
From Dynamics to Thermodynamics

Stefano Olla
c© Draft date April 23, 2017

April 23, 2017



Chapter 1

Lecture 1: a crash course in
thermodynamics

In this first lecture we will recall some basic fact of classical thermodynamics. Ther-
modynamics is defined by some given principles or laws, and the object of the
thermodynamics are those system that satisfy these laws. This is still quite vague.
In fact thermodynamics describe certain possible transformation from one equilib-
rium to another, without precising the time scale (nor the space scale) where these
changes happen. Later we will try to understand, starting from a microscopic dy-
namics, how we describe the equilibrium states of the system (this is the scope
of equilibrium statistical mechanics) and at what space-time macroscopic scale we
obtain the transformations described by the principles of thermodynamics. Mathe-
matically space-time macroscopic scale means we will perform a scaling limit.

We will consider only the most simple system that contains the main ideas:
a one dimensional bar, or elastic, whose equilibrium thermodynamic states are
parametrized by the tension and the temperature (intensive parameters), or by the
length and the energy (extensive parameters). This very simple model permits to
avoid many complications (like phase transitions) and we will introduce only the
minimal thermodynamic concept necessary. There exist many very good thermo-
dynamic books were the general theory is developed. Still we keep this chapter
self contained, sometime anticipating the connection with the statistical mechanics
model we will develop in the following lectures.

The strategy is the following: we will state here the Thermodynamic laws, as
kind of axioms and we will recover them later from mechanics (or more precisely
we will indicate what mathematical theorems should be proven in order to recover
them from mechanics.
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1.1 The 0-law: Thermodynamic equilibrium states

From a mechanical point of view, the equilibrium state of an elastic wire is char-
acterized by its length L, that is a function of a tension (force) τ applied on the
extremes. The resulting length is a function (usually increasing) of τ : L = L(τ). A
way to apply the tension τ to the wire, is to attach one side of the wire to a fixed
point, and apply the force τ to the other end. In our treatment we will consider
τ ∈ R, and L ∈ R, i.e. can assume negatives values, typically if a negative tension
τ is applied.

The length L depends also on the temperature θ of the wire. The first object of
thermodynamics is to introduce this parameter θ, whose definition (or measurement)
is much more delicate than L or τ .

Two wires can be connected together by attaching (gluing) one of the two
extremities. Of course there are many other ways to put together two wires, but for
our purpouses this would be enough.

The definition of temperature goes through first defining when two systems
are at the same temperature, by what is called the 0th law of thermodynamics1:

If a wire A, under the tension τ , remains in equilibrium when isolated
and placed in contact first with the wire B and then with the wire C, both
at the same tension τ , the equilibrium of B and C will not be disturbed
when they are placed in contact with each other.

It means that if A keeps the same length LA when put in contact to the wire B and
with the wire C, both under the same tension τ , then we say that B and C are at
the same temperature, that will be the temperature of A.

From the zero law we obtain the existence of the parameter θ which we call
temperature. Of course this parametrization is not unique and this is the reason we
have different scales of temperatures (see in Zemansky [12] a very detailed discussion
of this point). In fact by itself, without comparing with a real quantity (like the
volume of a gas, or the high of the mercury level) it does not define the sign of θ.

Consequently we can define the equilibrium relation L = L(τ , θ), the detailed
form of this function depends on the material which constitute the wire. Typically
L(τ , θ) is strictly monotone in both variables, so we can also write τ = τ (L, θ), as

1The numbering of the principles in thermodynamics follows an inverse chronological order: the
second principle was postulated by Carnot in 1824, the first principle was clearly formulated by
Helmholtz and Thomson (Lord Kelvin) in 1848, while the need of the zero principle was realized
by Fowler in 1931. See the detailed discussion in the first chapter of Zemansky
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well as θ = θ(L, τ ), i.e. any two of these three variables can be chosen independently
in order to characterize a thermodynamic equilibrium state.

If we look at the 0-law from a dynamical point of view, this defines much more
than the temperature. The 0-Law says that we know what all the equilibrium states
of the system, that they are all parametrized by the tension and temperature, or by
tension and volume etc. It means that, once fixed the temperature and the tension,
there are no other equilibrium states depending on other quantities. We can also
take an even stronger dynamical point of view: these equilibrium states are stable,
than means if we change one of this external parameters, for example the tension,
our system will reach one of these equilibrium states, after going through some
non-equilibrium situations that we do not investigate here. We will see that this is
connected to specific ergodic properties of the microscopic dynamics, in particular
that there are only two relevant conserved quantities in the infinite dynamics are
the elongation and the energy.

1.1.1 Heat bath or thermostats

If it is completely clear how to fix or change the tension in our system, we need
the notion of heat bath in order to fix the temperature. Heat bath, or thermostat,
should be a much bigger system in equilibrium at a given temperature, so much
bigger that its equilibrium state remains unchanged if it is in contact with our wire.
In the case that this contact is all along the bulk of the wire, we can think that the
wire is immersed in a gaz or a fluid. We say that the temperature of the heat bath
is θ if we immerge our wire in it with tension τ and, when equilibrium is reached,
the length of the wire is L(τ , θ). We can also have these heat bath or thermostats
acting only at one or more of the boundaries of our system.

Of course this is an idealization of a real heat bath, whose equilibrium would
be changed at least locally by the contact with the wire, unless this is at the same
temperature. But in an ideal heat bath there is no spacial structure, and the effect
of the system on the bath is negligeable.

We consider this notion of heat bath as primary in the theory, like for the
force τ : we are not interested in knowing who is pulling as long as the work is
done correctly. So we are not interested here in the mechanism that keeps the
temperature constant. When constructing the microscopic dynamics later, we will
discuss stochastic dynamics that will work as ideal thermostats in a macroscopic
limit.

When the system is in contact with such ideal thermostat, the 0-law says that
it will reach an equilibrium with temperature equal to the one of the thermostat.
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1.2 The 1st Law: Work, Internal Energy and Heat

exchange

Adiabatic transformations, work and internal energy

Let us start with our wire in equilibrium at tension τ 0 and temperature θ0. Keeping
the wire isolated (no heat bath in contact) we change the tension to τ 1. The system
will go out of equilibrium, waves will run through it, its length L will change in
time. If the material of the wire has the right properties, we expect that, after a
long time2, the waves get dissipated and a new equilibrium is reached with tension
τ 1. This is in fact the assumption made by the 0-law. A measure of the temperature
of this new equilibrium state will result in general at a different value θ1. We call
adiabatic this transformation from an equilibrium to another for an isolated system
(except for the tension τ 1 applied).

We will see that to obtain the existence of adiabatic transformations with these
properties from the microscopic dynamics is one of the major problems of the theory.
But the 0-Law, in the interpretation we gave in the previous section, assumes that
these adiabatic transformations exist.

The work done by the external force τ 1 is already well defined by classical
mechanics as W1 = τ 1(L1 − L0). Notice that this definition does not require any
information about time scales, or about how the system reaches the new equilibrium.
In the case we are applying a non-constant force τ̃(s), we need a more careful
definition of work, as

W =

∫ t1

0

τ̃(s)dL(s) (1.2.1)

that requires the knowledge of L(t), the time evolution of the length of the wire3.

Mechanics defines energy as a quantity associated to a state of the system that
work modifies. It means that if on the system acts only the force τ1 (or τ̃(·)), then
the energy of the system U increase (or decrease) by the work W1 (or W ), i.e. in
these adiabatic trasformations we have the change of the energy inside the system
(internal energy) ∆U = W .

In the notation used here, W > 0 means we are doing work on the system,
increasing its internal energy; if W < 0 we are obtaining work from the system,
decreasing the internal energy.

2Thermodynamics is not concerned in the time scale at which systems reach equilibrium, or
transformation take place.

3Notice that τ̃(s) in (1.2.1) is just the tension applied to the system at the right end side, and
in general does not correspond to a value of the tension inside the wire.
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Heat.

After the adiabatic trasformation described above, we have obtained the system
at a new equilibrium that has tension τ1, length L1 and temperature θ1. We can
also say that if U0 was the initial energy, the system has now an energy equal to
U1 = U0 +W1.

Now we put the system in contact with a heat bath at temperature θ0 and
we change the tension of the applied force back to τ0. The system, after evolving
out of equilibrium, will reach the original equilibrium parametrized by τ0, θ0, with
length L0 and energy U0. The mechanical work done by the force τ0 is given by
W0 = τ0(L0 − L1) 6= W1 = ∆U . This means that in this second transformation
some energy Q = W1 −W0 = (τ1 + τ0)(L1 − L0) has been exchanged with the heat
bath. We call heat this exchanged energy Q. Notice that in principle Q can have
both signs.

One can perform different trasformations between these equilibrium states, if
they are not adiabatic there will be some heat Q that depends on the particular
transformation done. The above transformation was particularly simple and we
could compute explicitly Q, also because we knew the energy difference between the
two equilibrium states.

This is the content of the first principle of thermodynamics: in first reading it
is just energy conservation. We want to maintain the notion of energy compatible
with the mechanical energy and still a conserved quantity in any transformation.
This is also equivalent to say that the energy is a function of the thermodynamic
equilibrium state parameter (L, θ) (or (L, τ)) that we call now internal energy 4 and
denote it with U .

With the convention adopted here, if we make a transformation that changes
from an initial equilibrium (L0, τ0) to a final (L1, τ1), the changes of energy is given
by

U(L1, τ1)− U(L0, τ0) = W +Q (1.2.2)

Notice that this definition is fine as long as the transformation connects equilibrium
states5.

So Q > 0 means heat is flowing into the system, Q < 0 it is flowing out of the
system.

We insist that work and heat are determined by specifying the process of

4This in order to distinguish this quantity from the total energy, that could include also the
kinetic energy of an eventual mouvement of the center of mass of the system.

5In particular Q is the energy (heat) exchanged through the all transormation, while the heat
flux at a particular instant of time is not defined.
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change, and they are not functions of the state of the system. As we have already
said, in mechanics any change of the energy of a system is caused by the work done
by external forces. If we want to reduce the first principle to a purely mechanical
interpretation , this will be the following. The system has many (a very large
number) degrees of freedom and many external forces acting on them. Some of
these forces, one in our case, are controlled, ordered, macroscopic and slow, and the
work done by them we still call it work: in our case τ is this ordered and controlled
slow force, and W the work associated. The other forces are many, uncontrolled (or
disordered, in the sense that we do not have information on them), microscopic and
fast. The amount of this uncontrolled or disordered work or exchange of energy we
call heat 6.

One of the main problem of the statistical mechanics interpretation of thermo-
dynamics is to separate the slow macroscopic degree of freedom that generate work
from the fast microscopic ones that generate heat. The slow degrees of freedom are
generally associated to conserved quantities of the isolated system (with no external
forces acting on it or thermal contact with other systems).

In this dynamical interpretation, the first law (3.1.17) defines the separa-
tion of microscopic and macroscopic scales (in space and time). .

