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1. Inclusion process



Set up

Let S finite set, rx ,y ≥ 0 jump rates of an irreducible CTRW on S with
reversible measure m = (mx )x∈S, i.e.

mx rx ,y = my ry ,x ∀ (x , y) ∈ S × S

The reversible inclusion process with parameter k ≥ 0 is the Markov
jump process {η(t) : t ≥ 0} with state space NS and generator

L f (η) =
∑

x ,y∈S×S

rx ,y ηx (2k + ηy ) [f (ηx ,y )− f (η)]

where

η
x ,y
z =


ηx − 1 if z = x ,
ηy + 1 if z = y ,
ηz if z 6= {x , y}

Introduced in [G., Kurchan, Redig, JMP ’07] for k = 1/4.



Reversible measure

I In the gran-canonical ensemble, a family of inhomogeneous
product of Negative Binomials with parameters 2k and mx , i.e.

µ(η) =
1
Z

∏
x∈S

(φmx )ηx

ηx !

Γ(ηx + 2k)

Γ(2k)

with Z =
∏

x∈S(1− φmx )−2k and 0 < φ < (supx∈S mx )−1

I In the canonical ensemble with N particles, the state space is

EN = {η ∈ NS :
∑
x∈S

ηx = N}

and the unique reversible measure µN is obtained by
conditioning, i.e.

µN(η) =
1

ZN

∏
x∈S

mηx
x

ηx !

Γ(ηx + 2k)

Γ(2k)
1EN (η)



Symmetric case: SIP(k)

If the random walk is symmetric rx ,y = ry ,x then:

I the random walk reversible measure m is the uniform measure

mx =
1
|S|

∀ x ∈ S

I the process reversible measure µ is a one-parameter family of
i.i.d. Neg Bin (2k,p) with 0 < p < 1

µ(η) =
∏
x∈S

1
(1− p)−2k

pηx

ηx !

Γ(ηx + 2k)

Γ(2k)



2. Two models related to

symmetric inclusion process



Moran process

Moran model with population size N, individuals of n types and with
symmetric parent-independent mutation at rate θ:

I a pair of individuals of types x and y are sampled uniformly at
random, one dies with probability 1/2 and the other reproduces

I each individual accumulates mutations at a constant rate θ and
his type mutates to any of the others with the same probability.

This is the N particle symmetric inclusion process on the complete
graph Kn with parameter k = θ

n−1

L f (η) =
1
2

∑
1≤x<y≤n

ηx

(
2θ

n − 1
+ ηy

)
[f (ηx ,y )− f (η)]

+ηy

(
2θ

n − 1
+ ηx

)
[f (ηy ,x )− f (η)]

see [Carinci, G., Giberti, Redig, SPA ’15]



Non-equilibrium statistical mechanics
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I Adding reservoirs:
I Bulk: symmetric inclusion process on one dimensional chain with

nearest neighbor interaction
I Left: birth/death process with stationary meas. Neg Bin (2k , αγ )
I Right: birth/death process with stationary meas. Neg Bin (2k , δβ )

I If αγ = δ
β then equilibrium product measure

If αγ 6=
δ
β then non-equilibrium measure (long-range correlations)

I For k = 1/2 it is related to Kipnis-Marchioro-Presutti model [see
Carinci, G., Giberti, Redig, JSP ’13]



3. Duality: old and new



Self-duality

Let η(t) and ξ(t) be two independent copies of the SIP process.
Consider the function

D(η, ξ) =
∏

x

ηx !

(ηx − ξx )!

Γ(2k)

Γ(2k + ξx )

then
Eη[D(η(t), ξ)] = Eξ[D(η, ξ(t))]

Remark: one can compute n-point correlation functions by using only
n-dual walkers. E.g.: In non-equilibrium setting, if γ = 2k + α and
β = 2k + δ then

Cov(ηx , ηy ) =
x(L + 1− y)

(L + 1)2(2k(L + 1) + 1)
(α− δ)2



Algebraic approach to

stochastic duality



Algebraic approach

1. Write the Markov generator in abstract form, i.e. as an element
of a Lie algebra, using the algebra generators (typically creation
and annihilation operators).

