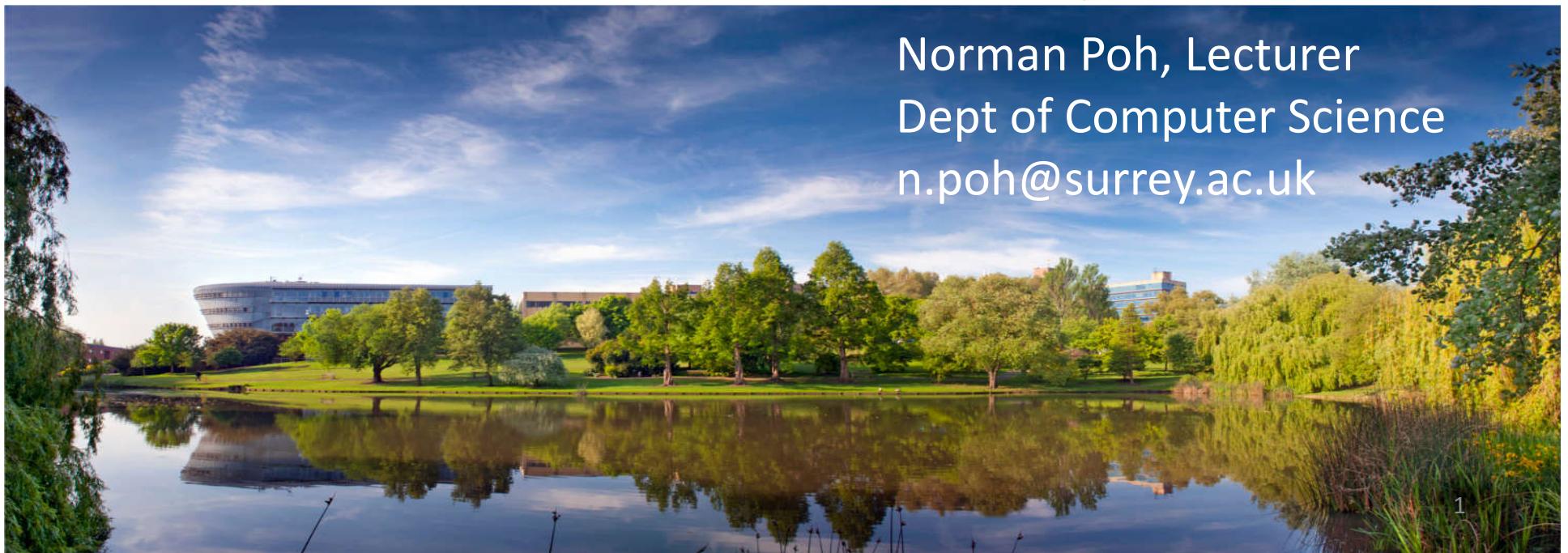


What could we learn from modelling millions of patient records?

