An introduction to the inclusion process
(and its scaling limits)
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Inclusion process.

Models related to inclusion process.
(Self)-dualities: old and new.
Scaling limit I: metastability.

Scaling limit II: two particles.



1. Inclusion process



Set up

Let S finite set, ry, > 0 jump rates of an irreducible CTRW on S with
reversible measure m = (My)xes, i-€.

mxrx7y:myry’x V(X,y)GSXS

The reversible inclusion process with parameter k > 0 is the Markov
jump process {1(t) : t > 0} with state space N° and generator

Litn) = > reynx(2k +ny) [F(™Y) = £(n)]
X,yeSx S

n—1 ifz=x,
Y=< 41 ifz=y,

Tz itz 7% {x,y}

where

Introduced in [G., Kurchan, Redig, JMP ’07] for k = 1/4.



Reversible measure

» In the gran-canonical ensemble, a family of inhomogeneous
product of Negative Binomials with parameters 2k and my, i.e.

¢mx )™ T(nx + 2K)
) =z H r(2k)

XeS

with Z = [[,.s(1 — ¢#my) =2k and 0 < ¢ < (supycg Mx) ™"

» In the canonical ensemble with N particles, the state space is
En={neNS: ZnX:N}
XES

and the unique reversible measure puy is obtained by
conditioning, i.e.

() = 1 H m* T'(nx + 2K)

77X F(2k) HEN(n)




Symmetric case: SIP(k)

If the random walk is symmetric ry , = r, x then:

» the random walk reversible measure m is the uniform measure

1
My = — VxeS

» the process reversible measure u is a one-parameter family of
i.i.d. Neg Bin (2k,p) with 0 < p < 1

B 1 p™ T(nx + 2k)
uo) = 1 e e



2. Two models related to

symmetric inclusion process



Moran process

Moran model with population size N, individuals of n types and with
symmetric parent-independent mutation at rate 6:

» a pair of individuals of types x and y are sampled uniformly at
random, one dies with probability 1/2 and the other reproduces

» each individual accumulates mutations at a constant rate ¢ and
his type mutates to any of the others with the same probability.

This is the N particle symmetric inclusion process on the complete

graph K, with parameter k = -~
1 20
Ltt) = 3 > m <n_1 +"7y> [F(n*) — £(n)]
1<x<y<n
26 o
Ty \ =g T [f(n"7) = f(n)]

see [Carinci, G., Giberti, Redig, SPA ’15]



Non-equilibrium statistical mechanics

a(2ken,)

vny

i)

» Adding reservoirs:

» Bulk: symmetric inclusion process on one dimensional chain with
nearest neighbor interaction
» Left: birth/death process with stationary meas. Neg Bin (2k, 2)

» Right: birth/death process with stationary meas. Neg Bin (2k, %)
> If @ = & then equilibrium product measure

If % #+ % then non-equilibrium measure (long-range correlations)

» For k = 1/2itis related to Kipnis-Marchioro-Presutti model [see
Carinci, G., Giberti, Redig, JSP "13]



3. Duality: old and new



Self-duality

Let n(t) and £(t) be two independent copies of the SIP process.
Consider the function

_ 7x! r(2k)
200 =116~ eiren+ &

then
Ey[D(n(t), §)] = E¢[D(n, £(1))]

Remark: one can compute n-point correlation functions by using only
n-dual walkers. E.g.: In non-equilibrium setting, if v = 2k + « and
8 =2k + 6 then

x(L+1-y)
L+1)2(2k(L+1)+1)

Cov(nx,ny) = ( (a — 5)2



Algebraic approach to

stochastic duality



Algebraic approach

1. Write the Markov generator in abstract form, i.e. as an element
of a Lie algebra, using the algebra generators (typically creation
and annihilation operators).

2. Duality is related to a change of representation, i.e. new
operators that satisfy the same algebra. Duality functions
are the intertwiners.

3. Self-duality is associated to symmetries, i.e. conserved
quantities.

[G., Kurchan, Redig, Vafay, JSP ’09]




Duality

Abstract generator

/\

L1

Original generator Dual generator



Self-duality

For Markov chain with countable state space

LD(-,€)(n) = LD(n,-)(¢)

amounts to

LD = DL7

Indeed

ZLW W )D(n,€) = LD(-,€)(n) = LD(n,-)(§) = >_L(¢,€)D(n, &)
o



Trivial self-duality functions from reversible measures

From a reversible measure p, i.e.

