An introduction to the inclusion process
 (and its scaling limits)

Cristian Giardinà

Outline

- Inclusion process.
- Models related to inclusion process.
- (Self)-dualities: old and new.
- Scaling limit I: metastability.
- Scaling limit II: two particles.

1. Inclusion process

Set up

Let S finite set, $r_{x, y} \geq 0$ jump rates of an irreducible CTRW on S with reversible measure $m=\left(m_{x}\right)_{x \in S}$, i.e.

$$
m_{x} r_{x, y}=m_{y} r_{y, x} \quad \forall(x, y) \in S \times S
$$

The reversible inclusion process with parameter $k \geq 0$ is the Markov jump process $\{\eta(t): t \geq 0\}$ with state space \mathbb{N}^{S} and generator

$$
L f(\eta)=\sum_{x, y \in S \times S} r_{x, y} \eta_{x}\left(2 k+\eta_{y}\right)\left[f\left(\eta^{x, y}\right)-f(\eta)\right]
$$

where

$$
\eta_{z}^{x, y}= \begin{cases}\eta_{x}-1 & \text { if } z=x, \\ \eta_{y}+1 & \text { if } z=y, \\ \eta_{z} & \text { if } z \neq\{x, y\}\end{cases}
$$

Introduced in [G., Kurchan, Redig, JMP '07] for $k=1 / 4$.

Reversible measure

- In the gran-canonical ensemble, a family of inhomogeneous product of Negative Binomials with parameters $2 k$ and m_{x}, i.e.

$$
\mu(\eta)=\frac{1}{Z} \prod_{x \in S} \frac{\left(\phi m_{x}\right)^{\eta_{x}}}{\eta_{x}!} \frac{\Gamma\left(\eta_{x}+2 k\right)}{\Gamma(2 k)}
$$

with $Z=\prod_{x \in S}\left(1-\phi m_{x}\right)^{-2 k}$ and $0<\phi<\left(\sup _{x \in S} m_{x}\right)^{-1}$

- In the canonical ensemble with N particles, the state space is

$$
E_{N}=\left\{\eta \in \mathbb{N}^{S}: \sum_{x \in S} \eta_{x}=N\right\}
$$

and the unique reversible measure μ_{N} is obtained by conditioning, i.e.

$$
\mu_{N}(\eta)=\frac{1}{Z_{N}} \prod_{x \in S} \frac{m_{x}^{\eta_{x}}}{\eta_{x}!} \frac{\Gamma\left(\eta_{x}+2 k\right)}{\Gamma(2 k)} \mathbb{1}_{E_{N}}(\eta)
$$

Symmetric case: SIP(k)

If the random walk is symmetric $r_{x, y}=r_{y, x}$ then:

- the random walk reversible measure m is the uniform measure

$$
m_{x}=\frac{1}{|S|} \quad \forall x \in S
$$

- the process reversible measure μ is a one-parameter family of i.i.d. Neg $\operatorname{Bin}(2 k, p)$ with $0<p<1$

$$
\mu(\eta)=\prod_{x \in S} \frac{1}{(1-p)^{-2 k}} \frac{p^{\eta_{x}}}{\eta_{x}!} \frac{\Gamma\left(\eta_{x}+2 k\right)}{\Gamma(2 k)}
$$

2. Two models related to

symmetric inclusion process

Moran process

Moran model with population size N, individuals of n types and with symmetric parent-independent mutation at rate θ :

- a pair of individuals of types x and y are sampled uniformly at random, one dies with probability $1 / 2$ and the other reproduces
- each individual accumulates mutations at a constant rate θ and his type mutates to any of the others with the same probability.