1.3 The 1.5 Law: quasi-static transformations

Each thermodynamic law needs concepts and quantities already defined in the pre-
vious laws. This is why the 0-law has been introduced: in order to define transitions
from an equilibrium to another, we need that different equilibrium states are defined
and exist. In order to proceed with the second law, we need now to define and pos-
tulate the existence of the quasi-static (or reversible in this context) transformations
7.

Quasi-static, or reversible, transformations are defined as trasformations where
at each instant the system is at equilibrium for a defined value of the parameters
chosen to represent it. So this transformation can be represented as continuous
piecewise smooth path on the parameter space (commonly parametrized by (τ,L),
but also (τ, θ) or (L, U) etc.).

6This will justify the use of random forces to model microscopically those forces responsable
with their work to produce heat.

7Already O.E.Lanford III, in his lectures on ’Mathematical Statistical Mechanics’ [6], in the
3rd chapter dedicated to thermodynamics, suggests that the existence of the quasi-static transd-
formations should be considered an ’axiom’ of thermodynamics, even though ’hard to formulate
precisely’.
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The physical meaning of these quasi-static transformations is a controversial
issue. As we have already discussed in the previous section, as we actually change
the tension of the cable, the system will go into a sequence of non-equilibrium states
before to relax to the new equilibrium. But, quoting Zemansky [12], thermodynamics
does not attempt to deal with any problem involving the rate at which the process
takes place. And:

Every infinitesimal in thermodynamics must satisfy the requirement
that it represents a change in a quantity which is small with respect to
the quantity itself and large in comparison with the effect produced by
the behavior of few molecules.

So we should understand these quasi-static transformations as happening in a
larger time scale, as limit of a sequence of irreversible infinitesimal non-equilibrium
transformations that brings from an equilibrium to a another infinitesimally close
one. Later we will construct these quasi-static transformations from a time scaling of
concrete non equilibrium trasformations that satisfies a local equilibrium property.

Suppose we have our wire in the thermodynamic equilibrium defined by τ, θ.
This can be obtained by applying a tension τ to one extreme and fixing the other
to a point, and applying a thermal bath at temperature θ, for example a very large
(infinite) system at this temperature on the other side of the conductive wall. If
we perform infinitesimal changes of these parameters, they imply an infinitesimal
variation dL of the length:

dL =

(
∂L
∂θ

)
τ

dθ +

(
∂L
∂τ

)
θ

dτ (1.3.1)

These partial derivatives are connected with physical important quantities that can
be measured experimentally:

• the linear dilation coefficient:

α =
1

L

(
∂L
∂θ

)
τ

(1.3.2)

Experimentally it is observed that α(τ, θ) depends little by τ , but changes very
strongly with θ.

• the isothermal Young modulus

Y =
L
A

(
∂τ

∂L

)
θ

(1.3.3)
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where A is the section of the wire. Experimentally Y depends little on τ and
strongly on θ.

We also call Cθ = 1
L

(
∂L
∂τ

)
θ

the isothermal compressibility.

It is an elementary exercise to prove that(
∂τ

∂L

)
θ

(
∂L
∂θ

)
τ

= −
(
∂τ

∂θ

)
L

(1.3.4)

and consequently (
∂τ

∂θ

)
L

= − α

Cθ
(1.3.5)

An infinitesimal variation of the tension can be written in function of dθ and dL:

dτ =

(
∂τ

∂θ

)
L
dθ +

(
∂τ

∂L

)
θ

dL = − α

Cθ
dθ +

1

CθL
dL (1.3.6)

At constant volume we have

dτ = − α

Cθ
dθ (1.3.7)

Another important exact differential is

dU =

(
∂U

∂θ

)
τ

dθ +

(
∂U

∂τ

)
θ

dτ

where
(
∂U
∂θ

)
τ

is called heat capacity (at constant tension).

If the transformation is quasi-static, then we can identify the tension of the
system τ as equal as the force applied, obtaining a differential form τdL, called
differential work. It is clear that this is not an exact differential form, but in ther-
modynamics books it is used the notation d\W . This fact is elementary, looking at
the path of a transformation in the (τ,L) coordinates frame. In performing a closed
path, that we call cycle the path integral

∮
d\W 6= 0 (equal to the area inside the

path), and represent the work done on the system by the external force (tension).

During a quasi-static thermodynamic infinitesimal transformation, this energy
is modified by the work d\W and, since dU has to be an exact differential, by some
other (not exact) differential form d\Q called heat exchange:

dU = τdL+ d\Q (1.3.8)
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1.3.1 Thermodynamic transformations and cycles

We can compute the canges in a quasi-static thermodynamic transformation by
integrating the differential forms defined above along the path. Each choice of a path
defines a different thermodynamic process or quasi-static transformation. Depending
on the type of transformation it may be interesting to make a different choice of the
coordinates in order to have its graphic representation.

Often is used the τ − L diagrams.

The first diagram on the left describe a quasi-static transformation for length
Li to Lf . The second diagram represent a compression from Lf to Li, and the third
a so called cycle, returning to the original state. The shaded area represent the
work done during the transformation (taken with the negative sign in the second
diagram). In the third the total work done during the entire cycle is given by the
integral along the closed path

W =

∮
τdL (1.3.9)

that by the first principle will be equal to −Q, where Q is the total heat produced
by the process during the cycle and transmitted to the exterior (or absorbed by the
exterior, depending from the sign). By exterior we mean here another system or an
heat bath.

There are some important thermodynamic quasi-static transformation we want
to consider:

• Isothermal transformations : While a force perform work on the system, this is
in contact with a heat bath at the same temperature as the one of the initial
equilibrium state of the wire. During a isothermal transformation only the
length L changes as effect of the change of the tension dτ , and the infinitesimal
exchanges of heat and work are related by

d\W = τdL = τ

(
∂L
∂τ

)
θ

dτ = −d\Q+ dU (1.3.10)
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The isothermal transformations defines isothermal lines parametrized by the
temperature. For each value of the temperature correspond an isothermal
line of equilibrium states at different tension in the τ − L plane, and the
0-law guarantees that these lines do not intersect. Observe that in the quasi-
static transformations the tension applied to the system is always equal to
the equilibrium tension that the system has in that instant. We insists again
that the integral defining the work is independent of the time scale of the
transformation.

• Adiabatic transformations : The system is thermally isolated from the exte-
rior. This means that the only force acting on it is given by the tension τ .
Equivalently, these are transformations such that d\Q = 0, and

d\W = τdL = dU (1.3.11)

Adiabatic transformations defines adiabatic lines, but their construction is
done by solving the ordinary differential equation

dτ

dL
=

∂LU

∂τU
(1.3.12)

• Isochore Transformations : Thermodynamic transformation at fixed length L.
Consequently d\W = 0, no work if performed to or by the system, and

d\Q = dU (1.3.13)

• Isobar transformations : Thermodynamic transformation at fixed tension τ ,
dτ = 0

Special Example: The harmonic (linear) system.

We will encounter a special (ideal) system for which τ(L, θ) = τ ′L where τ ′ is a
positive constant. Then U(L, θ) = τ ′

2
L2 +θ. In this case all isothermal and adiabatic

lines in the (L, τ) plane degenerate trivially in a unique straight line τ = τ ′L. In
particular adiabatic quasistatic transformation cannot change the temperature.

Carnot Cycles

A Carnot cycle is a cycle composed by a sequence of isothermal and adiabatic quasi–
static transformations. In particular is a special machine (or process) that generates
(or absorb) work from the heat difference of two heat bath. Different Carnot cycles
can be composed in a sequence.
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Let us consider the following cycle. The states A,B are at the same temperature
θ2 and C and D at the temperature θ1. We assume that A and D are in the same
adiabatic curve, so are B and C. We perform an θ2-isothermal transformation from
A to B, then an adiabatic from B to C, then a θ1-isothermal from C to D, then
another adiabatic from D to A:

A

B

C

D

Q

Q

During the isothermal extension of the wire from A to B, it exchange a quan-
tity of heat (energy) Q2 from the thermostat at temperature θ2, correspondingly
it exchange −Q1 with the thermostat θ1 during the isothermal transformation CD.
Since during adiabatic transformations there is no exchange of heat, during the all
cycle the total heat that the system exchange with the exterior is Q = Q2−Q1. By
the first principle W + Q = 0, which means that the heat flown into the system is
equal to minus the work done by the tension τ on the system:

W =

∮
τ dL = −(Q2 −Q1)

So, unless Q1 = 0, not all heat Q2 absorbed from the hot thermostat can be
transformed in work.

Notice that for the moment we have not made any assumptions on the signs
of Q1 and Q2.

Since these are quasi-static trasformations, the cycle is reversible, i.e. we can
do all the operations in the reverse order. In this case the the work done is −W ,
the quantity −Q1 is the heat from the thermostat to the system at temperature θ1

and Q2 is the one exchanged at temperature θ2.

If we run the cycle in the opposite direction, i.e. ADCB, the flows are reversed,
and the total heat is −Q = Q1 −Q2 and the work will be equal to Q.
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We call elementary Carnot cycle the cycle described above. In the following
will we compose different elementary Carnot cycles in the following way. We can
consider two wires, also of different material, so with different state functions, per-
forming the elementary Carnot cycle A’B’C’D’A’ or the opposite one A’D’C’B’A’
(here these points refer to corresponding points in the isothermal and adiabatic
curves of the other system). The composed Carnot cycle will have as total heat
produced the sums of the heats and as total work the sum of the works of the
elementary cycles.

Also we can consider the same wire operating an elementary Carnot cycle
ABCD between the temperature θ1 and θ2, with heats Q1 and Q2, then operating
a Carnot cycle between the states DCEF between temperature θ0 and θ1. The
composition will give a Carnot cycle between temperatures θ0 and θ2, with heats Q0

and Q2.

Remark 1.3.1. Observe that in the linear harmonic material (τ(L, θ) = L), any
quasi-static Carnot cycle is trivial: the total work W is always null, as well as Q1 =
Q2 = 0, since it can connect only thermostats at the same temperature (adiabatic
quasi-static transformations are unable to change the temperature). We can still
consider irreversible Carnot cycles operating between two different temperatures: we
can still change slowly the tension to perform the quasistatic transformation, but at
the moment of connecting the system to the other heat bath, there is a (faster) heat
flux equal (or linearly proportional) to the difference of the temperature. The total
effect of this irreversible cycle is to transfer equal heat from the hot heat bath to the
cold one.

1.4 The 2nd-Law: Entropy

The second law of thermodynamics has a general statement, due to Lord Kelvin, that
is valid for general Carnot cycles, even made with non-quasistatic transformations.
The Lord Kelvin statement of the second law is:

if W < 0, then Q2 > 0 and Q1 > 0

or Q2 < 0 and Q1 < 0
(1.4.1)

This means that we cannot have Q1 ≤ 0 and Q2 > 0 if W < 0, i.e. we cannot
extract work from the system without giving some heat out during one of the two
isothermal transformations. Of course if W < 0, the first law already exclude the
case Q2 < 0 and Q1 > 0.