2. Duality is related to a change of representation, i.e. new
operators that satisfy the same algebra. Duality functions
are the intertwiners.

3. Self-duality is associated to symmetries, i.e. conserved
quantities.

[G., Kurchan, Redig, Vafay, JSP ’09]



Duality



Self-duality

For Markov chain with countable state space

LD(·, ξ)(η) = LD(η, ·)(ξ)

amounts to

LD = DLT

Indeed

∑
η′

L(η, η′)D(η′, ξ) = LD(·, ξ)(η) = LD(η, ·)(ξ) =
∑
ξ′

L(ξ, ξ′)D(η, ξ′)



Trivial self-duality functions from reversible measures

From a reversible measure µ, i.e.

L(η, ξ)µ(η) = L(ξ, η)µ(ξ)

a trivial (i.e. diagonal) self-duality function is

d(η, ξ) =
1

µ(η)
δη,ξ

Indeed

L(η, ξ)

µ(ξ)
=
∑
η′

L(η, η′)d(η′, ξ) =
∑
ξ′

L(ξ, ξ′)d(η, ξ′) =
L(ξ, η)

µ(η)



Symmetries and self-duality

S: symmetry of the generator, i.e. [L,S] = 0,

d: trivial self-duality function,

−→ D = Sd self-duality function.

Indeed

LD = LSd = SLd = SdLT = DLT

Self-duality is related to the action of a symmetry



Construction of Markov generators
with algebraic structure and symmetries

i) (Lie Algebra): Start from a (representation of a) Lie algebra g.

ii) (Casimir): Pick an element in the center of g, e.g. the Casimir C.

iii) (Co-product): Consider a co-product ∆ : g→ g⊗ g making the
algebra a bialgebra and conserving the commutation relations.

iv) (Quantum Hamiltonian): Compute the co-product H = ∆(C).

v) (Markov generator): Apply a ground state transform (often a
similarity transformation) to turn H into a Markov generator L.

vi) (Symmetries): S = ∆(X ) with X ∈ g is a symmetry of H:

[H,S] = [∆(C),∆(X )] = ∆([C,X ]) = ∆(0) = 0.

[Carinci, G., Redig, Sasamoto, SPA ’16]



The method at work:

su(1,1) Lie algebra



Algebraic structure of inclusion process

su(1,1) ferromagnetic quantum spin chain

L =
∑

(x ,y)∈E

(
K+

x K−y +K−x K+
y − 2Ko

xKo
y + 2k2

)

with {K+
x ,K−x ,Ko

x}x∈S satisfying su(1,1) Lie algebra

[Ko
x ,K±y ] = ±δx ,yK±x [K−x ,K+

y ] = 2δx ,yKo
x



step i): representation in terms of matrices

A discrete representation of su(1,1) algebra is
K+f (n) = (n + 2k) f (n + 1)

K−f (n) = nf (n − 1)

K of (n) = (n + k) f (n)

In a canonical base

K+ =



0

2k
. . .

2k + 1
. . .

. . .
. . .


K− =



0 1

. . . 2

. . .
. . .

. . .


K o =



k 0

k + 1
. . .

k + 2
. . .

. . .





step ii): Casimir element

For the su(1,1) algebra the Casimir is

C =
1
2

(K−K+ + K+K−)− (K 0)2

C is in the center of the algebra:

[C,K+] = [C,K−] = [C,K o] = 0

Cf (n) = k(1− k)f (n)



step iii): Co-product

The co-product is a morphism that turns the algebra into a bialgebra:

∆ : su(1,1)→ su(1,1)⊗ su(1,1)

and conserves the commutations relations

[∆(K o),∆(K±)] = ±∆(K±)

[∆(K−),∆(K+)] = 2∆(K o)

For classical Lie-algebras the co-product is just the symmetric tensor
product with the identity

∆(X ) = X ⊗ 1 + 1⊗ X := X1 + X2



step iv): Quantum Hamiltonian

∆(C) =
1
2

(
∆(K−)∆(K+) + ∆(K+)∆(K−)