This is the N particle symmetric inclusion process on the complete graph K_{n} with parameter $k=\frac{\theta}{n-1}$

$$
\begin{array}{r}
L f(\eta)=\frac{1}{2} \sum_{1 \leq x<y \leq n} \eta_{x}\left(\frac{2 \theta}{n-1}+\eta_{y}\right)\left[f\left(\eta^{x, y}\right)-f(\eta)\right] \\
+\eta_{y}\left(\frac{2 \theta}{n-1}+\eta_{x}\right)\left[f\left(\eta^{y, x}\right)-f(\eta)\right]
\end{array}
$$

see [Carinci, G., Giberti, Redig, SPA '15]

Non-equilibrium statistical mechanics

- Adding reservoirs:
- Bulk: symmetric inclusion process on one dimensional chain with nearest neighbor interaction
- Left: birth/death process with stationary meas. Neg Bin ($2 k, \frac{\alpha}{\gamma}$)
- Right: birth/death process with stationary meas. Neg Bin $\left(2 k, \frac{\delta}{\beta}\right)$
- If $\frac{\alpha}{\gamma}=\frac{\delta}{\beta}$ then equilibrium product measure

If $\frac{\alpha}{\gamma} \neq \frac{\delta}{\beta}$ then non-equilibrium measure (long-range correlations)

- For $k=1 / 2$ it is related to Kipnis-Marchioro-Presutti model [see Carinci, G., Giberti, Redig, JSP '13]

3. Duality: old and new

Self-duality

Let $\eta(t)$ and $\xi(t)$ be two independent copies of the SIP process. Consider the function

$$
D(\eta, \xi)=\prod_{x} \frac{\eta_{x}!}{\left(\eta_{x}-\xi_{x}\right)!} \frac{\Gamma(2 k)}{\Gamma\left(2 k+\xi_{x}\right)}
$$

then

$$
\mathbb{E}_{\eta}[D(\eta(t), \xi)]=\mathbb{E}_{\xi}[D(\eta, \xi(t))]
$$

Remark: one can compute n-point correlation functions by using only n-dual walkers. E.g.: In non-equilibrium setting, if $\gamma=2 k+\alpha$ and $\beta=2 k+\delta$ then

$$
\operatorname{Cov}\left(\eta_{x}, \eta_{y}\right)=\frac{x(L+1-y)}{(L+1)^{2}(2 k(L+1)+1)}(\alpha-\delta)^{2}
$$

Algebraic approach to

stochastic duality

Algebraic approach

1. Write the Markov generator in abstract form, i.e. as an element of a Lie algebra, using the algebra generators (typically creation and annihilation operators).
2. Duality is related to a change of representation, i.e. new operators that satisfy the same algebra. Duality functions are the intertwiners.
3. Self-duality is associated to symmetries, i.e. conserved quantities.
[G., Kurchan, Redig, Vafay, JSP '09]

Duality

Self-duality

For Markov chain with countable state space

$$
\begin{gathered}
L D(\cdot, \xi)(\eta)=L D(\eta, \cdot)(\xi) \\
\text { amounts to }
\end{gathered}
$$

$$
\mathbf{L D}=\mathbf{D L}^{T}
$$

Indeed
$\sum_{\eta^{\prime}} \mathbf{L}\left(\eta, \eta^{\prime}\right) \mathbf{D}\left(\eta^{\prime}, \xi\right)=L D(\cdot, \xi)(\eta)=L D(\eta, \cdot)(\xi)=\sum_{\xi^{\prime}} \mathbf{L}\left(\xi, \xi^{\prime}\right) \mathbf{D}\left(\eta, \xi^{\prime}\right)$

Trivial self-duality functions from reversible measures

From a reversible measure μ, i.e.