Notice that till now, with the empirical definition of temperature given by
the 0-Law, we have no way to say what is a higher temperature. Kelvin statement
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finally gives us a criteria to say what is the higher temperature: we say that θ2 > θ1

if Q2 > 0 and Q1 > 0 when W < 0.

Defining the efficiency of the cycle:

η =
Q

Q2

= 1− Q1

Q2

,

an equivalent statement is that η < 18.

More prosaically we say that all Carnot cycles that transforms all heat ex-
tracted from the hot reservoir in work (without any heat flow into the cold reservoir)
are impossible. Note that, if the cycle is reversible (i.e. quasi static), just reversing
the direction of the cycle we have the equivalent statement:

if W > 0, then Q2 < 0 and Q1 < 0. (1.4.2)

The Kelvin statement concern the situations when W 6= 0. When W = 0, the
1st law says that Q2 = Q1. The Clausius statement of the second law is 9:

if W = 0, then Q2 = Q1 ≥ 0. (1.4.3)

It can be proven that this two statements are equivalent.

Proof that (1.4.3) implies (1.4.1):

Consider a cycles, Γ operating between θ2 > θ1. We prove, by contradiction,
that if it violate Kelvin statement, then Claudius statement is also violated. Assume
that for this cycle W < 0 and Q1 = 0, so that W = −Q2, i.e. all heat coming from
the hot thermostat is transformed in work. Let us use this work to operate the
second Carnot cycle Γ′ that operate between the temperature θ′1 < θ′2 such that
θ′1 > θ2. Then the work for Γ′ is W ′ = −W = Q2 > 0. The second cycle will have
heat fluxes Q′1, Q′2, and Q′1 − Q′2 = W ′ = −W = Q2 > 0. But this will imply
that the composition of this two cycles will take the heat Q2 from a thermostat
at temperature θ2 to a thermostat at higher temperature without performing any
exterior work, contradicting Clausius statement (1.4.3).

The Kelvin postulate (1.4.1) has a simple and intuitive statement, but a very
deep consequence: it implies the existence of an absolute scale of temperature.

8In fact since 0 > W = Q2 − Q1, and Kelvin says that in this situation both Q1 and Q2 are
strictly positive, then Q1 < Q2.

9Notice that the Clausius statement is trivial for an elementary reversible Carnot cycle. It
became an interesting statement only for composite Carnot cycles.
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Proposition 1.4.1. There exists a universal function f ≥ 0 such that for any
Carnot cycle

Q2

Q1

= f(θ1, θ2) (1.4.4)

Proof of proposition 1.4.1.

Consider another Carnot machine operating between the same temperatures
θ1, θ2, and let be Q′1, Q

′
2 the corresponding heat exchanges. We want to prove that

Q2

Q1

=
Q′2
Q′1

(1.4.5)

Assume first that the ratio Q2

Q′2
is a rational number N ′

N
, so that N ′Q′2 − NQ2 = 0.

Now we can consider a cycle composed by N ′ cycles of the second machine and by N
cycles reversed of the first machine. The total heat exchanged with the thermostat
at the (hot) temperature θ2 by this given by

Q2,tot = N ′Q′2 −NQ2 = 0 (1.4.6)

So the total amount of work done in the composed cycle is

Wtot = Q1,tot = (N ′Q′1 −NQ1) (1.4.7)

By the Kelvin postulate we must have Wtot ≥ 0, that implies

N ′Q′1 ≥ NQ1 (1.4.8)

that implies
Q2

Q1

≥ Q′2
Q′1

(1.4.9)

To obtain the opposite inequality, we have just to exchange the role of the two
machines. The equality (3.4.1) implies that efficiency does not depends on the
specific cycle or machine, but only by the temperatures θ1 and θ2.

Assume now that Q2

Q′2
is not rational10. By a lemma on the best rational ap-

proximation (cf. Sierpinski, Number Theory), there exist two increasing sequences
on integers {Nk}k, {N ′k} such that

0 <
Q2

Q′2
− N ′k
Nk

<
1

N ′kN
′
k−1

(1.4.10)

10This argument was suggested by Tomasz Komorowski
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This implies 0 < NkQ2 −N ′kQ′2 <
Q′2Nk
N ′kN

′
k−1

.

We can assume without any restriction, that W < 0 and W ′ < 0. In fact if
this is not the case, just reverse the corresponding cycle. By Lord Kelvin statement
(1.4.1), we have Q1, Q

′
1, Q2, Q

′
2 > 0.

Now we let run the second cycle N ′k times and the first cycle Nk times in the
reverse direction. The total work is given by Wk = N ′kW

′ − NkW . Let us assume
first that Wk > 0 for any k. Then by the first principle we have

0 < Wk = −(N ′kQ
′
2 −NkQ2) + (N ′kQ

′
1 −NkQ1)

By (1.4.10), N ′kQ
′
2 − NkQ2 → 0 as k → ∞. By the Lord Kelvin statement (1.4.1),

N ′kQ
′
1 −NkQ1 > 0, and we obtain

N ′kQ
′
1 −NkQ1 −→

k→∞
0

that implies Q1

Q′1
= Q2

Q′2
.

Assume now that Wk ≤ 0. Then

lim sup
k→∞

N ′kQ
′
1 −NkQ1 ≤ 0

It follows that Q1

Q′1
≥ α. By inverting the role of the machines, i.e. running the first

cycle Nk times and then the second cycle N ′k times in the reverse direction we obtain
the opposite inequality. �

The above proof does not depends on the order of the temperatures θ1, θ2, so
we deduce that f(θ1, θ2) = f(θ2, θ1)−1.

Proposition 1.4.2. For every θ0, θ2, there exists a universal function g > 0 such
that we have

f(θ0, θ2) =
g(θ2)

g(θ0)
(1.4.11)

Proof of (1.6.38) : Consider a third thermostat at temperature θ1. Let A1

and A2 two Carnot cycles working respectively between temperature (θ1, θ0) and
(θ2, θ1). Assume that they are chosen in such a way that the amount of heat Q1

that they exchange with the thermostat at temperature θ1 are equal, but Q1 is in
exit for the cycle A2 and in entrance for the cycle A2. Then A1 exchange Q1 of heat
at temperature θ1, and

Q1

Q0

= f(θ0, θ1)
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Similarly for the cycle A2:
Q2

Q1

= f(θ1, θ2)

and we deduce that
Q2

Q0

= f(θ0, θ1)f(θ1, θ2) =
f(θ1, θ2)

f(θ1, θ0)
(1.4.12)

But combining the two cycles in sequence, we obtain a cycle that exchange Q0

with the thermostat at temperature θ0, and Q2 to the thermostat at temperature
θ2 (the total heat exchanged with the thermostat θ1 is null). Consequently for this
composite cycle we have

Q2

Q0

= f(θ0, θ2) (1.4.13)

Combining (1.6.38) and (3.3.9),

f(θ0, θ2) =
f(θ1, θ2)

f(θ1, θ0)

and considering that θ1 is arbitrary in this argument, this quantity does not depend
on it and we obtain (1.6.38). �

It follows that there exists a universal function g, defined up to a multiplicative
constant, such that

Q2

Q1

=
g(θ1)

g(θ2)

This defines an absolute temperature T = g(θ). The multiplicative constant is the
used to define the different scales (Celsius, Farhenait, etc.).

Thermodynamic entropy

Notice that in a simple Carnot cycle we hace Q1

T1
= Q2

T2
with Tj = g(θj). In terms of

the integration of the differential form d\Q
T

, this means∮
d\Q
T

= 0 (1.4.14)

This is also true for a integration on any composite Carnot cycle (made by a sequence
of isothermal and adiabatic transformations). Since any cycle can be approximated
by composite Carnot cycles (exercice), (3.2.2) is actually valid for any cycle, i.e. any

closed (peacewise smooth) curve on the state space. Consequently d\Q
T

is an exact
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form, i.e. the differential of a function S of the state of the system. This function
is called Thermodynamic Entropy. 11

If we choose L, U as parameter determining the state of the system, we have

dS = − τ
T
dL+

1

T
dU (1.4.15)

i.e.
∂S

∂L
= − τ

T
,

∂S

∂U
=

1

T
(1.4.16)

It is also suggestive to use as parameters for the thermodynamic state of the
wire S and L, and see the internal energy as function of these because we have

dU = τdL+ TdS (1.4.17)

so that we can interpret the absolute temperature T as a kind of thermal force whose
effect is in changing the entropy together with the energy.

1.4.1 2nd law for irreversible transformations

From the consideration in the previous section, adiabatic quasi-static transforma-
tions are isoentropic, and only when heat is present entropy can change in quasi-
static transformations.

Recall that we have defined isothermal non-quasistatic transformations a trans-
formation between two equilibrium states that have the same temperature. This can
be tipically realized putting in contact the system with a heat bath of that temper-
ature. For isothermal (non-quasi-static) transformation from an equilibrium state
A to another B at the same temperature T , the Kelvin statement implies that

Q ≤ T (S(B)− S(A)) . (1.4.18)

with equality valid for quasi-static tranformations.

In irreversible (i.e. non-quasistatic) adiabatic transformations (Q = 0) we
expect an increase of entropy S: S(B) ≥ S(A). We will discuss this further in the
next section.

11I never believed the legend about Von Neumann and Shannon: entropy is a well defined physical
quantity, like energy, temperature, etc. A quantity that physicist can measure experimentally (at
least its variation, like for energy). Physicist knew perfectly what entropy is.
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1.5 Intensive and extensive quantities

Imagine our cable in equilibrium be divided in two equal parts (in such a way that
the preserve the same boundary conditions that guarantees the original equilibrium).
Those quantities that remains the same are called intensive (tension τ , temperature
T ), while the that are halved are called extensive (trivially the length L, internal
energy U , entropy S, ...). We also call the intensive quantities control parame-
ters. We will see that when we consider extended systems, dynamically the control
parameters and the extensive quantities plays very different role.

1.6 Axiomatic Approach

We can proceed differently and make a more mathematical set-up of the thermody-
namics with an axiomatic approach where the extensive quantities U,L are taken
as basic thermodynamic coordinates to identify an equilibrium state and entropy
S(U,L) is assumed as a state function satisfying certain properties. This entropy
function contains all the information about the (equilibrium) thermodynamic be-
havior of the system.

It is convenient in this context to add another macroscopic extensive parameter
M > 0 that represent the mass of the system.

axiom-1) There exist an open cone set Γ ⊂ R+ × R+ × R, and (M,U,L) ∈ Γ. This
is going to be the set of the equilibrium states of the system.

axiom-2) There exists a C1–function S : Γ→ R such that

(i) S is concave,

(ii) ∂S
∂U

> 0,

(iii) S is positively homogeneous of degree 1:

S(λM, λU, λL) = λS(M,U,L), λ > 0 (1.6.1)

By 2ii, one can choose eventually S and L as thermodynamic coordinates, i.e.
there exists a function U(M,S,L) such that ∂U

∂S
> 0 (exercise).