L(n, &)u(n) = L(&, n)u(§)

a trivial (i.e. diagonal) self-duality function is

1

d(’r/aé) = m‘sn,ﬁ
Indeed
L(Waf) o / / o / n o L(ﬁﬂl)




Symmetries and self-duality

S: symmetry of the generator, i.e. [L,S] =0,
d: trivial self-duality function,

— D = Sd self-duality function.

Indeed
LD = LSd = SLd = SdL” = DL’

Self-duality is related to the action of a symmetry



Construction of Markov generators
with algebraic structure and symmetries
i) (Lie Algebra): Start from a (representation of a) Lie algebra g.
ii) (Casimir): Pick an element in the center of g, e.g. the Casimir C.

iii) (Co-product): Consider a co-product A : g — g ® g making the
algebra a bialgebra and conserving the commutation relations.

iv) (Quantum Hamiltonian): Compute the co-product H = A(C).

v) (Markov generator): Apply a ground state transform (often a
similarity transformation) to turn H into a Markov generator L.

vi) (Symmetries): S = A(X) with X € gis a symmetry of H:
[H, 8] = [A(C), A(X)] = A(IC, X]) = A(0) = 0.

[Carinci, G., Redig, Sasamoto, SPA '16]



The method at work:

su(1,1) Lie algebra



Algebraic structure of inclusion process
su(1, 1) ferromagnetic quantum spin chain

z=3Y (/cj/c; +Kx Ky — 22K + 2k2)
(x,y)eE

with {K5, Ky, K9} xes satisfying su(1, 1) Lie algebra

(K3, K] = £0xyKx (K, Ky] = 20x K3



step i): representation in terms of matrices
A discrete representation of su(1,1) algebra is
K*f(n) = (n+2k)f(n+1)
K=f(n) =nf(n—1)

K°f(n) = (n+ k) f(n)

In a canonical base

2% o2 k1

241 o k+2



step ii): Casimir element

For the su(1, 1) algebra the Casimir is

c— %(K—K+ L KYKT) — (K2
C is in the center of the algebra:

[C,K*]=[C,K"]=[C.K°] =0

Cf(n) = k(1 — k)f(n)



step iii): Co-product
The co-product is a morphism that turns the algebra into a bialgebra:

Ac:su(1,1) = su(1,1) ®@su(1,1)

and conserves the commutations relations
[A(K®), A(K*)] = £A(K™)
[A(K™), A(KT)] = 2A(K?)

For classical Lie-algebras the co-product is just the symmetric tensor
product with the identity

AX)=X@1+10X =X + Xs



step iv): Quantum Hamiltonian

A(C) = %(A(K*)A(KJF) + A(KﬂA(K*)) - <A(K°))2

=Ky K + KKy — 2KPKS + Cy + Co

= su(1,1) Heisenberg ferromagnet + diagonal



step v): Markov generator

There is no need of a “ground state transformation”. In the discrete
representation

A(C) = (LT5Y)* + 2k(1 — 2k)

where

LSIP(k)f(m,Uz) =1 (2 +2k) [f(m1 — 1,m2+ 1) — f(n1,1m2)]
+ 2 (m +2K) [f(n1 +1,m2 — 1) — f(n1,m2)]

is the generator of the Symmetric Inclusion Process SIP (k).



step vi): symmetries

As a consequence of the construction,
A(K*) with o € {+, —, 0} are symmetries of the process:
(L75")" KP + KS) =0
SIP(k)\x
[(L1,2( )) :K1+ + K2+] =0

SIP(K)\x pr— _
(LS5 ") Ky + Ky1=0



Proof self-duality SIP(k)

» Reversible measure is product of Negative Binomial (p, 2k)

B 1 p'™ T'(2k + nx)
frev(n) = 1:[ (1— p),gka r(2k)

» Trivial (i.e. diagonal) self-duality function

1

d(n,§) = m%&

» Symmetry

S=exp) K/
X



Analytical approach to duality:

orthogonal polynomials

[Franceschini, G., arXiv:1701.09115]
[Redig, Sau, arXiv:1702.07237]



Analytical approach

» Question: what is the relation between duality and stationary
measure? Orthogonal polynomials?