$$
\mathbf{L}(\eta, \xi) \mu(\eta)=\mathbf{L}(\xi, \eta) \mu(\xi)
$$

a trivial (i.e. diagonal) self-duality function is

$$
\mathbf{d}(\eta, \xi)=\frac{1}{\mu(\eta)} \delta_{\eta, \xi}
$$

Indeed

$$
\frac{\mathbf{L}(\eta, \xi)}{\mu(\xi)}=\sum_{\eta^{\prime}} \mathbf{L}\left(\eta, \eta^{\prime}\right) \mathbf{d}\left(\eta^{\prime}, \xi\right)=\sum_{\xi^{\prime}} \mathbf{L}\left(\xi, \xi^{\prime}\right) \mathbf{d}\left(\eta, \xi^{\prime}\right)=\frac{\mathbf{L}(\xi, \eta)}{\mu(\eta)}
$$

Symmetries and self-duality

S : symmetry of the generator, i.e. $[\mathbf{L}, \mathbf{S}]=0$, d: trivial self-duality function, $\longrightarrow \quad D=$ Sd self-duality function.

Indeed

$$
\mathbf{L D}=\mathbf{L S d}=\mathbf{S L d}=\mathbf{S d L}^{T}=\mathbf{D L}^{T}
$$

Self-duality is related to the action of a symmetry

Construction of Markov generators with algebraic structure and symmetries

i) (Lie Algebra): Start from a (representation of a) Lie algebra \mathfrak{g}.
ii) (Casimir): Pick an element in the center of \mathfrak{g}, e.g. the Casimir C.
iii) (Co-product): Consider a co-product $\Delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ making the algebra a bialgebra and conserving the commutation relations.
iv) (Quantum Hamiltonian): Compute the co-product $H=\Delta(C)$.
v) (Markov generator): Apply a ground state transform (often a similarity transformation) to turn H into a Markov generator L.
vi) (Symmetries): $S=\Delta(X)$ with $X \in \mathfrak{g}$ is a symmetry of H :

$$
[H, S]=[\Delta(C), \Delta(X)]=\Delta([C, X])=\Delta(0)=0
$$

[Carinci, G., Redig, Sasamoto, SPA '16]

The method at work:

$\mathfrak{s u}(1,1)$ Lie algebra

Algebraic structure of inclusion process

$\mathfrak{s u}(1,1)$ ferromagnetic quantum spin chain

$$
\mathscr{L}=\sum_{(x, y) \in E}\left(\mathcal{K}_{x}^{+} \mathcal{K}_{y}^{-}+\mathcal{K}_{x}^{-} \mathcal{K}_{y}^{+}-2 \mathcal{K}_{x}^{O} \mathcal{K}_{y}^{0}+2 k^{2}\right)
$$

with $\left\{\mathcal{K}_{x}^{+}, \mathcal{K}_{x}^{-}, \mathcal{K}_{x}^{o}\right\}_{x \in S}$ satisfying $\mathfrak{s u}(1,1)$ Lie algebra

$$
\left[\mathcal{K}_{x}^{0}, \mathcal{K}_{y}^{ \pm}\right]= \pm \delta_{x, y} \mathcal{K}_{x}^{ \pm} \quad\left[\mathcal{K}_{x}^{-}, \mathcal{K}_{y}^{+}\right]=2 \delta_{x, y} \mathcal{K}_{x}^{o}
$$

step i): representation in terms of matrices

A discrete representation of $\mathfrak{s u}(1,1)$ algebra is

$$
\left\{\begin{array}{l}
K^{+} f(n)=(n+2 k) f(n+1) \\
K^{-} f(n)=n f(n-1) \\
K^{\circ} f(n)=(n+k) f(n)
\end{array}\right.
$$