We call

T =
∂U

∂S
temperature

τ =
∂U

∂L
tension

(1.6.2)
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Exercise: Prove that U(M,S,L) is homogeneous of degree 1 (extensive), and
T,L are homogeneous of degree 0 (intensive).

Beside this homogeneity property, we can consider M as a constant in the
thermodynamic transformations where we are only changing temperatures and/or
tension, (unless we are putting different systems together), and we can omit to
specify it explicitly. Anyway we adopt here the convention that when M does not
appear explicitely in the argument of the thermodinamic functions, it is set M = 1
(like S(U,L) = S(1, U,L)).

One can use also the intensive quantities τ , T as thermodynamic coordinates,
and it is useful to define the Gibbs potential

G(T, τ ) = sup
S,L

{
−T−1U(S,L) +

τ

T
L+ S

}
= sup

U,L

{
−T−1U +

τ

T
+ S(U,L)

} (1.6.3)

Exercice:

S(U,L) = inf
τ ,T

{
1

T
U − τ

T
L+ G(T, τ )

}
(1.6.4)

The differential forms d\Q = TdS is called heating, and τdL work. Since
dS = − τ

T
dL+ 1

T
dU , it implies that

d\Q = −τdL+ dU (1.6.5)

Thermodynamic transformations that are quasi-static and reversible, and the
corresponding cycles are then defined as in the previous sections, and the corre-
sponding work and heat exchange as integrals of these differential forms on the
corresponding lines defining the transformations.

Exercice 1.6.1. Prove that, in a Carnot cycle, Kelvin statement of 2nd principle
of thermodynamics follows.

More controversial is the definition of the non-reversible (non-quasi-static)
transformations. These are real thermodynamic transformations that go from one
equilibrium state to another, passing through non-equilibrium states.

Usually in thermodynamic books this non-reversible (non-quasi-static) trans-
formations are defined as those where in passing from an initial state A = (U0,L0)
to a final state B = (U1,L1) one has the strict inequality∫ B

A

d\Q
T

< S(B)− S(A) (1.6.6)
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This means that in non-equilibrium we cannot identify d\Q/T as the exact differential
dS. On the other hand the integral on the left hand side of (1.6.6) is not defined
mathematically.

For general isothermal transformations from an equilibrium state A to another
B things are more clearly defined. This imply that A and B are at the same
temperature, so we use (L, T ) as parameters of the equilibrium states, and A =
(L0, T ), B = (L1, T ). The heat Q exchanged with the thermostats is defined by the
first law, that means is the difference between the internal energy of the initial and
final state and the work done on the system

Q = U(B)− U(A)−W.

In this case we have
Q ≤ T [S(B)− S(A)] (1.6.7)

with the equality valid only for reversible transformations. This is the irreversible,
or non-quasistatic, expression of the second law. It is an upper bound on the amount
of heat that can be exchanged during any thermodynamic transformation. Since,
by the first principle, the work W exchanged in the transformation is given by
W = [U(B)− U(A)]−Q, we have

−W ≤ −[U(B)− U(A)] + T [S(B)− S(A)].

this is a limit about the amount of work that can be obtained from such transfor-
mation. It is then interesting to define the free energy F (L, T ) as

F (L, T ) = inf
U>0
{U − TS(U,L)} = inf

τ
{τL − TG(T, τ )} (1.6.8)

This permits to identify U(L, T ) as (exercice):

U(L, T ) = ∂T

(
1

T
F (L, T )

)
(1.6.9)

or, using β = 1/T (that will turn out simpler in statistical mechanics),

U(L, β) = ∂β
(
F (L, β−1)

)
(1.6.10)

that permits to write F = U − TS, without specifying the variables. So for our
isothermal transformation:

W ≥ F (B)− F (A) = ∆F (1.6.11)

In a reversible isothermal trasformation we have equality and the work done by the
system is equal to the difference of the free energy. In a non reversible one, the
difference in free energy is only an upper bound. From (1.6.8) we also obtain

∂LF = τ . (1.6.12)
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In adiabatic transformations we have Q = 0, and W = U(B) − U(A) like in
usual mechanics. Adiabatic reversible (quasi-static) processes are always isoentropic.
Still there exists non-reversible adiabatic processes for which 0 = Q < S(B) −
S(A). Again the identification d\Q = TdS has a sense only for reversible quasi-static
transformations.

1.6.1 Extended systems and local equilibrium

In order to connect the reversible (quasi-static) statement of the 2nd Law to the
irreversible (non-quasistatic) statement (1.6.7), we need some description of the non-
equilibriums states where the system goes through these irreversible transformations.

A possible definition of a non-equilibrium state is to consider the system, in our
case the wire, as spatially extended, and with different parts of the system in different
equilibrium states. For example our wire could be constituted by two different wires,
that have the same constitutive materials (i.e. they are make by the same material)
and they have mass M1 and M2 respectively, but they are prepared in two different
equilibrium state, parametrized by the extensive quantities: (U1,L1), (U2,L2). The
internal energy of the total system composed by the two wires glued together, will be
U1 +U2, while its length will be L1 +L2. Even though the wire is not in equilibrium,
we can say that also the other extensive quantities are given by the sum of the
corresponding values of each constitutive part in equilibrium, i.e. in the example
the entropy will be given by S(M1, U1,L1) + S(M2, U2,L2). Notice that concavity
and homogeneity properties of S imply

S(M1, U1,L1) + S(M2, U2,L2) ≤ 2S

(
M1 +M2

2
,
U1 + U2

2
,
L1 + L2

2

)
= S(M1 +M2, U1 + U2,L1 + L2)

(1.6.13)

This means that the composed wire, of mass M1 + M2, when in equilibrium with
corresponding energy and length values (U1 +U2,L1 +L2), has higher entropy than
the sum of the entropy of the two subsystems at different equilibrium values. The
equality is valid is U1 = U2 and L1 = L2.

Consequently if we have a time evolution (dynamics, etc.), that conserves the
total energy (adiabatic transformation), and the total length (isochore transforma-
tion, the two ends of the wire are fixed), and that brings the total system in a global
equilibrium, then the final result of this evolution increase the thermodynamic en-
tropy S.

In this framework, the second principle of thermodynamics intended as a strict
increase of the thermodynamic entropy if the system undergoes a non-reversible
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transformation, is related to the property of the isolated system to reach a global
equilibrium12

More generally we can assign a continuous coordinate x ∈ [0,M ] to each
material component of the wire (x is not the displacement or spacial position of
this component). This component (that should be thought as containing a large
number of atoms but with total mass M = 1) is in equilibrium with an energy U(x)
and stretch (or elongation) r(x). These functions should be thought as densities, we
call them also profiles. The actual spatial displacement (position) of the component
x is given by

L(x) =

∫ x

0

r(x′)dx′ (1.6.14)

The entropy of the component x is given by S(1, U(x), r(x)). This class of non-
equilibrium states we can call local equilibrium states for obvious reasons.

We can associate a total length, energy and entropy to these profiles (i.e. to
the corresponding non-equilibrium state):

Ltot =

∫ M

0

r(x)dx, Utot =

∫ M

0

U(x)dx, Stot =

∫ M

0

S(1, U(x), r(x))dx.

(1.6.15)

By concavity of S:

Stot ≤MS(1,M−1Utot,M
−1Ltot) = S(M,Utot,Ltot) (1.6.16)

Usual thermodynamics does not worry about time scales where the thermo-
dynamic processes happens. But in the extended thermodynamics we can consider
time evolutions of these profiles (typically evolving following some partial differen-
tial equations). The actual time scale in which these evolution occurs with respect
to the microscopic dynamics of the atoms, will be the subject of the hydrodynamic
limits that we will study in the later chapters.

So if denote by ṙ(x, t) and U̇(x, t) the corresponding time derivatives, we have
for the time evolution of the entropy:

∂tS(U(x, t), r(x, t)) =
1

T

(
U̇ − τ ṙ

)
(1.6.17)

We can define the right hand side of (1.6.17) as the instantaneous heat flux. This
is well defined only for regular (smooth) evolutions.

12this is related to the dynamical statement of the 0-principle, the property that systems have, in
a unidentified time scale, to reach equilibrium once the parameters characterizing the equilibrium
states are fixed, here the volume and the energy.
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Example: adiabatic evolution, Euler equations

In this evolution, whose deduction from the microscopic dynamics we will
study in detail in chapter xx, is given by

∂tr = ∂xπ

∂tπ = ∂xτ

∂tU = ∂x(τπ)− π∂xτ = τ∂xπ

(1.6.18)

These should be implemented by the boundary conditions:

π(t, 0) = 0, τ (U(t, 1), r(t, 1)) = τ̄(t) (1.6.19)

where τ̄(t) is the tension applied at the right boundary at time t.

This means that the material element x, whose position at time t is L(x, t),
has velocity π(x, t) = ∂tL(x, t). The tension τ (U(x, t),L(x, t)) is the force acting on
the material element x (more precisely the gradient ∂xτ , since the resulting force is
given by the difference of the tension on the right and on the left of the material

element). The total energy of the element x is given by E(x, t) = U(x, t) + π(x,t)2

2
,

the sum of its internal energy and its kinetic energy. The dynamic is adiabatic, so
the total energy is changed only by the work τπ, more precisely by its gradient:

∂tE = ∂x(τπ) (1.6.20)

In particular ∂tS(U(x, t), r(x, t)) = 0, i.e. if the solution is C1, the entropy
is conserved also locally (in the sense that the entropy per component remains
unchanged). In fact, in the smooth regime, the equation are time reversible, so they
are isoentropic since they are adiabatic.

If one does not consider the effect of the boundary conditions (for example tak-
ing periodic b.c.) this system has three conserved quantities (

∫
rdx,

∫
πdx,

∫
Edx).

The system (2.3.3) is a non-linear hyperbolic system of equation. It is expected
that any nontrivial solution will develop shocks. After appearance of shocks, the
equations should be considered in a weak sense and a criterion of choice of the weak
solution is that it should have a positive production of entropy, where ∂tS > 0
is some weak sense at the position of the shock. A mathematical theorem that
guarantee uniqueness of this entropy solution is still lacking. Eventually shocks will
create dissipations and the entropy solution, as t→∞ should converge to a solution
with a constant profile of tension τ , i.e. a mechanical equilibrium13. Still the system
could be in thermal non-equilibrium, and consequently (2.3.3) cannot describe the
whole adiabatic transformations. Thermal equilibrium will be reached with another

13actually I could not find any mathematical result is this direction for the Euler system
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evolution of the energy, governed by a heat equation or some superdiffusive equation.
This means that in an adiabatic trasformations different space-time scales could be
involved, with different evolution equations. Since thermodynamics ignore space-
time scales, it does not give any prescription about these irreversible evolutions, it
is only interested in the initial and final equilibrium state.