)
−
(

∆(K 0)
)2

= K−1 K+
2 + K+

1 K−2 − 2K o
1 K o

2 + C1 + C2

= su(1,1) Heisenberg ferromagnet + diagonal



step v): Markov generator

There is no need of a “ground state transformation”. In the discrete
representation

∆(C) = (LSIP(k)
1,2 )∗ + 2k(1− 2k)

where

LSIP(k)
1,2 f (η1, η2) = η1 (η2 + 2k) [f (η1 − 1, η2 + 1)− f (η1, η2)]

+ η2 (η1 + 2k) [f (η1 + 1, η2 − 1)− f (η1, η2)]

is the generator of the Symmetric Inclusion Process SIP(k ).



step vi): symmetries

As a consequence of the construction,

∆(Kα) with α ∈ {+,−,o} are symmetries of the process:

[(LSIP(k)
1,2 )∗,K o

1 + K o
2 ] = 0

[(LSIP(k)
1,2 )∗,K+

1 + K+
2 ] = 0

[(LSIP(k)
1,2 )∗,K−1 + K−2 ] = 0



Proof self-duality SIP(k)

I Reversible measure is product of Negative Binomial (p,2k)

µrev (η) =
∏

x

1
(1− p)−2k

pηx

ηx !

Γ(2k + ηx )

Γ(2k)

I Trivial (i.e. diagonal) self-duality function

d(η, ξ) =
1

µrev (η)
δη,ξ

I Symmetry

S = exp
∑

x

K+
x



Analytical approach to duality:

orthogonal polynomials

[Franceschini, G., arXiv:1701.09115]

[Redig, Sau, arXiv:1702.07237]



Analytical approach

I Question: what is the relation between duality and stationary
measure? Orthogonal polynomials?

I Answer: The SIP(k ) is self-dual process with self-duality function

D(η, ξ) =
∏

x

Γ(2k)

Γ(2k + ξx )
Mξx (ηx )

where Mξx (ηx ) is the Meixner polynomials of degree ξx

∞∑
ηx=0

Mξx (ηx )Mξ′x
(ηx )µ(ηx ) = δξx ,ξ′x

ξx !Γ(2k + ξx )

pξx Γ(2k)

with
µ(ηx ) =

Γ(2k + ηx )

Γ(2k)

pηx

ηx !
(1− p)2k



Analytical approach

I Question: what is the relation between duality and stationary
measure? Orthogonal polynomials?

I Answer: The SIP(k ) is self-dual process with self-duality function

D(η, ξ) =
∏

x

Γ(2k)

Γ(2k + ξx )
Mξx (ηx )

where Mξx (ηx ) is the Meixner polynomials of degree ξx

∞∑
ηx=0

Mξx (ηx )Mξ′x
(ηx )µ(ηx ) = δξx ,ξ′x

ξx !Γ(2k + ξx )

pξx Γ(2k)

with
µ(ηx ) =

Γ(2k + ηx )

Γ(2k)

pηx

ηx !
(1− p)2k



Analytical approach (cont’d)

I Hypergeometric difference equation

σ(ηx )∆∇Mξx (ηx ) + τ(ηx )∆Mξx (ηx ) + λξx Mξx (ηx ) = 0

with

∆f (n) = f (n + 1)− f (n) ∇f (n) = f (n)− f (n − 1)

σ(n) = n τ(n) = 2kp − n(1− p) λξx = ξx (1− p)

I 3-point recurrence relation

ηxMξx (ηx ) = αξx Mξx+1(ηx ) + βξx Mξx (ηx ) + γξx Mξx−1(ηx )

with

αξx =
p

p − 1
βξx =

ξx + pξx + 2kp
1− p

γξx =
ξx (ξx − 1 + 2k)

p − 1

I Raising operator

[p(ξx + 2k) + ηxp]Mξx (ηx )− ηxMξx (ηx − 1) = pMξx+1(ηx )



Analytical approach (cont’d)

Other dualities with orthogonal polynomials

I Exclusion Process −→ Krawtchouk polynomials

I Independent walkers −→ Charlier polynomials

I Brownian momentum process −→ Hermite polynomials

Lf (η) =
∑

(x ,y)∈E

(
ηx

∂

∂ηy
− ηy

∂

∂ηx

)2

f (η)