Analytical approach

» Question: what is the relation between duality and stationary
measure? Orthogonal polynomials?

» Answer: The SIP(k) is self-dual process with self-duality function

where M, (ny) is the Meixner polynomials of degree &

> o &IT(2k + &)
g::o Me, (nx) Me, () () = O™ per(2k)

with F(2k
) = o 21



Analytical approach (cont’d)

» Hypergeometric difference equation
o(nx)AV Mg, (nx) + 7(nx) AMg, (1x) + Ae, Mg, (1x) = 0
with
Af(n)=f(n+1)—f(n) Vi(n)=f(n)—f(n—1)
o(n)=n 7(n) = 2kp — n(1 — p) Age = &x(1—p)

» 3-point recurrence relation
NxMe, (11x) = ag Me11(nx) + Bee Me, (1x) + Ve Me—1(n1x)
with
_ Ex + Péx + 2kp - Ex(&x — 1+ 2k)

o
1_p fox_ p_1

A= 5 g Bex

» Raising operator
[P(Ex + 2k) + mxP] M, (11x) — nxMe, (nx — 1) = PMe, +1(nx)



Analytical approach (cont’d)

Other dualities with orthogonal polynomials
» Exclusion Process — Krawtchouk polynomials
» Independent walkers — Charlier polynomials
» Brownian momentum process — Hermite polynomials

2
Lf(n) = > <77x8—77y(;7x> f(n)

(x,y)€E Ony

» Brownian energy process — Laguerre polynomials
Lf(n) =

5 [nxny (= - fm)z w2kt ) (- af]y)] f(n)

(x,y)eE



4. Scaling limit I

metastability



Condensation

Proposition: Consider a parameter k = k(N) and define dy = 2k(N).
Suppose dylogN — 0 as N — ~o. Then

li X) = v
Ninoo MN(” ) ‘S*| X € S*
where
x | N ifz=x,
z=1 0 ifz£x
and

S, = argmax{m(x) : x € S}

Proof: Consequence of Stirling’s approximation, essentially proved in
[Grosskinsky, Redig, Vafayi, '11].



Movement of the condensate

Theorem (Bianchi, Dommers, G., 2016). Suppose dylog N — 0 as
N — oo and that n(0) = n* for some x € S,. For A C Ey, let
Ta = inf{t >0 : n(t) € A}. Then

1. Average time

1 1
Ep (TUyesnyum ) == - (1 +0(1))

B ZyES*,y;éx rxvy dN
2. Scaling limit
Xn() = ) ZLgyn=)

zeS*
Xn(t/dy) — X(t) weakly as N—

where X(t) is the Markov process on S, with X(0) = x and
generator

Li(y) = Y r.2[f(2) — ()]

zeS,



Comments

» In the symmetric case S, = S, item 2. recovers the result by
[Grosskinsky, Redig, Vafayi 13]

» Comparison to zero-range process [Beltran, Landim ’12]:
» Condensation if rates for a particle to move from x to y is

«
Tix
Iy (ﬁ> fora >2

» Condensate consists of at least N — ¢ particles, ¢y = o(N);
metastable states are equally probable.

» Attime scale t - N*t! the condensate moves from x € S, to
y € S, at rate proportional to cap(x, y), the capacity of the
random walker between x and y.



Proof: key ingredients

For F : Ey — R let Dy be Dirichlet form

Z S n(m)mx (A +my) Fey [F(Y) = F()P

X }/ES neEy

For two disjoint subsets A, B C Ep the capacity between A and B can
be computed using Dirichlet variational principle

Cappn(A, B) = inf{Dn(F) : F € Fn(A, B)}
where

Fn(A,B) ={F: F(n) =1foralln € Aand F(n) = 0 for all n € B}.



Proof: key ingredients (cont'd)

The unique minimizer of the Dirichlet principle is the equilibrium
potential, i.e., the harmonic function h, g that solves the Dirichlet

problem
Lyh(n) =0, ifn¢ AUB,
h(n) =1, ifneA,
h(n) =0, if n e B.

It can be easily checked that
hag(n) =Py(ta < 78).