In a canonical base

step ii): Casimir element

For the $\mathfrak{s u}(1,1)$ algebra the Casimir is

$$
C=\frac{1}{2}\left(K^{-} K^{+}+K^{+} K^{-}\right)-\left(K^{0}\right)^{2}
$$

C is in the center of the algebra:

$$
\left[C, K^{+}\right]=\left[C, K^{-}\right]=\left[C, K^{o}\right]=0
$$

$$
C f(n)=k(1-k) f(n)
$$

step iii): Co-product

The co-product is a morphism that turns the algebra into a bialgebra:

$$
\Delta: \mathfrak{s u}(1,1) \rightarrow \mathfrak{s u}(1,1) \otimes \mathfrak{s u}(1,1)
$$

and conserves the commutations relations

$$
\begin{aligned}
& {\left[\Delta\left(K^{o}\right), \Delta\left(K^{ \pm}\right)\right]= \pm \Delta\left(K^{ \pm}\right)} \\
& {\left[\Delta\left(K^{-}\right), \Delta\left(K^{+}\right)\right]=2 \Delta\left(K^{o}\right)}
\end{aligned}
$$

For classical Lie-algebras the co-product is just the symmetric tensor product with the identity

$$
\Delta(X)=X \otimes \mathbf{1}+\mathbf{1} \otimes X:=X_{1}+X_{2}
$$

step iv): Quantum Hamiltonian

$$
\begin{aligned}
\Delta(C) & =\frac{1}{2}\left(\Delta\left(K^{-}\right) \Delta\left(K^{+}\right)+\Delta\left(K^{+}\right) \Delta\left(K^{-}\right)\right)-\left(\Delta\left(K^{0}\right)\right)^{2} \\
& =K_{1}^{-} K_{2}^{+}+K_{1}^{+} K_{2}^{-}-2 K_{1}^{o} K_{2}^{o}+C_{1}+C_{2} \\
& =\mathfrak{s u}(1,1) \text { Heisenberg ferromagnet }+ \text { diagonal }
\end{aligned}
$$

step v): Markov generator

There is no need of a "ground state transformation". In the discrete representation

$$
\Delta(C)=\left(L_{1,2}^{S I P(k)}\right)^{*}+2 k(1-2 k)
$$

where

$$
\begin{aligned}
L_{1,2}^{S I P(k)} f\left(\eta_{1}, \eta_{2}\right) & =\eta_{1}\left(\eta_{2}+2 k\right)\left[f\left(\eta_{1}-1, \eta_{2}+1\right)-f\left(\eta_{1}, \eta_{2}\right)\right] \\
& +\eta_{2}\left(\eta_{1}+2 k\right)\left[f\left(\eta_{1}+1, \eta_{2}-1\right)-f\left(\eta_{1}, \eta_{2}\right)\right]
\end{aligned}
$$

is the generator of the Symmetric Inclusion Process SIP (k).

step vi): symmetries

As a consequence of the construction,

 $\Delta\left(K^{\alpha}\right)$ with $\alpha \in\{+,-, o\}$ are symmetries of the process:$$
\begin{aligned}
& {\left[\left(L_{1,2}^{S I P(k)}\right)^{*}, K_{1}^{o}+K_{2}^{o}\right]=0} \\
& {\left[\left(L_{1,2}^{S I P(k)}\right)^{*}, K_{1}^{+}+K_{2}^{+}\right]=0} \\
& {\left[\left(L_{1,2}^{S I P(k)}\right)^{*}, K_{1}^{-}+K_{2}^{-}\right]=0}
\end{aligned}
$$

Proof self-duality SIP(k)

- Reversible measure is product of Negative Binomial $(p, 2 k)$

$$
\mu_{\operatorname{rev}}(\eta)=\prod_{x} \frac{1}{(1-p)^{-2 k}} \frac{p^{\eta_{x}}}{\eta_{x}!} \frac{\Gamma\left(2 k+\eta_{x}\right)}{\Gamma(2 k)}
$$

- Trivial (i.e. diagonal) self-duality function

$$
\mathbf{d}(\eta, \xi)=\frac{1}{\mu_{\operatorname{rev}}(\eta)} \delta_{\eta, \xi}
$$

- Symmetry

$$
S=\exp \sum_{x} K_{x}^{+}
$$

Analytical approach to duality: orthogonal polynomials

[Franceschini, G., arXiv:1701.09115]
[Redig, Sau, arXiv:1702.07237]

Analytical approach

- Question: what is the relation between duality and stationary measure? Orthogonal polynomials?