I Brownian energy process −→ Laguerre polynomials

Lf (η) =∑
(x ,y)∈E

[
ηxηy

(
∂

∂ηx
− ∂

∂ηy

)2

+ 2k(ηx − ηy )

(
∂

∂ηx
− ∂

∂ηy

)]
f (η)



4. Scaling limit I:

metastability



Condensation

Proposition: Consider a parameter k = k(N) and define dN = 2k(N).
Suppose dN log N → 0 as N →∞. Then

lim
N→∞

µN(ηx ) =
1
|S?|

∀x ∈ S?

where

ηx
z =

{
N if z = x ,
0 if z 6= x

and

S? = argmax{m(x) : x ∈ S}

Proof: Consequence of Stirling’s approximation, essentially proved in
[Grosskinsky, Redig, Vafayi, ’11].



Movement of the condensate

Theorem (Bianchi, Dommers, G., 2016). Suppose dN log N → 0 as
N →∞ and that η(0) = ηx for some x ∈ S?. For A ⊂ EN , let
τA = inf{t ≥ 0 : η(t) ∈ A}. Then

1. Average time

Eηx (τ{
⋃
{y∈S?,y 6=x} η

y}) =
1∑

y∈S?,y 6=x rx ,y

1
dN

(1 + o(1))

2. Scaling limit
XN(t) =

∑
z∈S∗

z1{η(t)=ηz}

XN(t/dN) −→ X (t) weakly as N →∞

where X (t) is the Markov process on S? with X (0) = x and
generator

Lf (y) =
∑
z∈S?

ry ,z [f (z)− f (y)]



Comments

I In the symmetric case S? = S, item 2. recovers the result by
[Grosskinsky, Redig, Vafayi 13]

I Comparison to zero-range process [Beltrán, Landim ’12]:
I Condensation if rates for a particle to move from x to y is

rx,y

(
ηx
ηx−1

)α
for α > 2

I Condensate consists of at least N − `N particles, `N = o(N);
metastable states are equally probable.

I At time scale t · Nα+1 the condensate moves from x ∈ S? to
y ∈ S? at rate proportional to cap(x , y), the capacity of the
random walker between x and y .



Proof: key ingredients

For F : EN → R let DN be Dirichlet form

DN(F ) =
1
2

∑
x ,y∈S

∑
η∈EN

µN(η) ηx
(
dN + ηy

)
rx ,y [F (ηx ,y )− F (η)]2

For two disjoint subsets A, B ⊂ EN the capacity between A and B can
be computed using Dirichlet variational principle

CapN(A,B) = inf{DN(F ) : F ∈ FN(A,B)}

where

FN(A,B) = {F : F (η) = 1 for all η ∈ A and F (η) = 0 for all η ∈ B}.



Proof: key ingredients (cont’d)

The unique minimizer of the Dirichlet principle is the equilibrium
potential, i.e., the harmonic function hA,B that solves the Dirichlet
problem 

LNh(η) = 0, if η /∈ A ∪ B,
h(η) = 1, if η ∈ A,
h(η) = 0, if η ∈ B.

It can be easily checked that

hA,B(η) = Pη(τA < τB) .

Capacities are related to the mean hitting time between sets
[Bovier, Eckhoff, Gayrard, Klein, 01 – 04]

EνA,B (τB) =
µN(hA,B)

CapN(A,B)



Proof: key ingredients (cont’d)

Potential theory ideas and martingale methods can be combined in
order to prove the scaling limit of suitably speeded-up processes
[Beltrán, Landim, 10 – 15].

Find a sequence (θN , N ≥ 1) of positive numbers, such that, for any
x , y ∈ S? , x 6= y , the following limit exists

p(x , y) := lim
N→∞

θNpN (ηx , ηy )

where pN (ηx , ηy ) are the jump rates of the original process

I (θN) provides the time-scale to be used in the scaling limit
I (p(x , y))x ,y∈S?

identifies the limiting dynamics.