Isothermal evolution: diffusion equation

Mathematically things are easier for isothermal transformations.

Consider our wire immersed in a viscous liquid at temperature T uniform,
that acts as a heat bath on each element x of the wire. We assume that the action
(thermalization) due to the heat bath happens in a much faster time scale, so that
each material point x of the system is here at temperature T at any time. We also
apply a time dependent tension (̃t) on the right hand side of the wire, while the left
hand side remains attached to a point.

Then we can consider the evolution of the local equilibrium distribution
(U(x, t), r(x, t)), where the two parameter are depending to each other on the con-
straint that temperature T is constant in x. Because of the thermalization, velocities
of the components of the wire are damped to 0 and it turns out that the evolution
is given by the nonlinear diffusion equation:

∂tr(x, t) = ∂2
xτ (r(x, t), T ) (1.6.21)

We add the boundary conditions

∂xr(0, t) = 0

τ (r(1, t), T ) = τ̃(t)
(1.6.22)

We define the free energy of the non-equilibrium profile {r(x, t), x ∈ [0, 1]} as

F(t) =

∫ 1

0

F (r(x, t), T ) dx (1.6.23)

Consider the case where we start our system with a constant tension τ(0, x) =
τ0 and we apply a tension τ̃(t) going smoothly from τ̃(0) = τ0 to τ̃(t) = τ1 for t ≥ t1.
It follows from standard arguments that

lim
t→∞

τ (r(t, x), T ) = τ1, ∀x ∈ [0, 1] (1.6.24)

so on an opportune time scale, this evolution represents an isothermal thermody-
namic transformation from the equilibrium state (τ0, T ) to (τ1, T ). Clearly this is
an irreversible transformation and will statisfy a strict Clausius inequality.
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The length of the system at time t is given by

L(t) =

∫ 1

0

r(t, x) dx (1.6.25)

and the work done by the force τ̃ :

W (t) =

∫ t

0

τ̃(s)dL(s) =

∫ t

0

ds τ̃(s)

∫ 1

0

dx ∂2
xτ (r(s, x), T )

=

∫ t

0

τ̃(s)∂xτ (r(s, 1), T )ds

(1.6.26)

Thanks to the local equilibrium, we can define the free energy at time t as

F(t) =

∫ 1

0

F (r(t, x), T ) dx. (1.6.27)

Its time derivative is (after integration by parts):

d

dt
F(t) = −

∫ 1

0

(∂xτ (r(t, x), T ))2 dx+ τ̃(t)∂xτ (r(t, x), T )
∣∣
x=1

i.e.

F(t)−F(0) = W (t)−
∫ t

0

ds

∫ 1

0

(∂xτ (r(s, x)))2 dx

Because or initial condition, F(0) = F (τ0, T ), and because (1.6.24) we have F(t)→
F (τ1, T ), and we conclude that

F (τ1, T )− F (τ0, T ) = W −
∫ +∞

0

ds

∫ 1

0

(∂xτ (r(s, x), T ))2 dx (1.6.28)

where W is the total work done by the force τ̃ in the transformation up to reaching
the new equilibrium and is expressed by taking the limit in (1.6.26) for t→∞:

W =

∫ ∞
0

τ̃(s)dL(s) =

∫ ∞
0

τ̃(s)∂xτ (r(s, 1), T )ds (1.6.29)

By the same argument we will use in the proof of Proposition 1.6.2 we have that
the second term of the righthand side of (1.6.28) is finite, that implies the existence
of W .

Since the second term on right hand side is always strictly positive, we have
obtained a strict Clausius inequality. This is not surprizing since we are operating
an irreversible transformation.
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If we want to obtain a reversible quasistatic isothermal transformation, we
have introduce another larger time scale, i.e. introduce a small parameter ε > 0 and
apply a tension slowly varying in time τ̃(εt). The diffusive equation becomes

∂trε(t, x) = ∂2
xτ (rε(t, x), T ) (1.6.30)

with boundary conditions

∂xrε(t, 0) = 0

τ (rε(t, 1), T ) = τ̃(εt)
(1.6.31)

Then (1.6.28) became

F (r1, T )− F (r0, T ) = Wε −
∫ ∞

0

ds

∫ 1

0

(∂xτ (rε(s, x), T ))2 dx (1.6.32)

In order to simplify the proof of the quasistatic limit, let us assume that

0 < C1 ≤ τ̃ ′(r) ≤ C2 <∞ (1.6.33)

which is a natural assumption on the strict diffusivity of the equation (1.6.21).

Since T is constant, we will drop the dependences on it in the following.

Proposition 1.6.2. Assume (2.3.1). Then

lim
ε→0

∫ ∞
0

ds

∫ 1

0

(∂xτ (rε(s, x)))2 dx = 0 (1.6.34)

Proof. We look at the time scale t = ε−1t, then r̃ε(t, x) = rε(ε
−1t, x) statisfy the

equation
∂tr̃ε(t, x) = ε−1∂2

xτ (r̃ε(t, x)) (1.6.35)

with boundary conditions

∂xrε(t, 0) = 0

τ (rε(t, 1)) = τ̃(t)
(1.6.36)

1

2

∫ 1

0

(r̃ε(t, x)− r[τ̃(t)])2 dx

=

∫ t

0

ds

∫ 1

0

dx (r̃ε(s, x)− r(τ̃(s)))

(
ε−1∂2

xτ [r̃ε(s, x)]− d

ds
r[τ̃(s)]

)
=− ε−1

∫ t

0

ds

∫ 1

0

dx (∂xr̃ε(s, x))2 dτ

dr
[r̃ε(s, x)]

−
∫ t

0

ds
dr

dτ
(τ̃(s))τ̃ ′(s)

∫ 1

0

dx (r̃ε(s, x)− r̃ε(s, 1))

(1.6.37)
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Rewriting∣∣∣∣∫ 1

0

dx (r̃ε(s, x)− r̃ε(s, 1))

∣∣∣∣ =

∣∣∣∣∫ 1

0

dx

∫ 1

x

dy ∂yr̃ε(s, y)

∣∣∣∣
=

∣∣∣∣∫ 1

0

dy y∂yr̃ε(s, y)

∣∣∣∣ ≤ α

2ε

∫ 1

0

dx (∂xr̃ε(s, x))2 +
ε

6α

By our assumption we have 0 < C− ≤ dr
dτ
≤ C+ < +∞, and furthermore we have

chosen τ̃ such that |τ̃ ′(t)| ≤ 1t≤t1 . Regrouping positive terms on the left hand side
we obtain the bound:

1

2

∫ 1

0

(r̃ε(t, x)− r[τ̃(t)])2 dx+ ε−1

(
C− −

α

2C−

)∫ t

0

ds

∫ 1

0

dx (∂xr̃ε(s, x))2 ≤ εt1
6αC−

(1.6.38)

By choosing α = C2
−, we obtain, for any t > t1:

1

C−

∫ 1

0

(r̃ε(t, x)− r[τ̃(t1)])2 dx+ ε−1

∫ t

0

ds

∫ 1

0

dx (∂xr̃ε(s, x))2 ≤ ε
t1

3C4
−

(1.6.39)

then we can take the limit as t→∞, the first term on the right hand side of (3.3.9)
will disappear, and we obtain

ε−1

∫ +∞

0

ds

∫ 1

0

dx (∂xr̃ε(s, x))2 ≤ ε
t1

3C4
−

(1.6.40)

that implies (1.6.34).

Consequently we obtain the Clausius identity for the quasistatic reversible
isothermal transformation.

Along the lines of the proof above it is also easy to prove that

lim
ε→0

∫ 1

0

(rε(t, x)− r[τ̃(εt)])2 dx = 0 (1.6.41)

that gives a rigorous meaning to the quasistatic definition.

Recall that internal energy of the thermodynamic equilibrium state (r, T ) is
given by U = F + TS, where S is the thermodynamic entropy, and that the first
principle of thermodynamics defines the heat Q transferred as ∆U = W +Q.

The change of internal energy in the isothermal transformation is given by

∆U = ∆F + T∆S = W −
∫ +∞

0

ds

∫ 1

0

dx (∂xτ (r(s, x), T ))2 + T∆S (1.6.42)



28 CHAPTER 1. LECTURE 1: A CRASH COURSE IN THERMODYNAMICS

Then for the irreversible transformation we have Q ≤ T∆S, while equality holds in
the quasistatic limit.

The linear case is special, it corresponds to the microscopic harmonic interac-
tion. In this case S is just a function of the temperature (S ∼ log T ), so ∆S = 0
for any isothermal transformation. Correspondingly the heat exchanged with the
thermostat is always negative and given by Q = −

∫ +∞
0

ds
∫ 1

0
dx (∂xr(s, x))2, and

null in the quasistatic limit, in agreement with remark Theorem 1.3.1.

1.7 Some comments on the literature

The number of books on thermodynamics, at every level, are almost uncountable.
I mention here only some that I encountered, in our education and recently in
preparing this text. Even though it is fascinating to compare the different point of
view, a complete picture is impossible, and beyond our interest.

Probably the most popular book on thermodynamics between the physicist is
the one of Fermi [4], reprint of the notes of the course he gave at Columbia University
in 1936.

The textbook of Zemansky [12] is a classic where generations of students learnt
thermodynamics at the first year, including myself. Particularly impressive is the
description of all type of thermometers at the beginning of the book.

Callen’s book [1] is more theoretical and assiomatic.

The treatise of Planck [10] has historical interest. At the end of the introduc-
tion to the first edition (1897), there is a funny comment: Although it may be of
advantage for a time to consider the activities of nature –Heat, Motion, Electricity,
etc– as different in quality, and suppress the question as to their common nature,
still our aspiration after a uniform theory of nature, on a mechanical basis or oth-
erwise ... can never be permanently repressed. And Planck continues predicting
that in the future the two laws of thermodynamics will be deduced from other more
general propositions. Only in the introduction to the second edition (1905), Planck
will mention the word probability.

Many authors tried a rigorous mathematical approach (or at least satisfactory
for a mathematician). The lecture notes by Evans [3] are quite interesting, and
contains many references at different approach. These notes, quite original, are
unpublished (probably Evans felt unsatisfied by the state of the matter) and can
be found on his web page. Particularly interesting is the connection with the EDP,
viscous solutions, large deviation, etc.



