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Collective dynamics of bacteria 

Pattern formation by Budrene and Berg, Nature 349, 630 (1991).
2~4 µm

Homepage of H. C. Berg 
http://www.rowland.harvard.edu/labs/bacteria/

Run-and-Tumble Bacteria

Introduction

E. Coli

“Run”: Flagella rotate counterclockwise
“Tumble”: flagella rotate clockwise

Bacteria communicate via chemical cues



Motivation

• Multiscale mechanism and mathematical hierarchy 
in the collective dynamics of bacteria.
– Relation between macroscopic phenomena, individual 

motions, and internal states
• Simulation method

– Extensible (modeling) and Scalable (computation)
• Applications

– Traveling pulse, Pattern formations, ....
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Objective of study

• Development of a Monte Carlo method for 
chemotactic bacteria based on a kinetic chemotaxis 
model.

• Applications on traveling pulse and pattern 
formation.
– Validity of the MC method via comparisons to the 

theoretical and experimental results.
– A new theoretical result on the instability analysis of a 

kinetic chemotaxis equation.
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Why kinetic model?

• Mesoscopic modeling involving the individual 
dynamics (multiscale nature)
– H. G. Othmer, S. R. Dunbar, and W. Alt  (1988); R. Erban and H. G. Othmer

(2004); Y. Dolak and C. Schmeiser (2005); N. Bellomo, A. Bellouquid, J. Nieto, 
and J. Soler (2007); etc..

• Mathematical hierarchy
– T. Hillen and H. G. Othmer (2000), (2002); F. A.C.C. Chalub, P. Markowich, B. 

Perthame, and C. Schmeiser (2004); F. James and N. Vauchelet (2013); G. Si, M. 
Tang, and X. Yang (2014); B. Perthame, M. Tang, and N. Vauchelet (2016).

• Development of experimental technologies
– J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin, and P. Silberzan

(2011); C. Emako, C. Gayrard, A. Buguin, L. Almeida, and N. Vauchelet (2016).
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Schematic of kinetic modeling
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2~4 µm

bacterium

Chemical cues

<< 1 µm

Foods
Secretions

Biased random motions searching for the chemical attractants



Kinetic description for bacterial density 
with the velocity distribution function
𝑓(𝑡, 𝒙, 𝒗)

Continuum description for chemical cues,  𝑆(𝑡, 𝒙)

Schematic of kinetic modeling
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Stiff response

From Block SM, Segall JE, Berg HC, 
J. Bacteriol 154, 312 (1983)

ramp up

ramp down



Individual Motions of Bacteria
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Run-and-Tumble motion
e.g., E-coli Stochastic process

1. Tumbling at some rate 𝜆	.
2. Reorientation followed by

some PDF 𝐾(𝑣, 𝑣-).
3. Cell division/extinction with 

some rate 𝑟.

Bacterial density 𝑓(𝑡, 𝑥, 𝑣) changes
during the stochastic process.

Homepage of H. C. Berg 
http://www.rowland.harvard.edu/labs/bacteria/



𝜕1𝑓 + 𝑣 3 𝜕4𝑓 = 6𝑇 𝑣, 𝑣- 𝑓 𝑡, 𝑥, 𝑣-
�

�

𝑑𝑣- − 6𝑇 𝑣-, 𝑣	 𝑓 𝑡, 𝑥, 𝑣	
�

�

𝑑𝑣- + 𝑟𝑓(𝑡, 𝑥, 𝑣)

Kinetic Chemotaxis model with growth term
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Gain Term Lost Term

Cell division

𝑇 𝑣, 𝑣- = 𝜆 𝑣- 𝐾(𝑣, 𝑣-)

6𝐾 𝑣, 𝑣- 𝑑𝑣 = 1
�

�

𝑣′

Searching for foods and 
chemical cues along 
their trajectory

Transient kernel



Scattering Kernel

• Tumbling rate

– Stiff response function
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𝜆 𝑣- =
1
2 𝜓?

𝐷	log	𝑁
𝐷𝑡 E

F-
+ 𝜓G

𝐷	log	𝑆
𝐷𝑡 E

F-

𝜓 𝑋 = 𝜓I − 	𝜒 tanh
𝑋
𝛿

• Mean tumbling rate 𝜓I
• Modulation parameter 𝜒G,?
• Stiffness parameter 𝛿PQ

Temporal variation along the trajectory

Nutrient-Poor

Nutrient-Rich



Scattering Kernel

• Reorientation (e.g., von Mises distribution)

– Reorientation angle q
– Constant Speed		 𝒗 = 𝑉I.
– Standard deviation s

• Uniform scattering 𝐾 = Q
STUVW

as 𝜎 → ∞.