Proof: key ingredients (cont’d)

Lemma

µN(ηx )pN(ηx , ηy ) =
1
2

CapN

ηx ,
⋃

z∈S?,z 6=x

ηz


+ CapN

ηy ,
⋃

z∈S?,z 6=y

ηz


− CapN

{ηx , ηy},
⋃

z∈S?,z 6=y

ηz





Proof: key ingredients (cont’d)

Proposition: Let S1
? ( S? and S2

? = S? \S1
? . Then, for dN log N → 0 as

N →∞,

lim
N→∞

1
dN

CapN

 ⋃
z∈S1

?

ηz ,
⋃

z∈S2
?

ηz

 =
1
|S?|

∑
x∈S1

?

∑
y∈S2

?

rx ,y

Combining Lemma and Proposition it follows

lim
N→∞

1
dN

pN(ηx , ηy ) = rx ,y



Proof: key ingredients (cont’d)

Lower bound by restricting the Dirichlet form to suitable subset of EN .

Let F s.t. F (ηx ) = 1 ∀x ∈ S1
? and F (ηy ) = 0 ∀y ∈ S2

?

DN(F ) =
1
2

∑
x ,y∈S

∑
η∈EN

µN(η) ηx
(
dN + ηy

)
rx ,y [F (ηx ,y )− F (η)]2

≥
∑
x∈S1

?

∑
y∈S2

?

rx ,y
∑

ηx+ηy=N

µN(η) ηx
(
dN + ηy

)
[F (ηx ,y )− F (η)]2

=
∑
x∈S1

?

∑
y∈S2

?

rx ,y

N∑
i=1

µN(i ,N − i) i (dN + N − i) [G(i − 1)−G(i)]2

with G(i) = F (ηx = i , ηy = N − i)

≥ dN

|S?|
∑
x∈S1

?

∑
y∈S2

?

rx ,y (1 + o(1))



Proof: key ingredients (cont’d)

Upper bound by constructing suitable test function F.

Good guess inside tubes ηx + ηy = N is F (η) ≈ ηx/N

I by construction particle moving from x ∈ S1
? to y ∈ S2

? give
correct contribution

I unlikely to be in a configuration with particles on three sites/ sites
not in S?

I unlikely for a particle to escape from a tube



Multiple timescales

On the time scale 1/dN condensate jumps between site of S?.

If induced random walk on S? is not irreducible, condensate jumps
between connected components on longer time scales.

Conjecture:

I if graph distance = 2 then second timescale N
d2

N

I if graph distance ≥ 3 then third timescale N2

d3
N

We prove this when the graph is a line with

S = {1, . . . ,L} S? = {1,L} rx ,y 6= 0 iff |x − y | = 1



Second time-scale

Theorem (Bianchi, Dommers, G., 2016). Suppose that dN log N → 0
and dNeδN →∞ as N →∞ and ηx (0) = N for some x ∈ S?. Then for
one-dimensional system with L = 3

XN(tN/d2
N) −→ X (t) weakly as N →∞

where X (t) is the Markov process on S? = {1,3} with X (0) = x and
transition rates

p(1,3) = p(3,1) =

(
1

r1,2
+

1
r3,2

)−1 1
1−m2



Third time scale

Theorem (Bianchi, Dommers, G., 2016). Suppose that dN log N → 0
as N →∞, dN decays subexponentially and ηx (0) = N for some
x ∈ S?. Then for one-dimensional system with L ≥ 4 there exists
constants 0 < C1 ≤ C2 <∞ such that

C1 ≤ lim inf
N→∞

d3
N

N2Eη1 [τηL ] ≤ lim sup
N→∞

d3
N

N2Eη1 [τηL ] ≤ C2

Conjectured transition rates of time-rescaled process:

p(1,L) = p(L,1) = 3

(
L−2∑
i=2

(1−mi)(1−mi+1)

mi ri,i+1

)−1



5. Scaling limit II:

two particles

blackboard ...



Perspectives

I Inclusion process is a novel interacting particle system with
I several applications
I mathematical structure of exactly solvable model (e.g. duality)
I integrability ?

I Dynamics in the condensation regime
I new features (i.e. multiple timescales) compared to other

condensing systems, such as zero-range process

I conjecture: three timescales as found in the one-dimensional
setting

I further problems: thermodynamic limit, coarsening, non-reversible
dynamics.