Chapter 2

One dimensional chain of
oscillators: equilibrium
distributions

2.1 Canonical dynamics (isobar)

We study a system of m = [nM ] anharmonic oscillators, where M > 0 is a positive
parameter corresponding to the macroscopic mass of the total system. The particles
are denoted by j = 1, . . .m. We denote with qj, j = 1, . . . ,m their positions, and
with pj the corresponding momentum (which is equal to its velocity since we assume
that all particles have mass 1). We consider first the system attached to a point on
the left side, and we set q0 = 0, p0 = 0. Between each pair of consecutive particles
(i, i+1) there is an anharmonic spring described by its potential energy V (qi+1−qi).
We assume V is a positive smooth function such that V (r)→ +∞ as |r| → ∞ and
such that ∫

e−β(V (r)−τr)dr < +∞ (2.1.1)

for all β > 0 and all τ ∈ R. It is convenient to work with interparticle distance as
coordinates, rather than absolute particle position, so we define

rj = qj − qj−1, j = 1, . . . ,m.

The position of the particle m, which is also the total length of the chain, is given
by qm =

∑m
j=1 rj.

The configuration of the system is given by {pj, rj, j = 1, . . . ,m} ∈ R2m, and
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energy function (Hamiltonian) defined on each configuration is given by

H =
m∑
j=1

Ej

where

Ej =
1

2
p2
j + V (rj), j = 1, . . . ,m

is the energy of each oscillator. This choice is a bit arbitrary, because we associate
the potential energy of the bond V (rj) to the particle j. Different choices can be
made, but this one is notationally convenient.

We will study here the equilibrium distribution of this chain under different
boundary conditions.

In the isobaric dynamics, we apply on the particle m a constant force τ ∈ R
(tension). The Hamiltonian dynamics is the given by:

ṙj(t) = pj(t)− pj−1(t), j = 1, . . . ,m,

ṗj(t) = V ′(rj+1(t))− V ′(rj(t)), j = 1, . . . ,m− 1,

ṗm(t) = τ − V ′(rm(t)),

(2.1.2)

Define

G(τ, β) = log

[√
2πβ−1

∫
e−β(V (r)−τr)dr

]
. (2.1.3)

It is easy to see that, for any β > 0, the canonical measure µc,mτ,β defined by

dµc,mτ,β =
m∏
j=1

e−β(Ej−τrj)−G(τ,β)drjdpj (2.1.4)

is stationary for this dynamics.

The distribution µc,mτ,β is called canonical Gibbs measure at temperature T =
β−1 and tension (or pressure) τ (we will refer to this also as the isobaric canonical
Gibbs measure). Notice that {r1, . . . , rm, p1, . . . , pm} are independently distributed
under this probability measure.

We have the following immediate relations:

β−1 =

∫
p2
j dµ

c,m
τ,β , τ =

∫
V ′(rj) dµ

m,c
τ,β (2.1.5)

and the average elongation and energy in the canonical measure:

L(τ, β) = β−1∂G(τ, β)

∂τ
=

∫
rj dµ

c,m
τ,β

U(λ, β) = −∂G(τ, β)

∂β
=

∫
V (rj)dµ

c,m
τ,β +

1

2β
=

∫
Ej dµc,mτ,β

(2.1.6)
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2.1.1 Stochastic thermostats

One way to select one value of the inverse temperature is to put the chain in contact
with a heat bath at temperature β−1. A very efficient microscopic model for a heat
bath is given by the Langevin stochastic dynamics:

ṙj(t) = pj(t)− pj−1(t), j = 1, . . . ,m,

dpj(t) = (V ′(rj+1(t))− V ′(rj(t))) dt− γjpj dt+
√

2γjβ−1 dwj(t), j = 1, . . . ,m− 1,

dpm(t) = (τ − V ′(rm(t))) dt− γmpm dt+
√

2γmβ−1 dwm(t),

(2.1.7)

where γj ≥ 0 are coupling parameters with the thermostats, and wm(t) are indepen-
dent standard Wiener processes, with dwj indicating the Ito’s stochastic differential.

It is enough that γj > 0 for at least one j (for example at j = m), to have
a unique stationary measure given by µc,mτ,β . So we can consider heath bath acting
only at boundaries or in the bulk: the equilibrium measure will be the same, but
the time scales to reach equilibrium will be different. We will see this aspect more
carefully later.

Another model for ideal thermostat, that actually derive from a deterministic
dynamics, but infinite, is the following. Imagine that each particle j of our system is
in contact with a heat bath constituted by infinitely many non-interacting particles
that have velocity distributed independently by a centered gaussian distribution
with variance β−1 and position randmply distributed by a Poisson distribution with
density depending of γj ≥ 0 (if γj = 0 the heat bath is empty and does not act
on the system). When the particles of the heat bath collide with the particle j of
our chain, they exchange velocity, as in an elastic collision. Without following the
trajectory of the particles of the heat bath, this evolution is completely equivalent
to the following (jump) stochastic differential equations:

ṙj(t) = pj(t)− pj−1(t), j = 1, . . . ,m,

dpj(t) = (V ′(rj+1(t))− V ′(rj(t))) dt− (pj(t
−)− p̃j,Nj(t))dNj(t) i = 1, . . . ,m− 1,

dpm(t) = (τ̄(t)− V ′(rm)) dt− (pm(t−)− p̃m,Nm(t))dNm(t),

(2.1.8)

where Nj(t) are independent Poisson processes with intensity γj (that give the ran-
dom times of the renewals of the velocities), and {p̃j,h, j = 1, . . . ,m;h ∈ N} are i.i.d.
random variables N (0, β−1) distributed.

The jump heat bath model used in equations (2.1.8) are a bit slower in driving
the dynamics towards thermal equilibrium than the Langevin one used in (2.1.7).
On the other hand (2.1.7) can be obtained in some scaling limit from (2.1.8).
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2.2 Microcanonical Dynamics

Instead of applying a force (tension) to one side of the chain, one can fix the last
particle m to another wall at distance mL (qn =

∑m
j=1 rj = mL and pm = ṗm = 0).

The dynamics now is conserving the total energy H =
∑

j Ej = mU and the total
length

∑m
j=1 rj = mL:

ṙj(t) = pj(t)− pj−1(t), j = 1, . . . ,m− 1,

ṗj(t) = V ′(rj+1(t))− V ′(rj(t)), j = 1, . . . ,m− 1,

rn(t) = mL −
m−1∑
j=1

rj(t) .

(2.2.1)

Recall we have set m = [nM ]. For M > 0, U > 0,L ∈ R, we have the
microcanonical surface

Σ̃n(M,MU,ML) :=

{
(r1, p1, . . . , rm, pm) :

1

n

m∑
j=1

Ej = MU,
1

n

m∑
j=1

rj = ML

}
∼ Σm(U,L) =

{
(r1, p1, . . . , rm, pm) : E (m) = U, r(m) = L

}
.

(2.2.2)

where E (m) := 1
m

∑m
j=1 Ej and r(m) := 1

m

∑m
j=1 rj, and the ∼ indicates that the

difference is negligeable for n→∞.

Defining Wm(U,L) the total volume of Σm(U,L) measured by the projection
of the Lebesque measure on R2m. This is defined by the following formula∫

F (E (m), r(m))
m∏
i=1

drjdpj =

∫
R
dr

∫
R+

du F (r, u) Wm(u, r), (2.2.3)

for any integrable bounded F (u, r) defined on R+ × R. We call Wm(U,L) the
microcanonical volume of the configurations with total energy mU and total length
mL. By an easy subadditive argument the following limit exists

S(M,MU,ML) := lim
n→∞

1

n
logWm(U,L) = MS(1, U,L) (2.2.4)

In fact by the definition follows that S is homogeneous of degree 1. Since often
we work with total mass M = 1, in the following we use the notation S(U,L) =
S(1, U,L). We want to indentify this function as the thermodynamic entropy. It can
be proven that (see appendix A) that

S(U,L) = inf
τ,β>0

{
−βτL+ βU − G(β−1, τ)

}
. (2.2.5)
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These are the fundamental relations that connects the microscopic system to
its thermodynamic macroscopic description1.

The limit in (2.2.4) is intended for all values of the internal energy U > 0.
Clearly from the definition of Σm(U,L), it follows that S(U,L)→ −∞ if U → 02.

S is concave, since inf of linear functions.

We can now define the other thermodynamic quantities from the entropy def-
inition (2.2.5). From equation (2.2.5) we obtain the inverse of (2.1.6):

β(L, U) =
∂S(L, U)

∂U
τ(L, U) = −β(L, U)−1∂S(L, U)

∂L
, (2.2.6)

Computing the total differential of S(r, u) we have

dS(U,L) = −βτdL+ βdU =
d\Q
T

(2.2.7)

where d\Q is the (non-exact) differential 3

d\Q = −τdL+ dU. (2.2.8)

Example: In the chain of harmonic oscillators, Σm(U,L) is a 2m−2-dimensional
sphere whose surface can be computed explicitely and

S(U,L) = 1 + log π + log

(
U − L

2

2

)
= 1 + log π + log β−1(U,L) (2.2.9)

and we have

β =
∂S

∂U
, βτ = −∂S

∂L
= L. (2.2.10)

We can now define the microcanonical measures µmc,nL,U . Consider the vector
valued i.i.d. random variables

{Xj = (rj, Ej), j = 1, . . . , n},
1We can recognize (2.2.4) as the celebrated Boltzmann formula S = k logW . Even though no

limit was taken in Boltzmann formula, recall that k = R
NA

= 1.3810−23J/K
2This would be in contradiction with the 3rd-Law, in the Planck formulation, that requires

microscopically a quantum dynamics deduction.
3(2.2.8) and (2.2.7) are analogous to the corresponding differential expressions of the 1st and

2nd law we encountered in the previous chapter in thermodynamics. But for the moment this is
only a thermodynamic analogy, as Gibbs called it [5]. We still need some dynamical argument to
indentify S with the Clausius entropy we have defined using Carnot cycles.
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distributed by dµc,nτ0,β0 . Fix x = (L, U), and define µmc,nx the conditional distribu-
tion of (r1, p1, . . . , rn, pn) on the manifold

∑n
j=1 Xj = nx. This is defined, for any

bounded continuous function G : R× R+ → R and H : R2n → R, by

∫
G(Ŝn)H(r1, p1, . . . , rn, pn) dµc,nτ0,β0(r1, p1, . . . , rn, pn)

=

∫
R×R+

dx G(x)fn(x)

∫
H(r1, p1, . . . , rn, pn) dµmc,nx (r1, p1, . . . , rn, pn|x)

where Ŝn = 1
n

∑n
i=1 Xi. It is easy to see that µmc,nx does not depend on τ0, β0. We

call µmc,nx the microcanonical measure.

It is not hard to prove that microcanonical measures are stationary for the
microcanonical dynamics defined by (2.2.1). This is in fact a consequence that
Lebesgue measure is stationary for the hamiltonian dynamics (2.2.1), so is any
projection of this measure on a surface defined by a constant value of conserved
quantities.