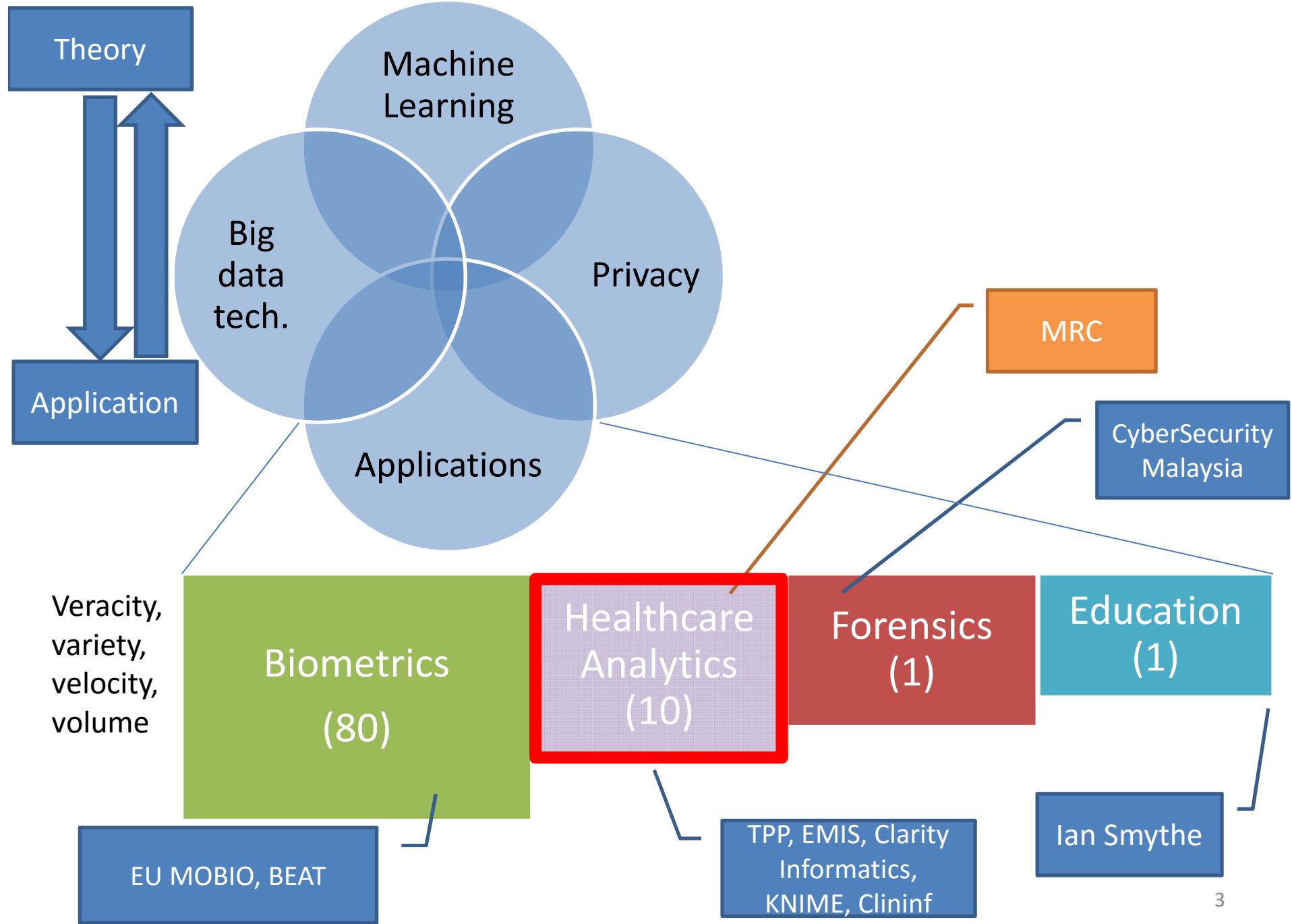
A machine learning perspective

Norman Poh, Lecturer
Dept of Computer Science
n.poh@surrey.ac.uk

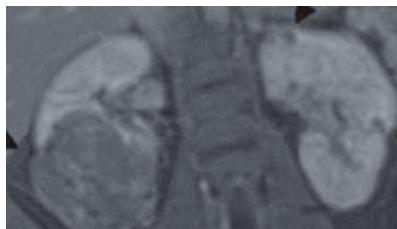


40 minutes from London
Day/Short-term visits

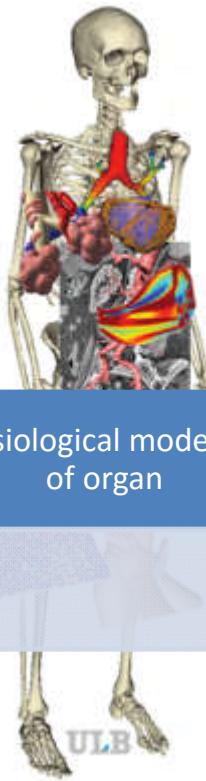
(n.poh@surrey.ac.uk)



Where machine learning is applicable



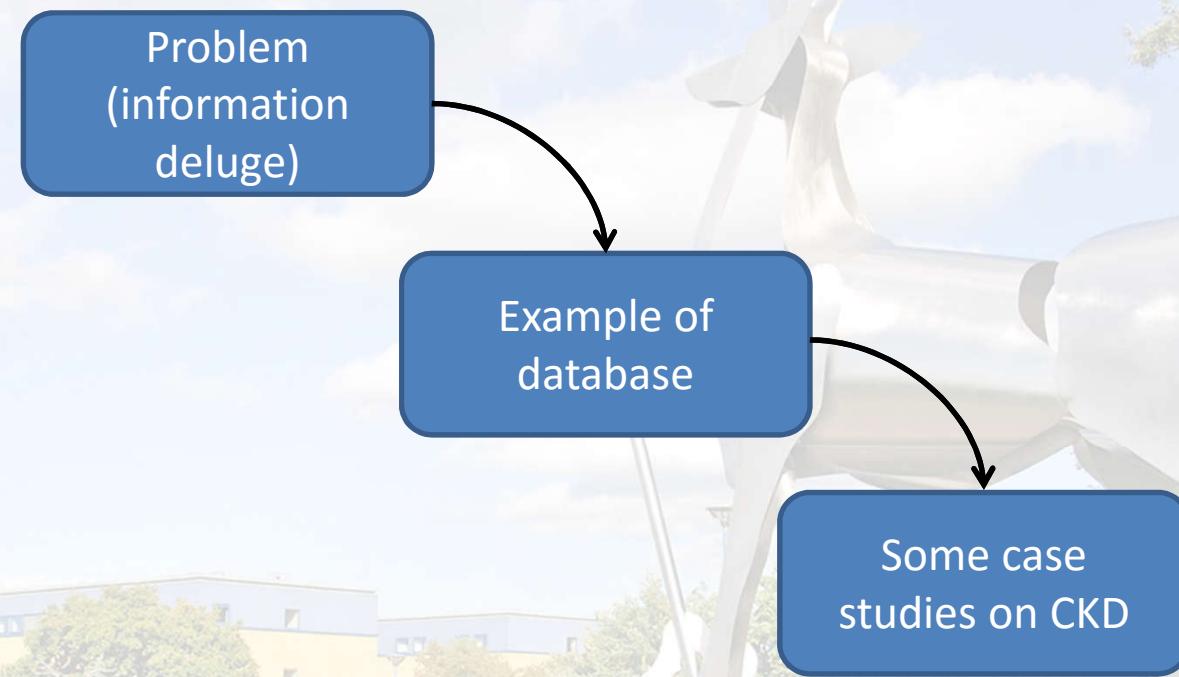
Biomedical imaging –
computer vision and
image processing