Analytical approach

- Question: what is the relation between duality and stationary measure? Orthogonal polynomials?
- Answer: The $\operatorname{SIP}(k)$ is self-dual process with self-duality function

$$
D(\eta, \xi)=\prod_{x} \frac{\Gamma(2 k)}{\Gamma\left(2 k+\xi_{x}\right)} M_{\xi_{x}}\left(\eta_{x}\right)
$$

where $M_{\xi_{x}}\left(\eta_{x}\right)$ is the Meixner polynomials of degree ξ_{x}

$$
\sum_{\eta_{x}=0}^{\infty} M_{\xi_{x}}\left(\eta_{x}\right) M_{\xi_{x}^{\prime}}\left(\eta_{x}\right) \mu\left(\eta_{x}\right)=\delta_{\xi_{x}, \xi_{x}^{\prime}} \frac{\xi_{x}!\Gamma\left(2 k+\xi_{x}\right)}{p^{\xi_{x}} \Gamma(2 k)}
$$

with

$$
\mu\left(\eta_{x}\right)=\frac{\Gamma\left(2 k+\eta_{x}\right)}{\Gamma(2 k)} \frac{p^{\eta_{x}}}{\eta_{x}!}(1-p)^{2 k}
$$

Analytical approach (cont'd)

- Hypergeometric difference equation

$$
\sigma\left(\eta_{x}\right) \Delta \nabla M_{\xi_{x}}\left(\eta_{x}\right)+\tau\left(\eta_{x}\right) \Delta M_{\xi_{x}}\left(\eta_{x}\right)+\lambda_{\xi_{x}} M_{\xi_{x}}\left(\eta_{x}\right)=0
$$

with

$$
\begin{gathered}
\Delta f(n)=f(n+1)-f(n) \quad \nabla f(n)=f(n)-f(n-1) \\
\sigma(n)=n
\end{gathered} \tau(n)=2 k p-n(1-p) \quad \lambda_{\xi_{x}}=\xi_{x}(1-p) \text { }
$$

- 3-point recurrence relation

$$
\eta_{x} M_{\xi_{x}}\left(\eta_{x}\right)=\alpha_{\xi_{x}} M_{\xi_{x}+1}\left(\eta_{x}\right)+\beta_{\xi_{x}} M_{\xi_{x}}\left(\eta_{x}\right)+\gamma_{\xi_{x}} M_{\xi_{x}-1}\left(\eta_{x}\right)
$$

with

$$
\alpha_{\xi_{x}}=\frac{p}{p-1} \quad \beta_{\xi_{x}}=\frac{\xi_{x}+p \xi_{x}+2 k p}{1-p} \quad \gamma_{\xi_{x}}=\frac{\xi_{x}\left(\xi_{x}-1+2 k\right)}{p-1}
$$

- Raising operator

$$
\left[p\left(\xi_{x}+2 k\right)+\eta_{x} p\right] M_{\xi_{x}}\left(\eta_{x}\right)-\eta_{x} M_{\xi_{x}}\left(\eta_{x}-1\right)=p M_{\xi_{x}+1}\left(\eta_{x}\right)
$$

Analytical approach (cont'd)

Other dualities with orthogonal polynomials

- Exclusion Process \longrightarrow Krawtchouk polynomials
- Independent walkers \longrightarrow Charlier polynomials
- Brownian momentum process \longrightarrow Hermite polynomials

$$
L f(\eta)=\sum_{(x, y) \in E}\left(\eta_{x} \frac{\partial}{\partial \eta_{y}}-\eta_{y} \frac{\partial}{\partial \eta_{x}}\right)^{2} f(\eta)
$$