𝐾 𝒗, 𝒗- =
exp −1 − cos 𝜃𝜎a

2𝜋𝑉Ia𝜎a 1 − 𝑒
P a
dW 𝜃

𝒗′

𝒗



Basic equations
• Kinetic chemotaxis 

– Modulation of tumbling frequency, for example, 

– PDF of reorientation angle, for example,
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ˆK(

ˆe, ˆe0) =
exp

⇣
1�ê·ê0

�2

⌘

2⇡�2
⇣
1� e�

2
�2

⌘

|e0| = 1

(von Mises distribution)



Basic equations

• Reaction-Diffusion equations of chemical cues
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⇢̂(t̂, x̂) =
1

4⇡

Z

|ê0|=1
f̂(t̂, x̂, ê0)d⌦(ê0)



Parameters
• Mean run length (or Knudsen number)

• Stiffness and modulation in response function

• Other Parameters
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Simulation method

• Monte Carlo method for chemotactic bacteria coupled 
with a finite volume scheme for chemical cues.

• Motions of bacteria calculated by MC particles.

• Macroscopic quantities are calculated based on a 
lattice-mesh system.

• Similar to the DSMC method for the Boltzmann 
equation of gases.
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Lattice System and MC Particles

• Motions of bacteria by Monte Carlo particles
• Macroscopic quantities on a lattice-mesh system
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x̂0 x̂1 x̂n x̂n+1 x̂Ix−1 x̂Ix

Specular

Specular

Periodic
non-flux
∂xS = ∂xN = 0

non-flux
∂xS = ∂xN = 0

x

y
z superscript n: time step, subscript i: lattice site, 

and subscript (l): index of particle

i i + 1

r̂n(l)



Calculation of Chemical Cues

• Finite volume scheme on the lattice mesh
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Population densities are calculated from the numbers of MC particles in each lattice site.



Monte Carlo Method

0.  Initialization: Distribute particles according to 𝑓ef0(𝒆i). 
1. Move particles in a time-step size ∆𝑡.
2. Calculation of local concentration of chemical cues.
3. Tumbling of each particle by a probability 
𝜆e(𝒆i′ k )Δ�̂� .

4. Reorientation angle by 𝐾 𝒆i, 𝒆i- .
5. Division by a probalibity �̂�∆�̂�	.
6. Return to 1.
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Monte Carlo Method

0. Initialization:
MC particles are distributed according to 𝑓efI(𝒆i). 

– Calculate particle number in the i th lattice site 𝜇fI via

– where 𝑤I is the uniform weight of a single MC particle  
– In each lattice site, particles are randomly distributed.
– Velocity of particle is determined by the PDF 𝑓efI(�̂�)/𝜌i𝑖0
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Monte Carlo Method
1. Movement: Particles move with their velocities in a 

time step size ∆𝑡.

– Particles beyond the boundaries are removed and new 
ones are inserted following the boundary conditions.

– Count the numbers of simulation particles in each lattice 
site	𝜇ftuQ (𝑖 = 0,… , 𝐼4 − 1).   
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𝒓i(k), 𝒆i(k): position and velocity
of l th particle



Monte Carlo Method

2. Calculation of chemical cues at each lattice 
site.
– with 𝜌iftuQ = 𝑤I𝜇ftuQ/[ 𝐿0∆𝑥 3𝜌I].
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Monte Carlo Method
3. Tumbling of the l th particle by a probability 

𝜓}0∆�̂� Ψ�(𝒆i k
t ),
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Temporal variation along the pathway 𝒓i(k)t → 	𝒓i(k)tuQ.

𝐷 log𝑁
𝐷𝑡 E

𝒆
⟹	

log𝑁(k)tuQ − log𝑁(k)t

Δ𝑡



Monte Carlo Method
3. Tumbling of the lth particle by a probability 

𝜓}0∆�̂� Ψ�(𝒆i k
t ),

– 𝑆e(k)t , 𝑁�(k)t : sensed by the lth MC particle at 𝒓i(k)t

– Calculated by the interpolation,

– The particles that stay at the same lattice site after ∆𝑡
passes can sense the gradients.
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Monte Carlo Method
4. Reorientation angle by a probability 
𝐾�(𝒆i k

tuQ, 𝒆i(k)t ). 

– Reorientation angle 𝜃 (for von Mises distribution)

5. Cell divisions (or deaths) with a probability �̂�∆�̂�.
6. Return to step 1 (Movement Step).
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𝜃
𝒆i(k)t

𝒆i(k)tuQ



Monte Carlo Method

28

• First order accuracy in time and space under the 
assumption of the law of large numbers.