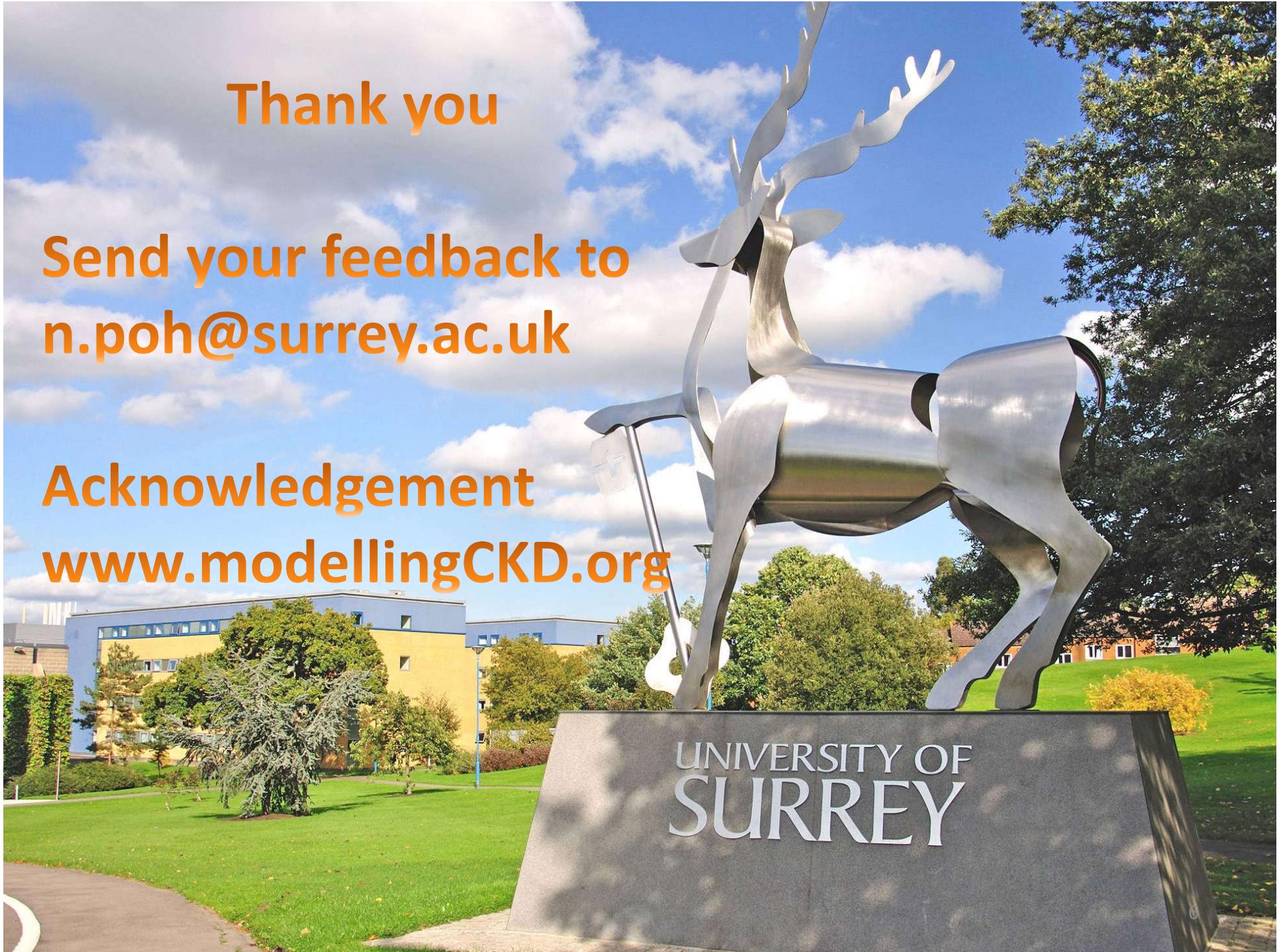


Physiological modelling
of organ

Bioinformatics

Electronic medical