- Brownian energy process \longrightarrow Laguerre polynomials

$$
\begin{aligned}
& L f(\eta)= \\
& \sum_{(x, y) \in E}\left[\eta_{x} \eta_{y}\left(\frac{\partial}{\partial \eta_{x}}-\frac{\partial}{\partial \eta_{y}}\right)^{2}+2 k\left(\eta_{x}-\eta_{y}\right)\left(\frac{\partial}{\partial \eta_{x}}-\frac{\partial}{\partial \eta_{y}}\right)\right] f(\eta)
\end{aligned}
$$

4. Scaling limit I:

metastability

Condensation

Proposition: Consider a parameter $k=k(N)$ and define $d_{N}=2 k(N)$. Suppose $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$. Then

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(\eta^{x}\right)=\frac{1}{\left|S_{\star}\right|} \quad \forall x \in S_{\star}
$$

where

$$
\eta_{z}^{x}= \begin{cases}N & \text { if } z=x, \\ 0 & \text { if } z \neq x\end{cases}
$$

and

$$
S_{\star}=\operatorname{argmax}\{m(x): x \in S\}
$$

Proof: Consequence of Stirling's approximation, essentially proved in [Grosskinsky, Redig, Vafayi, '11].

Movement of the condensate

Theorem (Bianchi, Dommers, G., 2016). Suppose $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$ and that $\eta(0)=\eta^{x}$ for some $x \in S_{\star}$. For $A \subset E_{N}$, let $\tau_{A}=\inf \{t \geq 0: \eta(t) \in A\}$. Then

1. Average time

$$
\left.\mathbb{E}_{\eta^{\chi} \times}\left(\tau_{\left\{U_{\left\{y \in S_{*}, y \neq x\right\}}\right.} \eta{ }^{\eta}\right\}\right)=\frac{1}{\sum_{y \in S_{*}, y \neq x} r_{x, y}} \frac{1}{d_{N}}(1+o(1))
$$

2. Scaling limit

$$
X_{N}(t)=\sum_{z \in S^{*}} z \mathbb{1}_{\left\{\eta(t)=\eta^{2}\right\}}
$$

$$
X_{N}\left(t / d_{N}\right) \longrightarrow X(t) \quad \text { weakly } \quad \text { as } \quad N \rightarrow \infty
$$

where $X(t)$ is the Markov process on S_{\star} with $X(0)=x$ and generator

$$
L f(y)=\sum_{z \in S_{*}} r_{y, z}[f(z)-f(y)]
$$

Comments

- In the symmetric case $S_{\star}=S$, item 2. recovers the result by [Grosskinsky, Redig, Vafayi 13]
- Comparison to zero-range process [Beltrán, Landim '12]:
- Condensation if rates for a particle to move from x to y is $r_{x, y}\left(\frac{\eta_{x}}{\eta_{x}-1}\right)^{\alpha}$ for $\alpha>2$
- Condensate consists of at least $N-\ell_{N}$ particles, $\ell_{N}=o(N)$; metastable states are equally probable.
- At time scale $t \cdot N^{\alpha+1}$ the condensate moves from $x \in S_{\star}$ to $y \in S_{\star}$ at rate proportional to $\operatorname{cap}(x, y)$, the capacity of the random walker between x and y.

Proof: key ingredients

For $F: E_{N} \rightarrow \mathbb{R}$ let D_{N} be Dirichlet form

$$
D_{N}(F)=\frac{1}{2} \sum_{x, y \in S} \sum_{\eta \in E_{N}} \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right) r_{x, y}\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2}
$$

For two disjoint subsets $A, B \subset E_{N}$ the capacity between A and B can be computed using Dirichlet variational principle

$$
\operatorname{Cap}_{N}(A, B)=\inf \left\{D_{N}(F): F \in \mathcal{F}_{N}(A, B)\right\}
$$

where

$$
\mathcal{F}_{N}(A, B)=\{F: F(\eta)=1 \text { for all } \eta \in A \text { and } F(\eta)=0 \text { for all } \eta \in B\}
$$