– B. Perthame and S. Yasuda, “Self-organized pattern formation of run-and-tumble chemotactic 
bacteria: Instability analysis of a kinetic chemotaxis model”, hal-01494963 (2017).
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• Literature on traveling pulse

Vwave=4.1 µm/s

by J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame,  A. Buguinn,  
and P. Silberzan, PNAS 108, 16235(2011)



Problem and parameter setting

31

• Initial condition and geometry

• Parameter setting
• Mean tumbling frequency 𝜓I = 3.0 [1/s]    (𝜓}IPQ = 0.00833)
• Modulation of the response �̂�G = 0.2 and �̂�? = 0.6.
• Stiffness of the response δ = 0.125 [1/s].
• Division rate �̂� = 0.0067.
• Chanel length 𝐿} = 18.
• Total particle number 56640.
• ∆𝑥i = 0.025, ∆�̂� = 0.005.   (∆�̂� < 	𝜓}IPQ)

𝑥i=0 𝑥i=𝐿}

Initially accumulated at 𝑥i=0

Specular reflection for bacteria at 𝑥i = 0, 𝐿}. 
Non-flux of chemical cues at 𝑥i = 0, 𝐿}.

𝜕4𝑆e = 𝜕4𝑁� = 0 𝜕4𝑆e = 𝜕4𝑁� = 0

𝑆e = 0 and 𝑁� = 1.

Other sides are periodic.

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, 
A. Buguin,  and P. Silberzan, PNAS 108, 16235(2011)



Movie on the bacterial motions
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x

y

Boundary condition
Specular for x and
periodic for y and z. 

�̂�4



Time progress of population density 
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Fig1. Time progress of population density of bacteria along the channel. (a) the snap
shots and (b) super position of the density profiles in the moving frame 𝑥i∗ with a constant 
wave velocity Vwave=4.0 µm/s. (In experiment Vwave=4.1 µm/s.) 
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Comparison to the asymptotic 
analysis
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• Diffusion scaling, a new reference time 𝑡′I

• Small modulation and small division rate
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I[|r logF |] =
Z 1

0
⇣ tanh(��1|r logF |⇣)d⇣

Chemotaxis Random walk
Proliferation

Diffusion limit

Keller-Segel type



Comparison of Kinetic and Continuum

• Non-proliferation
– 𝑟 = 0

• Tumbling frequency
– 𝜀 = 0.02, 0.013, 0.01, 0.005, and	0.001	

• Other Parameter
– 𝜙? = 72, 𝜙G = 24, 𝛿PQ = 0.2,	
– 𝑎 = 24, 𝑐 = 120, 𝐷� = 𝐷? = 3.84
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MC vs. Continuum

• Snapshot of Population density
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x̂

ϵ = 0.02

0.013

0.01

0.005

0.001

ϵ → 0

Fig. 1  Comparison of the snapshots of population density of bacteria at t=0.5 between
various Knudsen numbers.

No proliferation r=0



MC vs. Continuum
• Traveling speed

Fig. 2 The convergence of the traveling speed in the continuum limit. The right-arrow
shows the result of the analytic formula obtained for the sign response function in
the continuum limit (PLoS Comput. Biol. 6, e1000890 (2010) ).
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Effect of the stiffness and modulation 
• Population density profile
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Fig. 4   The effect of the variations in stiffness and modulation parameters on the 
population density profile in the moving frame 𝑥i∗ .
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Effect of the stiffness and modulation 
• Traveling speed
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Fig. 5 The effect of the variations in stiffness and modulation parameters on the 
traveling speed. The analytic formula is obtained for the sign response function in
the continuum limit (PLoS Comput. Biol. 6, e1000890 (2010) ).

(𝛿ePQ → ∞, 𝜓}IPQ → 0 )
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Effect of the stiffness and modulation 
• Velocity distribution at the peak of the wave
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ê x
)

êx
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Fig. 7 The effect of the variations in stiffness and modulation parameters on the 
PDF of the velocity at the peak of the wave 𝑥i∗ = 0. 
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Remarks on application 1

• Reproduce the experimental result.

• Recover the Keller-Segel equation in the continuum limit.

• Importance of the kinetic model for a small (but finite) 
value of e.

• An orthogonal effect of the stiffness d and modulation c
on the profile of population density and traveling speed.
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Basic equation
• Kinetic chemotaxis model with a population growth term

• Only one chemical attractant

• Biased Tumbling, Uniform scattering
– 𝐾 𝑋 = 1 − 𝐹[𝑋],
– 𝐹 0 = 0, 𝐹- 0 > 0.
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@tf(t,x,v) + v ·rf =

1

k

⇢
1

4⇡

Z

V
K[Dt logS|v0

]f(v0
)d⌦(v0

)�K[Dt logS|v]f(v)
�

+ P [⇢]f(v)

�d�S(t,x) + S(t,x) = ⇢(t,x)

t � 0, x 2 R, v 2 V ⇢ R : |v| = 1



Basic equation
• Growth term 𝑃[𝜌] :  Saturated at 𝜌 = 1

• Stationary uniform solution
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( Division at the rate 𝑃[𝜌])

(Extinction at the rate |𝑃 𝜌 |)

f(t,x,v) = S(t,x) = ⇢(t,x) = 1

P [0] = 1,

P [⇢] > 0, for 0 < ⇢ < 1,

P [⇢] < 0, for ⇢ > 1,

P [⇢] ' 1� ⇢, for ⇢ ' 1.