records (Epidemiology) –
massive data





Thank you

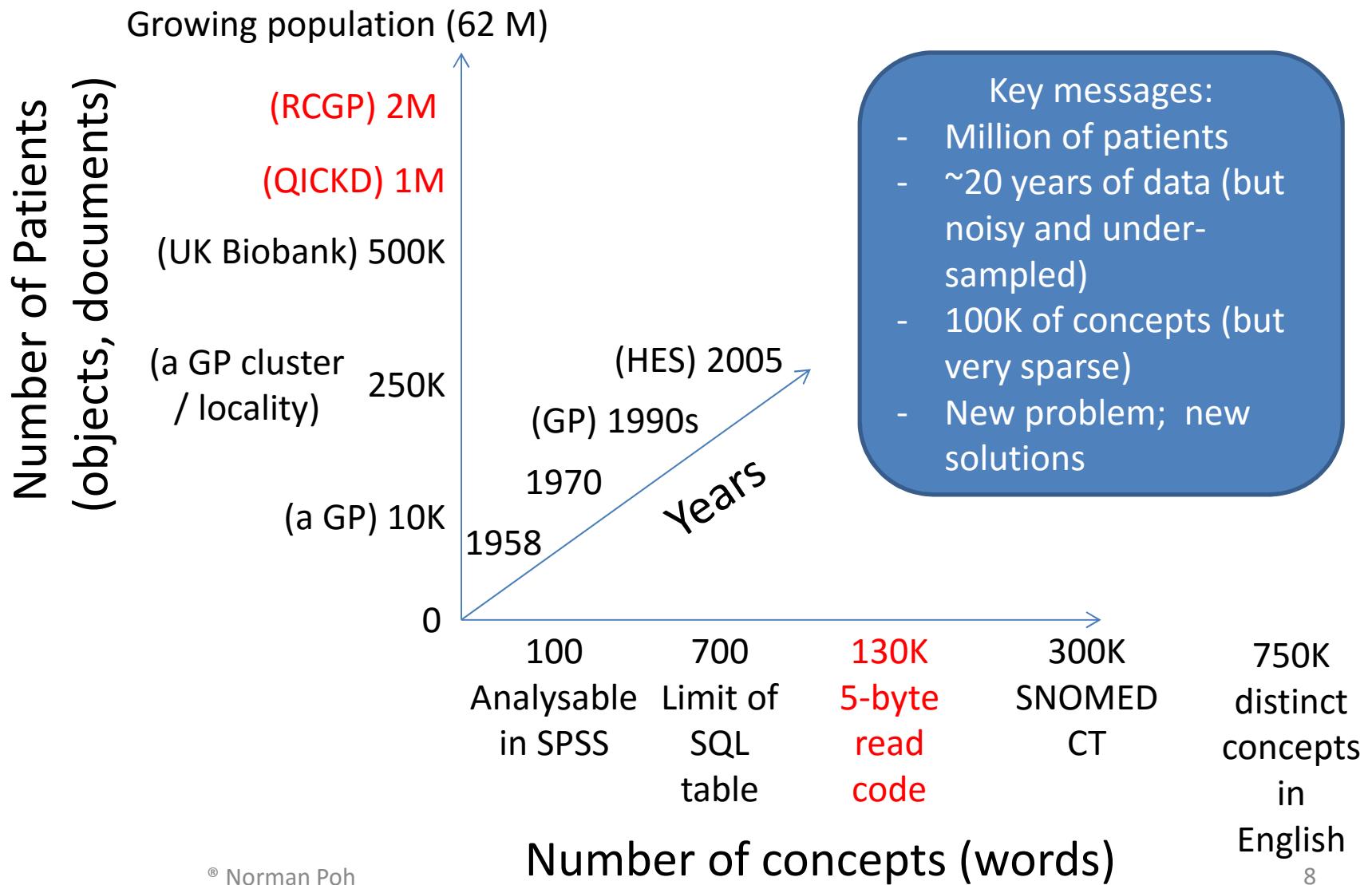
Send your feedback to
n.poh@surrey.ac.uk