Proof: key ingredients (cont'd)

The unique minimizer of the Dirichlet principle is the equilibrium potential, i.e., the harmonic function $h_{A, B}$ that solves the Dirichlet problem

$$
\begin{cases}L_{N} h(\eta)=0, & \text { if } \eta \notin A \cup B, \\ h(\eta)=1, & \text { if } \eta \in A, \\ h(\eta)=0, & \text { if } \eta \in B .\end{cases}
$$

It can be easily checked that

$$
h_{A, B}(\eta)=\mathbb{P}_{\eta}\left(\tau_{A}<\tau_{B}\right) .
$$

Capacities are related to the mean hitting time between sets [Bovier, Eckhoff, Gayrard, Klein, 01 - 04]

$$
\mathbb{E}_{\nu_{A, B}}\left(\tau_{B}\right)=\frac{\mu_{N}\left(h_{A, B}\right)}{\operatorname{Cap}_{N}(A, B)}
$$

Proof: key ingredients (cont'd)
Potential theory ideas and martingale methods can be combined in order to prove the scaling limit of suitably speeded-up processes [Beltrán, Landim, 10 - 15].

Find a sequence $\left(\theta_{N}, N \geq 1\right)$ of positive numbers, such that, for any $x, y \in S_{\star}, x \neq y$, the following limit exists

$$
p(x, y):=\lim _{N \rightarrow \infty} \theta_{N} p_{N}\left(\eta^{x}, \eta^{y}\right)
$$

where $p_{N}\left(\eta^{x}, \eta^{y}\right)$ are the jump rates of the original process

- $\left(\theta_{N}\right)$ provides the time-scale to be used in the scaling limit
- $(p(x, y))_{x, y \in S_{\star}}$ identifies the limiting dynamics.

Proof: key ingredients (cont'd)

Lemma

$$
\begin{aligned}
\mu_{N}\left(\eta^{x}\right) p_{N}\left(\eta^{x}, \eta^{y}\right) & =\frac{1}{2}\left[\operatorname{Cap}_{N}\left(\eta^{x}, \bigcup_{z \in S_{\star}, z \neq x} \eta^{z}\right)\right. \\
& +\operatorname{Cap}_{N}\left(\eta^{y}, \bigcup_{z \in S_{\star}, z \neq y} \eta^{z}\right) \\
& \left.-\operatorname{Cap}_{N}\left(\left\{\eta^{x}, \eta^{y}\right\}, \bigcup_{z \in S_{\star}, z \neq y} \eta^{z}\right)\right]
\end{aligned}
$$

Proof: key ingredients (cont'd)

Proposition: Let $S_{\star}^{1} \subsetneq S_{\star}$ and $S_{\star}^{2}=S_{\star} \backslash S_{\star}^{1}$. Then, for $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$,

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \operatorname{Cap}_{N}\left(\bigcup_{z \in S_{\star}^{1}} \eta^{z}, \bigcup_{z \in S_{\star}^{2}} \eta^{z}\right)=\frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r_{x, y}
$$

Combining Lemma and Proposition it follows

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x}, \eta^{y}\right)=r_{x, y}
$$

Proof: key ingredients (cont'd)

Lower bound by restricting the Dirichlet form to suitable subset of E_{N}. Let F s.t. $F\left(\eta^{x}\right)=1 \forall x \in S_{\star}^{1}$ and $F\left(\eta^{y}\right)=0 \forall y \in S_{\star}^{2}$

$$
\begin{aligned}
D_{N}(F) & =\frac{1}{2} \sum_{x, y \in S} \sum_{\eta \in E_{N}} \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right) r_{x, y}\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
& \geq \sum_{x \in S_{\star}^{*}} \sum_{y \in S_{*}^{2}} r_{x, y} \sum_{\eta_{x}+\eta_{y}=N} \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
& =\sum_{x \in S_{\star}} \sum_{y \in S_{*}^{2}} r_{x, y} \sum_{i=1}^{N} \mu_{N}(i, N-i) i\left(d_{N}+N-i\right)[G(i-1)-G(i)]^{2} \\
& \geq \frac{d_{N}}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{\prime}} \sum_{y \in S_{*}^{2}} r_{x, y}(1+o(1))
\end{aligned}
$$

