölder continuous

Since An belongs to bounded Wiener chaos of white noise

P( sup
t∈[0,T ]

|Ãn(t)| > R) ≤ CR−p, ∀p

Since λn = L−(4−d)nλ this leads to

Proposition Almost surely for some m the event Em holds:

sup
n≥m

sup
t∈[0,L2n]

sup
x∈LnTd

|Ãn(t , x)| < logλ−1
n (Em)

Thus almost surely vn has small coefficients for all n ≥ m



Full RG for SPDE: d=2
Let un(t , x , ϕ) be the linear RG flow. Let

‖f‖n := sup
t∈[0,L2n]

sup
x∈LnTd

|f (t , x)|

Under Em, for n ≥ m

‖un‖ := sup
‖ϕ‖n≤logλ−1

n

‖un(ϕ)‖n ≤ λn logλ−3
n

Suppose vn = un + wn with ‖wn‖ ≤ λ2−δ
n ,δ small. Then z

equation may be solved and we get

wn−1(t , x , ϕ) = L−
d−2

2
∑

[ y
L ]=x

w(L2t , y , (L−
d−2

2 ϕ+ z) +O(u2
n)

so that for d = 2 since λn = L−2nλ our bound iterates:

‖wn−1‖ ≤ L2‖wn‖+ (λn logλ−3
n )2 ≤ λ2−δ

n−1



Full RG for SPDE: d=3

for d = 3 we get

‖wn−1‖ ≤ L
5
2 ‖wn‖+ (λn logλ−3

n )2

Since λn = L−nλ and 5
2 > 2 the induction fails.

We need to solve vn to second order in λn:

vn = un + νn + wn

Suppose the second order term ‖νn‖ ≤ λ2−δ. Then

‖wn−1‖ ≤ L
5
2 ‖wn‖+ λ3−2δ

n

so that ‖wn‖ ≤ λ3−3δ
n iterates since 5

2 < 3.



Counterterms d=3

The second order term νn is an explicit polynomial in ϕ with
random coefficients similar to An and Bn.

The coefficient of ϕ has expectation which blows up as N →∞:
this leads to a new counterterm proportional to log ε

The coefficients are in bounded Wiener chaos and lead to new
conditions to the event Em

Proof for regular (nonhierarchical) PDE almost identical: now
An(t , x) etc. are (exponentially) weakly correlated for x 6= y



Subcritical equations

Subcritical equation: dimensionless nonlinearity ∝ εα

RG approach is the same:
One needs to compute vn to finite order depending on the
scaling dimension of the nonlinearity
Diverging expectations of random coefficients are cancelled by
counterterms
Random coefficients are in bounded chaos and can be
bounded
Nothing blows up: equation is weakly nonlinear throughout the
iteration



Global Solutions

Above: existence time depends on the size of the noise

In QFT and SPDE the perturbative argument works for ‖ϕ‖ not
too big (above ≤ logλ−1

n )

In QFT need to prove iteratively sn(ϕ) ≥ λnϕ
4 for larger ‖ϕ‖

In SPDE need to prove iteratively ϕvn(ϕ) ≥ λnϕ
4 − R where R

depends on noise.
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