Acknowledgement
www.modellingCKD.org

Part I

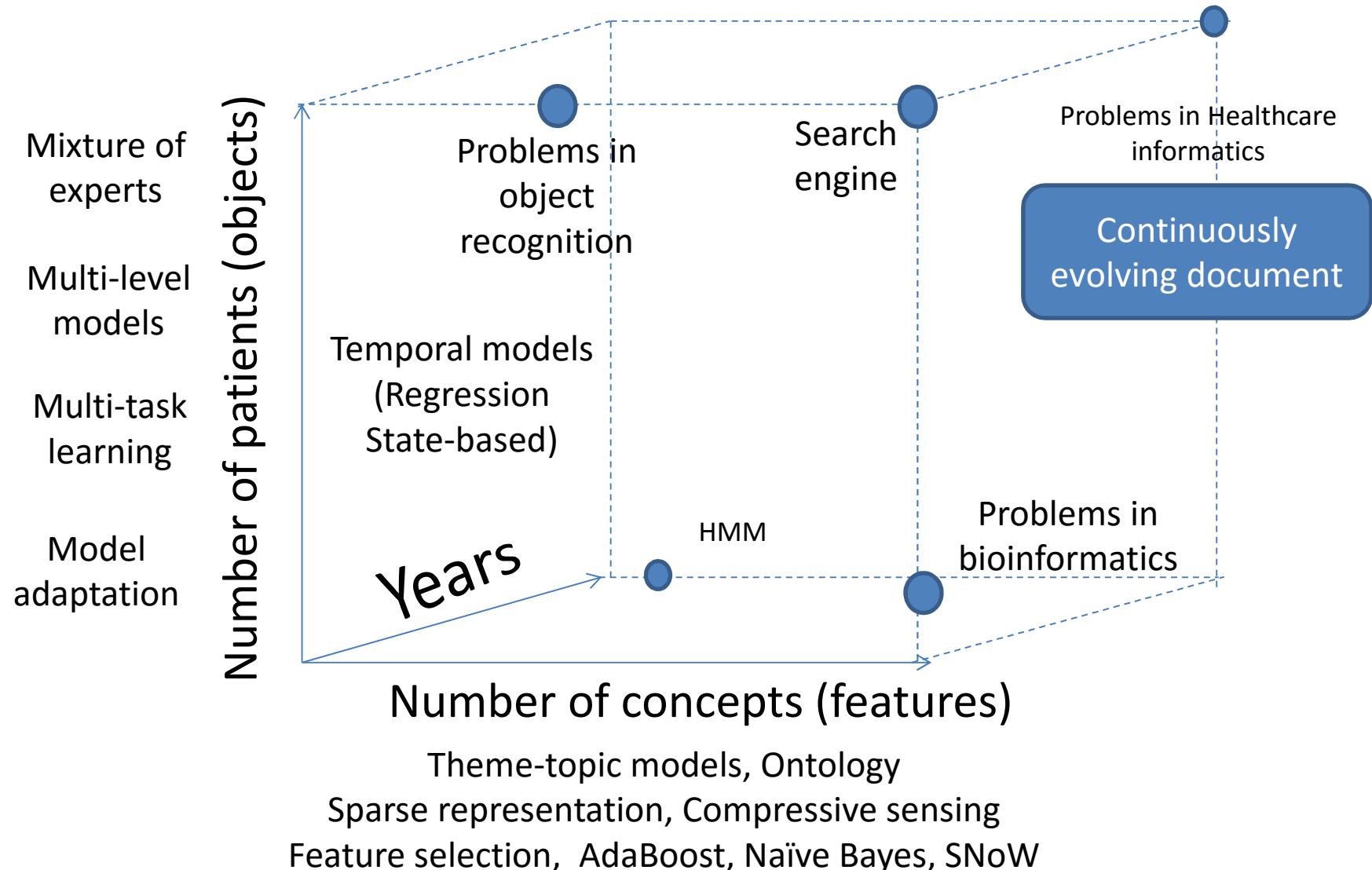
DELUGE OF INFORMATION IN HEALTHCARE

Deluge of information in healthcare



A “data-engineering” problem

... and not (just) a clinical problem



Royal College of GP (RCGP)

About us News Publications Jobs eLearning Revalidation ePortfolio Trainee ePortfolio Bookshop (0 in basket) Login to My RCGP

Training Revalidation RCGP Learning Making a difference Clinical Membership RCGP local RCGP nations

Royal College of
General Practitioners

[Home](#) » [Clinical](#) » [Our programmes](#) » [Research and Surveillance Centre](#)

Research and Surveillance Centre

The RCGP Research and Surveillance Centre (RSC) is part of the RCGP Clinical Innovation and Research Centre (CIRC). It is an internationally renowned source of information, analysis and interpretation, dedicated to research the onset patterns, prevalence and trends over time of morbidity in primary care.

Established in 1957, the RSC is an active research and surveillance unit which collects and monitors data, in particular influenza and other diseases, and monitors vaccine effectiveness.

Research and Surveillance Centre – a cohort profile

The RSC is a representative network, having only small differences with the national population, which have now been quantified and can be assessed for clinical relevance for specific studies. With twice weekly data extractions, the dataset is one of the most up to date in the UK.

The RSC is pleased to announce that an article, describing the network and the usefulness of our practices' data has been published in the BMJ Open. The Centre is keen to hear about new opportunities for collaboration and this free to access paper is a great source of information for anyone unfamiliar with the dataset.

The article describes the first 650,000 patients processed through our new hub established in March 2015. We now have over 1,000,000 patients in the annual report, which is around 1.5% of the English population. We plan to continue to expand the network until we cover around 2% of the national population.