One of the main difficulties is that, in particular for smooth interaction V ,
there could be other conserved quantities than the elongation r(n) and the energy
E (n), and correspondingly other invariant measures. For finite n this is typical,
but we expect that as n → ∞, relevant conserved quantities would disappear, in
some sense, except for energy and elongation. This requires some precision, as in
the corresponding infinite dynamics, the concept of conserved quantity is not well
defined. This ergodicity property of the infinite dynamics will be characterised by the
uniqueness of the stationary measures: for the infinite dynamics we would like that
all stationary measure are given by convex combination of limits of microcanonical
measures, that in this limit these will be equivalent to canonical measure (see below
statement). We will study this property more carefully in a next chapter. We
have no determionistic Hamiltonian dynamics where this property can be proven,
on the contray we have some couterexample constituted by completely integrable
dynamics. In the harmonic case V (r) = r2/2, the dynamics is completely integrable
and there are 2n integral of the motion. Another case is the Toda lattice interaction
V (r) = e−αr − r. We will discuss extensively later this point.

Equivalence between microcanonical and canonical measures:

Theorem 2.2.1. Given x = (L, U), let

β = β(L, U) =
∂S

∂U
, τ = τ(L, U) = −β−1 ∂S

∂L
.
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Then for any bounded continuous function F : R2k → R we have

lim
n→∞

∫
F (r1, p1, . . . , rk, pk) dµ

mc,n
x (r1, p1, . . . , rn, pn)

=

∫
F (r1, p1, . . . , rk, pk) dµ

c,k
τ,β(r1, p1, . . . , rk, pk)

It will be useful later the equivalence of ensembles in the following stronger
form:

Theorem 2.2.2. Under the same conditions of Theorem 2.2.1, assume that∫
F (r1, p1, . . . , rk, pk) dµ

k,c
τ,β(r1, p1, . . . , rk, pk) = 0.

Then

lim
n→∞

∫ ∣∣∣∣∣ 1

n− k

n−k∑
i=1

F (ri, pi, . . . , ri+k, pk+i)

∣∣∣∣∣ dµn,mcx = 0

The proof of these two theorems can be found in Appendix xx.

2.3 Local equilibrium, local Gibbs measures

The Gibbs distributions defined in the above sections are the equilibrium distri-
butions for the dynamics. Studying the non-equilibrium behaviour we need the
concept of local equilibrium distributions. These are probability distributions that
have some asymptotic properties when the system became large (n→∞), vaguely
speaking locally they look like Gibbs measure. We need a more precise mathematical
definition, that will be useful later for proving macroscopic behaviour of the system.

Definition 2.3.1. Given two functions, an inverse-temperature profile β(y) > 0 and
a tension profile τ(y), y ∈ [0, 1], we say that the sequence of probability measures µn
on R2n has the local equilibrium property (with respect to the profiles β(·), τ(·)) if for
any k > 0 and y ∈ (0, 1),

lim
n→∞

µn
∣∣
([ny],[ny]+k)

= µc,kτ(y),β(y) (2.3.1)

where µn
∣∣
([ny],[ny]+k)

denote the marginal of µn on {r[ny], p[ny], . . . , r[ny]+k−1, p[ny]+k−1}.

Sometimes we will need some weaker definition of local equilibrium (for ex-
ample relaxing the pointwise convergence in y). It is important here to understand
that local equilibrium is a property of a sequence of probability measures.
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The most simple example of local equilibrium sequence is given by the local
Gibbs measures:

n∏
j=1

e−β(j/n)(Ej−τ(j/n)rj)−G(β(j/n)−1,τ(j/n)) drjdpj = gnτ(·),β(·)

n∏
j=1

drjdpj (2.3.2)

Of course are local equilibrium sequences also small order perturbations of this
sequence like

e
1
n

∑
j Fj(rj−h,pj−h,...,rj+h,pj+h)gnτ(·),β(·)

n∏
j=1

drjdpj (2.3.3)

where Fj are local bounded functions.

To a local equilibrium sequence we can associate a thermodynamic entropy,
defined as

S(r(·), u(·)) =

∫ 1

0

S(r(y), u(y)) dy (2.3.4)

where r(y), u(y) are computed from τ(y), β(y) using (2.1.6). We then can use all
the definitions and results of section 21.



Chapter 3

Isothermal transformations

In this chapter we obtain a thermodynamic isothermal transformations from the
space-time rescaling of the microscopic dynamics of the chain in contact with a heat
bath at temperature β−1, as defined in section 2.1.1. We consider the situation where
the heat bath acts uniforly in the all bulk of the chain, and the tension applied to
the last particle is time dependent (varying slowly, in the macroscopic scale). While
the variance of the velocities will tend to be close to the temperature of the heat
bath in a very short time scale, the elongation or stretch of the chain, that is a
conserved quantity in the bulk of the chain, will evolve slowly and we need to look
at a diffusive space-time scale to see a relaxation to equilibrium that is governed by
a diffusive equation, eventually non-linear if thermodynamic tension is a non-linear
function of the length. Changing the scale dependence of the tension to a slower
one, we obtain the quasistatic isothermal transformations.

3.1 Isothermal microscopic dynamics

We assume V to be a positive smooth function which for large r grows faster than
linear but at most quadratic, that means that there exists a constant C > 0 such
that

lim
|r|→∞

V (r)

|r|
=∞. (3.1.1)

lim sup
|r|→∞

V ′′(r) ≤ C <∞. (3.1.2)

We consider the dynamics introduced in 2.1.1, but already rescaled diffusively

37
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in time and space, and with a tension slowly changing in time:

dri = n2(pi − pi−1) dt

dpi = n2(V ′(ri+1)− V ′(ri)) dt− n2γpi dt− n
√

2γβ−1dwi, i = 1, . . . , n− 1,

dpn = n2(τ̄(t)− V ′(rn)) dt− n2γpn dt− n
√

2γβ−1dwn
(3.1.3)

Here {wi(t)}i are n-independent standard Wiener processes, γ > 0 is a parameter
of intensity of the interaction with the heat bath, p0 is set identically to 0. The
external force τ̄(t) changes at the macroscopic time scale.

The generator of this diffusion is given by

Lτ̄(t)
n := n2Aτ̄(t)

n + n2γSn. (3.1.4)

Here the Liouville operator Aτn is given by

Aτn =
n∑
i=1

(pi − pi−1)
∂

∂ri
+

n−1∑
i=1

(V ′(ri+1)− V ′(ri))
∂

∂pi

+ (τ − V ′(rn))
∂

∂pn
, (3.1.5)

while

S =
n∑
i=1

(
β−1∂2

pi
− pi∂pi

)
(3.1.6)

Notice that
Spi = −pi, Sp2

i = β−1 − p2
i (3.1.7)

For τ̃(t) = τ constant, we have seen already that the canonical measure µc,mτ,β
defined by

dµc,nτ,β =
n∏
j=1

e−β(Ej−τrj)−G(τ,β)drjdpj (3.1.8)

is stationary for this dynamics, where

G(τ, β) = log

[√
2πβ−1

∫
e−β(V (r)−τr)dr

]
. (3.1.9)

We will need also to consider local Gibbs measure (inhomogeneous product),
corresponding to profiles of tension {τ(x), x ∈ [0, 1]}:

dµnτ(·),β =
n∏
i=1

e−β(Ei−τ(i/n)ri)−G(τ(i/n),β) dri dpi = gnτ(·)dµ
c,n
0,β (3.1.10)
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so that gnτ(·) is the probability density (with respect to µn0,β) defined by

gnτ(·) =
n∏
i=1

eβτ(i/n)ri−G(τ(i/n),β)+G(0,β).

Given an initial profile of tension τ(0, x), we assume that initial probability
state is given by an absolutely continuous measure (with respect to the Lebesgue
measure), whose density with respect to dµn0,β is given by fn0 , such that the relative
entropy with respect to µnτ(0,x),β

Hn(0) =

∫
fn0 log

(
fn0
gnτ(0,·)

)
dµc,n0,β (3.1.11)

satisfies

lim
n→∞

Hn(0)

n
= 0 (3.1.12)

This implies the following convergence in probability with respect to fn0 :

1

n

n∑
i=1

G(i/n)ri(0) −→
∫ 1

0

G(x)r(τ(0, x)) dx (3.1.13)

The macroscopic evolution for the stress will be given by

∂tr(t, x) = γ−1∂2
xτ (r(x, t)), x ∈ [0, 1]

∂xr(t, 0) = 0, τ (r(t, 1)) = τ̄(t), t > 0

τ (r(0, x)) = τ(0, x), x ∈ [0, 1]

(3.1.14)

Observe that we do not require that τ(r(0, 1)) = τ̄(0), so we can consider initial
profiles of equilibrium with tension different than the applied τ̄ .

In the following we use the notation τ(t, x) = τ (r(t, x)), and gnt = gnτ(t,·).

Let fnt the probability density, with respect to µn0,β, of the configuration of the
system at time t, i.e. the solution of the forward equation:

∂tf
n
t = Lτ̄(t)∗

n fnt

where Lτ̄(t)∗
n is the adjoint of Lτ̄(t)

n with respect to µn0,β, i.e.

Lτ̄(t)∗
n = n2Aτ̄(t)∗

n + n2γSn,

Aτ̄(t)∗
n = −Aτ̄(t)

n + βτ̄(t)pn.

The main result is the following
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Theorem 3.1.1.

lim
n→∞

Hn(t)

n
= 0 (3.1.15)

where

Hn(t) =

∫
fnt log

(
fnt
gnt

)
dµn0,β (3.1.16)

This proves the following hydrodynamic limit result:

1

n

n∑
i=1

G(i/n)ri(t) −→
∫ 1

0

G(x)r(t, x)) dx (3.1.17)

where r(t, x) is the solution of (3.1.14).

A schetch of the proof is postponed to section 3.4.

3.2 Work and Microscopic Heat

In the following we consider τ̄(t) as a piecewise smooth bounded function such that
τ̄(0) = τ0 and τ̄(t) = τ1 for t ≥ t1.

The microscopic total lenght is defined by qn =
∑

i ri, the position of the last
particle. To connect it to the macroscopic space scale we have to divide it by n, so
se define

Ln(t) =
qn(t)

n
=

1

n

n∑
i=1

ri(t). (3.2.1)

The time evolution in the scale considered is given by

Ln(t)− Ln(0) =

∫ t

0

npn(s) ds. (3.2.2)

If we start with the equilibrium distribution with length r0, the law of large numbers
guarantees that

Ln(0) −→
n→∞

r0, (3.2.3)

in probability.

By theorem 3.1.1, we also have the convergence at time t:

Ln(t) −→
n→∞

L(t)−→
t→∞

r1 = r(τ1), (3.2.4)

where L(t) is defined by (1.6.25). notice that in (3.2.2) while npn(s) fluctuates
wildly as n → ∞, its time integral is perfectly convergent and in fact converges to
a deterministic quantity.
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The microscopic work done up to time t by the force τ̄ is given by

Wn(t) =

∫ t

0

τ̄(s)dLn(s) =

∫ t

0

τ̄(s)npn(s)ds (3.2.5)

We adopt here the convention that positive work means energy increases in the
system. Notice that Wn(t) defines the actual microscopic work divided by n.