Capacities are related to the mean hitting time between sets
[Bovier, Eckhoff, Gayrard, Klein, 01 — 04]

~ un(haB)
Fae78) = Cap (A.B)



Proof: key ingredients (cont'd)

Potential theory ideas and martingale methods can be combined in
order to prove the scaling limit of suitably speeded-up processes
[Beltran, Landim, 10 — 15].

Find a sequence (6, N > 1) of positive numbers, such that, for any
X,y € Sy, x # y, the following limit exists
p(x,y) = lim Onpn (0", 7”)
N—o0

where py (7%, nY) are the jump rates of the original process

» (0n) provides the time-scale to be used in the scaling limit
> (p(X,¥))x,yes, identifies the limiting dynamics.



Proof: key ingredients (cont'd)

Lemma

un(m)pn(n,n”) = ;{Cap/v (nx, U 772)

z€8,,z#X

+ Capy (ny U 772)

z€S,,z4£y

—  Capy ({nx,ny}, U nz)}

z€8,,z#y



Proof: key ingredients (cont'd)

Proposition: Let S] € S, and S2 = S, \ S!. Then, for dylogN — 0 as
N — oo,

N'inOOCaPN(UTMU ) S,

zc Sl 782

Z > ey

xeS1 yeS?
Combining Lemma and Proposition it follows

I|mi ( Y=r,
N%ood pNn 1 Y



Proof: key ingredients (cont'd)

Lower bound by restricting the Dirichlet form to suitable subset of Ey,.
Let Fs.t. F(n*)=1VYx e S! and F(Y) =0Vy € S?

Dn(F) = 5 Z > un(m) nx (dn + ny) rey [F(7Y) = F()I?
XyESnEEN
> D> > ey Y () nx (dv+my) [FOrY) = Fp)P

xeS] yeSs? nx+77y—N

- ZZrX},zMNIN—/ (a+ N — i) [G(i — 1) = G}

xeS] yes? i=1
with  G(i) = F(nx :i,ny: N — i)

WSS (4o

| *’xeS1yeSZ



Proof: key ingredients (cont'd)
Upper bound by constructing suitable test function F.

Good guess inside tubes 7y + 1, = N'is F(n) = nx/N

» by construction particle moving from x € S! to y € S? give
correct contribution

» unlikely to be in a configuration with particles on three sites/ sites
not in S,

» unlikely for a particle to escape from a tube



Multiple timescales
On the time scale 1/dy condensate jumps between site of S,.

If induced random walk on S, is not irreducible, condensate jumps
between connected components on longer time scales.

Conjecture:

» if graph distance = 2 then second timescale dﬂz
N

» if graph distance > 3 then third timescale ’;’—32
N

We prove this when the graph is a line with

S={1,....L}  S.={1.L} 1y, #0 iff |x—y|=1



Second time-scale

Theorem (Bianchi, Dommers, G., 2016). Suppose that dylogN — 0
and dye’N — oo as N — oo and 1, (0) = N for some x € S,. Then for
one-dimensional system with L = 3

Xn(IN/d3) — X(t) weakly as N — oo

where X(t) is the Markov process on S, = {1,3} with X(0) = x and
transition rates

p(1,3) = p(3,1) = (1+1)_1

a2 32

1
1—m2




Third time scale

Theorem (Bianchi, Dommers, G., 2016). Suppose that dylogN — 0
as N — oo, dy decays subexponentially and 7,(0) = N for some

x € S,. Then for one-dimensional system with L > 4 there exists
constants 0 < Cy < Gy < oo such that

ds as
Ci < liminf S8R, +[r,:] < im sup N2 B ] < Co
o0 —00

Conjectured transition rates of time-rescaled process:

L-2

—1
p(1,L) =p(L,1)=3 (Z (1-m)Q —m,-+1)>

m;t;
i—o itii+1




5. Scaling limit Il

two particles

blackboard ...



Perspectives

» Inclusion process is a novel interacting particle system with
» several applications
» mathematical structure of exactly solvable model (e.g. duality)
» integrability ?

» Dynamics in the condensation regime

» new features (i.e. multiple timescales) compared to other
condensing systems, such as zero-range process

» conjecture: three timescales as found in the one-dimensional
setting

» further problems: thermodynamic limit, coarsening, non-reversible
dynamics.