Search RCGP website

Find courses & events

Enter keyword(s)

Topic ▾ Region ▾

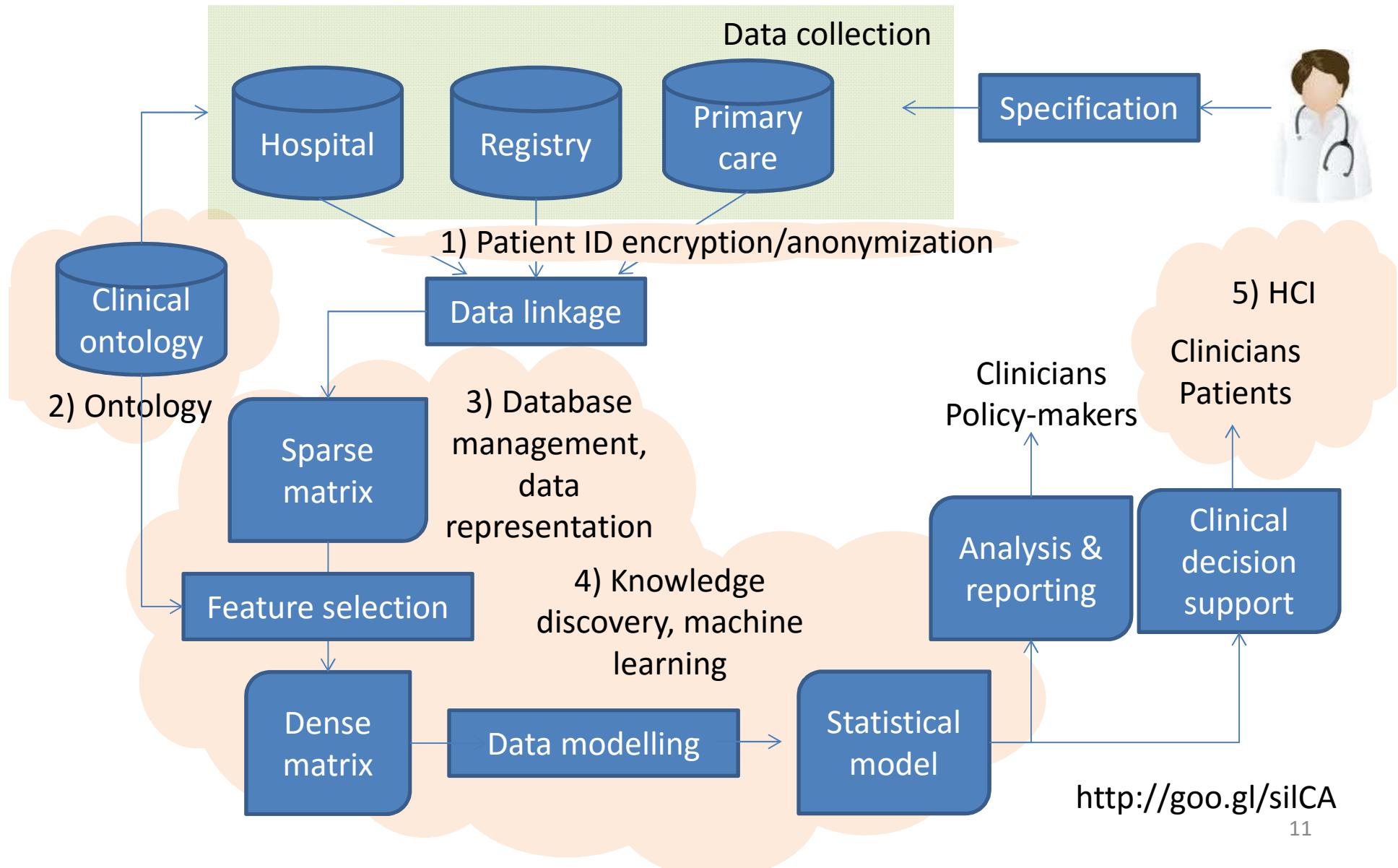
From To

Date Date

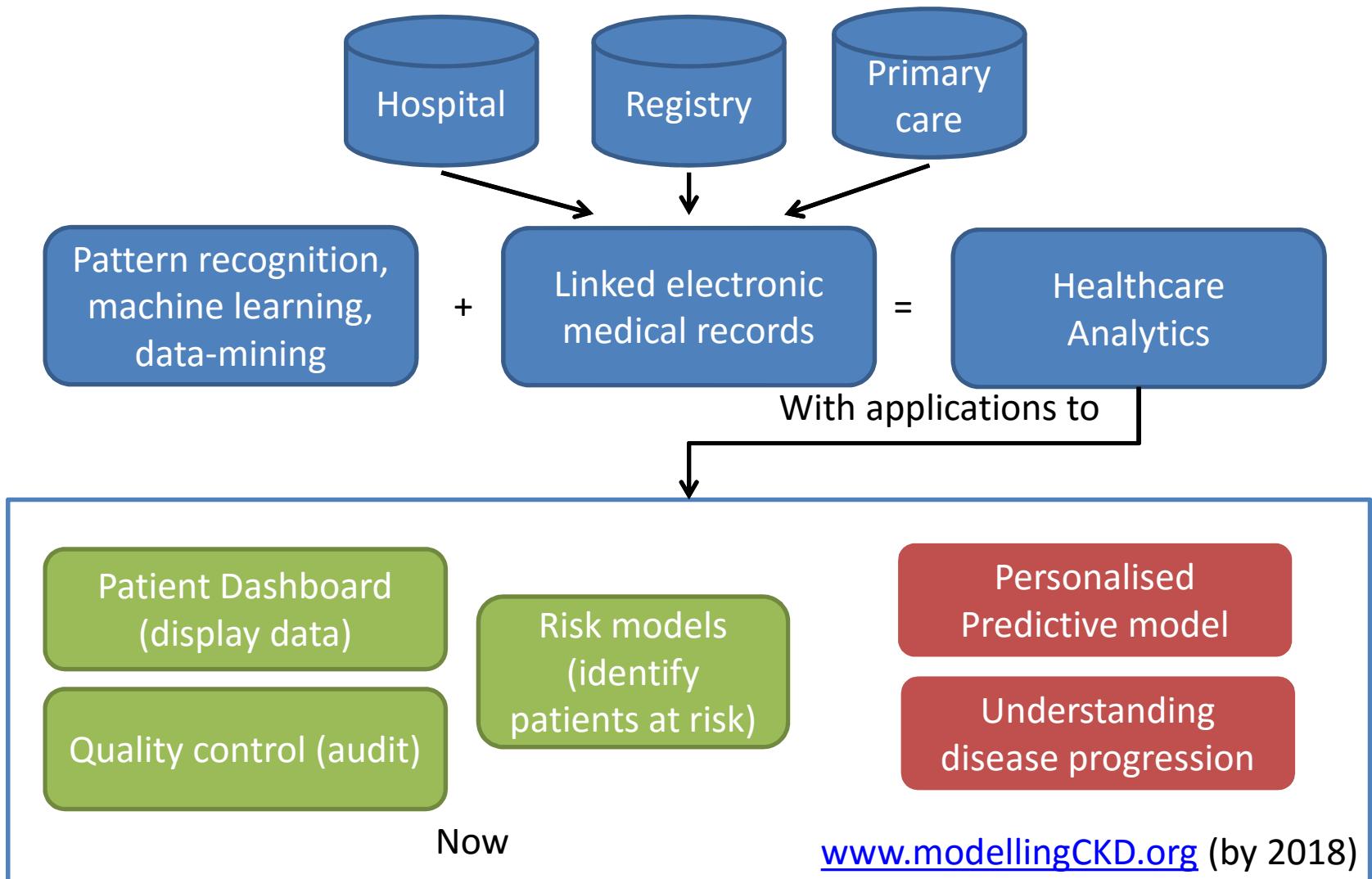
Advanced search Find

<http://www.rcgp.org.uk>

Where innovative algorithms are needed?



Our goal



What does healthcare analytics promise?

Readmission:
Reduce unplanned
admission to
hospital

Triage: Estimate
risk of
complications

High cost patients:
5% patients – 50%