Linear instability Condition
• The uniform solution is linearly unstable if the stiffness 

of the response function 𝐹-[0] is sufficiently large as

• In addition, the unstable eigenmodes are bounded and no 
high frequency oscillations exist. 

46

F 0[0]

k
> inf

�

"
1 +

k
k�

arctan(k�) � 1

#
(1 + d�2)

B. Perthame & S. Yasuda, “self-organized pattern formation of run-and-tumble chemotactic
bacteria: Instability analysis of a kinetic chemotaxis model”, hal-01494963 (2017).



Linear instability analysis

• Perturbation around the uniform state,

• Fourier transform on 𝒙 and Moment on 𝒗,
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f(t,x,v) = 1 + g(x,v)eµt, S(t,x) = 1 + Sg(x)e
µt, ⇢(t,x) = 1 + ⇢g(x)e

µt,

�: wave vector

ĝ(�,v) =
1� k + i F 0[0]

1+d�2� · v
1 + kµ+ i� · v ⇢̂g(�)

⇢̂(�) =
1

2

Z 1

�1

⇣
1� k + iF

0[0]�v
1+d�2

⌘
(1 + kµ1 � ik�(µ2 + v)))

(1 + kµ1)2 + k2�2(µ2 + v)2
dv⇢̂g(�)

µ1 = Re(µ), µ2 = Im(µ)/�



• For non-trivial solution 𝜌i�;

- No solutions at 𝜆 → ∞ for the first equation. 
- 𝜇a = 0 always satisfies the second equation. 

Linear instability analysis
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Linear instability analysis
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• No solutions at 𝜆 → ∞ for the first equation. 

↵ =
1� k

k�
, � =

F 0[0]

k(1 + d�2)
, ⇠ =

k�

1 + kµ1

✓
↵� �

⇠

◆
[arctan(⇠(µ2 + 1))� arctan(⇠(µ2 � 1))] + µ2� log

✓
⇠�2

+ (µ2 � 1)

2

⇠�2
+ (µ2 + 1)

2

◆
= 2� 2�

l The RHS converges to 2 and the second term of LHS is always non-positive.
l The first term of LHS converges to zero.

• When 𝜉 converges to a finite value or diverges, this is obvious because 𝛼, 𝛽 → 0.
• When 𝜉 → 0,

l No eigenmodes exist in the large-oscillation limit.

| arctan(⇠(µ2 + 1))� arctan(⇠(µ2 � 1))| =
����arctan

✓
2⇠

1 + ⇠2(µ2
2 � 1)

◆����

<

����arctan
✓

2⇠

1� ⇠2

◆���� = |2⇠ +O(⇠2)|



Linear instability analysis

• Under an assumption 𝜇a = 0.

– 𝜇Q =
�
�
− Q

�
> 0	 ↔ 0 < 𝜉 < 𝑘𝑙. 

• Instability condition
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Kinetic Instability Diagram
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Monte Carlo results
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Monte Carlo results
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Monte Carlo results

54

0 0.5 1 1.5 20

5

10

15

20

A
BC

D

Instable

Stable
T
im

e
p
ro
gr
es
s

x
√
k

ρ

(a)

T
im

e
p
ro
gr
es
s

x
√
k

ρ

(b)

T
im

e
p
ro
gr
es
s

x
√
k

ρ

(c)

T
im

e
p
ro
gr
es
s

x
√
k

ρ

(d)

T
im

e
p
ro
gr
es
s

x
√
k

ρ

(e)

T
im

e
p
ro
gr
es
s

x
√
k

ρ

(f)

Stationary periodic No patterns



Monte Carlo results
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Periodic patterns No patterns

• The unstable frequencies remain bounded as in the Turing instability.
• Neither growth nor damping at high oscillations  in the kinetic results.



Concluding remarks
• A Monte Carlo method for run-and-tumble 

chemotactic bacteria.
• Chemotaxis-induced instability condition in a 

kinetic chemotaxis equation with growth term.
• The validity of the MC method is strengthened 

via the comparison with the experimental 
(from a literature) and theoretical results.

• Future works
– Applications; Traveling waves, 2D pattern
– Development; Internal states (or Memories) 56
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