Proof: key ingredients (cont'd)

Upper bound by constructing suitable test function F.
Good guess inside tubes $\eta_{x}+\eta_{y}=N$ is $F(\eta) \approx \eta_{x} / N$

- by construction particle moving from $x \in S_{\star}^{1}$ to $y \in S_{\star}^{2}$ give correct contribution
- unlikely to be in a configuration with particles on three sites/ sites not in S_{\star}
- unlikely for a particle to escape from a tube

Multiple timescales

On the time scale $1 / d_{N}$ condensate jumps between site of S_{\star}.
If induced random walk on S_{\star} is not irreducible, condensate jumps between connected components on longer time scales.

Conjecture:

- if graph distance $=2$ then second timescale $\frac{N}{d_{N}^{2}}$
- if graph distance ≥ 3 then third timescale $\frac{N^{2}}{d_{N}^{3}}$

We prove this when the graph is a line with

$$
S=\{1, \ldots, L\} \quad S_{\star}=\{1, L\} \quad r_{x, y} \neq 0 \quad \text { iff } \quad|x-y|=1
$$

Second time-scale

Theorem (Bianchi, Dommers, G., 2016). Suppose that $d_{N} \log N \rightarrow 0$ and $d_{N} e^{\delta N} \rightarrow \infty$ as $N \rightarrow \infty$ and $\eta_{x}(0)=N$ for some $x \in S_{\star}$. Then for one-dimensional system with $L=3$

$$
X_{N}\left(t N / d_{N}^{2}\right) \longrightarrow X(t) \quad \text { weakly } \quad \text { as } \quad N \rightarrow \infty
$$

where $X(t)$ is the Markov process on $S_{\star}=\{1,3\}$ with $X(0)=x$ and transition rates

$$
p(1,3)=p(3,1)=\left(\frac{1}{r_{1,2}}+\frac{1}{r_{3,2}}\right)^{-1} \frac{1}{1-m_{2}}
$$

Third time scale
Theorem (Bianchi, Dommers, G., 2016). Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty, d_{N}$ decays subexponentially and $\eta_{x}(0)=N$ for some $x \in S_{\star}$. Then for one-dimensional system with $L \geq 4$ there exists constants $0<C_{1} \leq C_{2}<\infty$ such that

$$
C_{1} \leq \liminf _{N \rightarrow \infty} \frac{d_{N}^{3}}{N^{2}} \mathbb{E}_{\eta^{1}}\left[\tau_{\eta^{\llcorner }}\right] \leq \limsup _{N \rightarrow \infty} \frac{d_{N}^{3}}{N^{2}} \mathbb{E}_{\eta^{1}}\left[\tau_{\eta^{\llcorner }}\right] \leq C_{2}
$$

Conjectured transition rates of time-rescaled process:

$$
p(1, L)=p(L, 1)=3\left(\sum_{i=2}^{L-2} \frac{\left(1-m_{i}\right)\left(1-m_{i+1}\right)}{m_{i} r_{i, i+1}}\right)^{-1}
$$

5. Scaling limit II:

two particles

blackboard ...

Perspectives

- Inclusion process is a novel interacting particle system with
- several applications
- mathematical structure of exactly solvable model (e.g. duality)
- integrability?
- Dynamics in the condensation regime
- new features (i.e. multiple timescales) compared to other condensing systems, such as zero-range process
- conjecture: three timescales as found in the one-dimensional setting
- further problems: thermodynamic limit, coarsening, non-reversible dynamics.