cost

Adverse events:
renal failure,
infection, adverse
drugs

Decompensation:
Real time
monitoring of
vitality sign

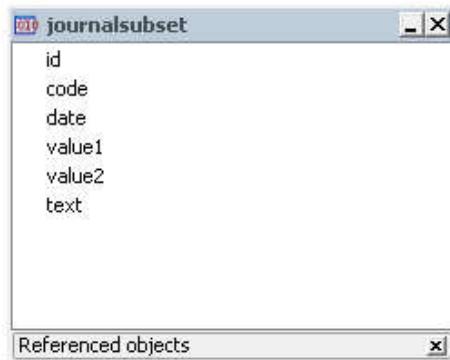
Diseases affecting
multiple organ
systems

Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: using analytics to identify and manage high-risk and high-cost patients. *Health Affairs*, 33(7), 1123-1131.

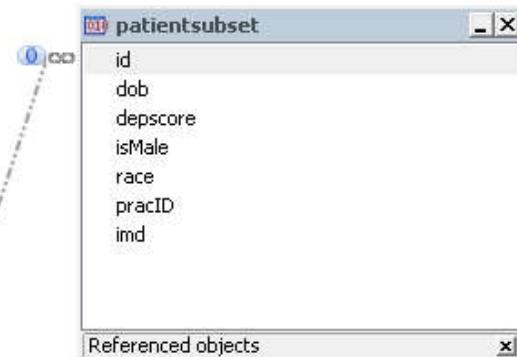
EXAMPLE OF DATABASE: QUALITY IMPROVEMENT CKD (QICKD)