It is a standard exercise to show that, since τ̄(t) and L(t) are piecewise smooth
functions of t, by (3.2.4) it follows that

Wn(t) −→
n→∞

W (t) =

∫ t

0

τ̄(s)dL(s) (3.2.6)

given by (1.6.26).

Microscopically the (internal) energy of the system is defined by

Un =
1

n

∑
i

Ei (3.2.7)

Energy evolves in time as

Un(t)− Un(0) =Wn(t) +Qn(t)

Qn(t) = −γ
∫ t

0

n
n∑
i=1

(
p2
i (s)− T

)
ds+Mn(t)

(3.2.8)

where Qn is the energy exchanged with the heat bath, what we call heat, and Mn(t)
is a martigale with quadratic variation given by

2γβ−1

n∑
i=1

∫ t

0

pi(s)
2ds

In the continuous noise model this is given explicitely by

Mn(t) =
√

2γβ−1

n∑
i=1

∫ t

0

pi(s)dwi(s)

The law of large numbers for the initial distribution gives

Un(0) −→
n→∞

U(β, τ0)

in probability. By the hydrodynamic limit, we have that

Un(t) −→
n→∞

∫ 1

0

U(β, τ(t, x)) dx −→
t→∞

U(β, τ1). (3.2.9)
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Assuming (3.2.9), we have that Qn(t) converges, as n→∞, to the determin-
istic

Q(t) =

∫ 1

0

[U(β, τ(t, x))− U(β, τ0)] dx−W (t) (3.2.10)

and as t→∞:

Q = U(β, τ1)− U(β, τ0)−W, (first principle). (3.2.11)

Recalling that the free energy is equal to F = U −β−1S, then we can compute
the variation of the entropy S as

β−1(S1 − S0) = −(F1 − F0) +W +Q (3.2.12)

or also that

Q = β−1(S1 − S0)− γ−1

∫ ∞
0

dt

∫ 1

0

dx (∂xτ(t, x))2 (3.2.13)

In the quasi static limit, we have seen that F1 − F0 = W , and consequently
βQ = S1−S0, in accord to what thermodynamics prescribe for quasistatic transfor-
mations.

3.3 Quasi-static hydrodynamic limit

In the previous section the tension τ changes in a time scale like t = s/n2, where s
is the microscopic time scale. This is the same time scale the system needs to relax
the elongation to equilibrium, and this is why we obtain an irreversible transforma-
tions governed by the diffusive Equation 3.1.14. In order to obtain the quasistatic
reversible transformation, we need to change the tension in a slower time scale
t = s/n2+α, for some α > 0. Consequently ion order to see an evolution of the
elongation we need to speed up time by a factor n2+α, i.e. to consider the equations:

dri = n2+α(pi − pi−1) dt

dpi = n2+α(V ′(ri+1)− V ′(ri)) dt− n2+αγpi dt− nα/2
√

2γβ−1dwi, i = 1, . . . , n− 1,

dpn = n2+α(τ̄(t)− V ′(rn)) dt− n2+αγpn dt− nα/2
√

2γβ−1dwn
(3.3.1)

In this time scale it can be proven the following quasistatic limit [2]:

1

n

n∑
i=1

G(i/n)V ′(ri(t)) −→ τ̄(t)

∫ 1

0

G(x) dx (3.3.2)
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in probability, for any test function G : [0, 1] → R. In fact a stronger results
of quasi-static equilibrium is true: Let ϕ(r1, p1, . . . , rk, pk) a local function of the
configurations, and θiϕ = ϕ(ri+1, pi+1, . . . , ri+k, pi+k) its translation (well defined for
i+ k << n). Then, always in probability,

1

n

n−k∑
i=1

G(i/n)θiϕ(t) −→
n→∞

ϕ̂(τ̄(t), β)

∫ 1

0

G(x) dx (3.3.3)

where ϕ̂(τ, β) =
∫
ϕ dµcτ,β.

We cvan now repeat all the consideration made before, but without the need
to let t→∞. Recall that we have defined

Un :=
1

n

n∑
i=1

(
p2
i

2
+ V (ri)

)
(3.3.4)

then internal energy evolves as:

Un(t)− Un(0) =Wn(t) +Qn(t)

where

Wn(t) = n1+α

∫ t

0

τ̄(s)pn(s)ds =

∫ t

0

τ̄(s)
dqn(s)

n

is the (normalized) work done by the force τ̄(s) up to time t, while

Qn(t) = γ n1+α

n∑
j=1

∫ t

0

ds
(
p2
j(s)− β−1

j

)
+ nα/2

n∑
j=1

√
2γβ−1

j

∫ t

0

pj(s)dwi(s). (3.3.5)

is the total flux of energy between the system and the heat bath (divided by n). As
a consequence of (3.3.3) we have that

lim
n→∞

Wn(t) =

∫ t

0

τ̄(s)dL(s) :=W(t)

where L(t) =
∫ 1

0
r(x, t)dx = r(τ̃(t), β), the total macroscopic length at time t. While

for the energy difference we expect that

lim
n→∞

(Un(t)− Un(0)) = u(τ̄(t), β)− u(τ̄(0), β) (3.3.6)

where u(τ, β) is the average energy for µβ,τ , i.e.

u(τ, β) =

∫
E1dµ

1
τ,β =

1

2β
+

∫
V (r)e−β(V (r)−τr)−G̃(τ,β)dr
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By (3.3.3) we have
Qn(t) −→

n→∞
Q(t) (3.3.7)

where Q(t) is deterministic and satisfy the relation

Q(t) = u(τ̄(t), β)− u(τ̄(0), β)−W(t). (3.3.8)

which is the first principle of thermodynamics for quasistatic transformations.

Free energy and Clausius identity

Recall that in this case L(t) = r(τ̃(t), β), and the corresponding Free Energy:

F̃(t) = F(L(t), β) (3.3.9)

Then
d

dt
F̃(t) = τ̃(t)

d

dt
L(t)

A straightforward calculation gives

F̃(t)− F̃(0) =

∫ t

0

ds τ̄(s)
d

ds
L(s) =

∫ t

0

τ̄(s)dL(s) =W(t) (3.3.10)

i.e. Clausius equality for the free energy.

Equivalently, by using the thermodynamic relation F = u− β−1S, we have

β−1 (S(L(t), u(t))− S(L(0), u(0))) = Q(t) (3.3.11)

I.e. Ṡ = βQ̇, the usual Clausius definition for the thermodynamic entropy in qua-
sistatic isothermal thermodynamic trasformations.

3.4 Proof of the hydrodynamic limit

In the following we use the notation τx(t, x) = ∂xτ(t, x) and τxx(t, x) = ∂xxτ(t, x).
For simplicity we do the calculations with the Langevin heat bath (3.1.6).

Define the modified local Gibbs density

g̃nt = e
β
γ

∑n
i=1[ 1

n
τx(t,i/n)+ 1

2n2
τxx(t,i/n)]pignt Z

−1
n,t (3.4.1)

where Zn,t is a normalization factor. Then define the corresponding relative entropy

H̃n(t) =

∫
fnt log

(
fnt
g̃nt

)
dµn0,β. (3.4.2)
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It is easy to see that limn→∞ n
−1
(
H̃n(t)−Hn(t)

)
= 0.

Computing the time derivative

d

dt
H̃n(t) =

∫
fnt Lτ̃(t)

n

(
log

fnt
g̃nτ(t,·)

)
dµ0,β −

∫
fnt ∂t log g̃nτ(t,·) dµ

n
0,β (3.4.3)

Then we use the inequality

Lτ̃(t)
n log h ≤ L

τ̃(t)
n h

h

we obtain

d

dt
H̃n(t) ≤

∫
fnt

[
Lτ̄(t)∗
n − ∂t

]
g̃nt

g̃nt
dµn0,β

By explicit calculation

n2A
τ̄(t)∗
n g̃nt
g̃nt

= −n2Aτ̄(t)
n log g̃nt + n2βτ̄(t)pn

= −n2

n∑
i=1

βτ(i/n)Aτ̄(t)
n ri −

n∑
i=1

β

γ

(
nτx(i/n) +

1

2
τxx(i/n)

)
Aτ̄(t)
n pi + n2βτ̄(t)pn

= −n2

n∑
i=1

βτ(i/n)(pi − pi−1)−
n−1∑
i=1

β

(
nτx(i/n) +

1

2
τxx(i/n)

)
(V ′(ri+1)− V ′(ri))

− β
(
nτx(1) +

1

2
τxx(1)

)
(τ̄(t)− V ′(rn)) + n2βτ̄(t)pn

= −n2

n−1∑
i=1

β(τ(i/n)− τ((i+ 1)/n))pi −
n−1∑
i=1

β

γ

(
nτx(i/n) +

1

2
τxx(i/n)

)
(V ′(ri+1)− V ′(ri))

− β

γ

(
nτx(1) +

1

2
τxx(1)

)
(τ̄(t)− V ′(rn))

= β
∑
i

{(
nτx(t, i/n) +

1

2
τxx(i/n)

)
pi +

1

γ
τxx(i/n)V ′(ri)−

n

γ
τx(1)τ̄(t)

}
+ o(n)

while

n2γ
Sng̃nt
g̃nt

= n2β

γ

n∑
i=1

(
1

n
τx(i/n) +

1

2n2
τxx(i/n)

)2

− β
n∑
i=1

(
nτx(i/n) +

1

2
τxx(i/n)

)
pi

=
β

γ

n∑
i=1

τx(i/n)2 − β
n∑
i=1

(
nτx(i/n) +

1

2
τxx(i/n)

)
pi + o(n)
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Then observe that

n∑
i=1

τx(i/n)2 − nτx(1)τ̄(t) =
n∑
i=1

τx(i/n)2 − nτx(1)τ(t, 1)

= −
n∑
i=1

τxx(i/n)τ(i/n) + o(n)

So we have obtained that

Lτ̄(t)∗
n g̃nt
g̃nt

=
β

γ

n∑
i=1

τxx(t, i/n) [V ′(ri)− τ(t, i/n)] + o(n)

while
∂t log g̃nτ(t,·) = β

∑
i

τt(t, i/n)(ri − r(t, i/n)) +O(1).

and since

τt(t, x) =
dτ

dr
∂tr(t, x) =

dτ

dr
τxx(t, x),

we have obtained[
Lτ̄(t)∗
n − ∂t

]
g̃nt

g̃nt

=
β

γ

n∑
i=1

τxx(t, i/n)

(
[V ′(ri)− τ(t, i/n)]− dτ

dr
(r(t, i/n))[(ri − r(t, i/n)]

)
+ o(n)

where the o(n) is intended to be small after all integratin made (one has to be careful
since we are dealing with unbounded quantities).

The rest of the proof follows by the standard arguments of the relative entropy
method (cf. [7–9,11]).
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