Structure of a database

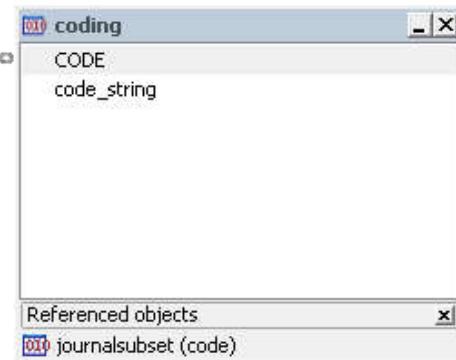
Journal



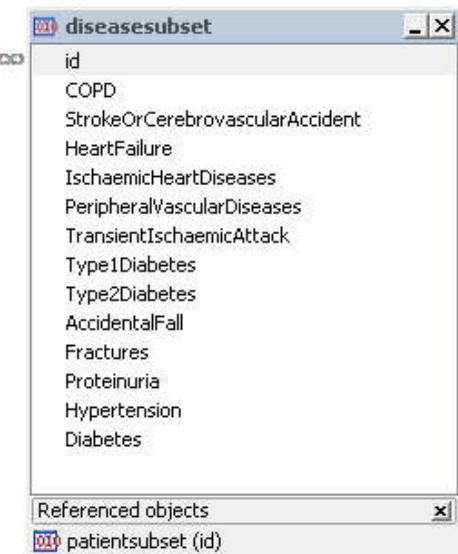
Patient



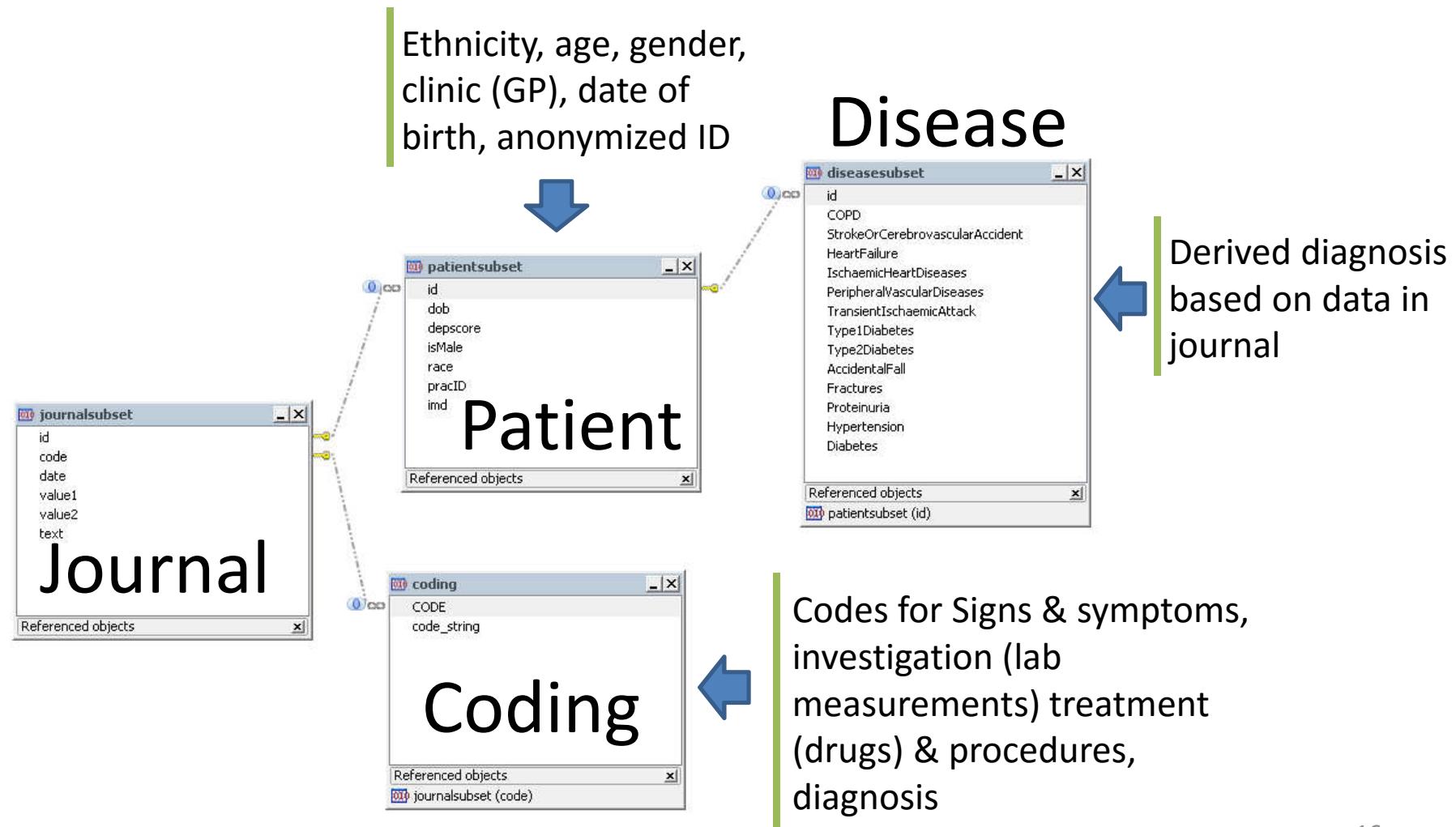
Coding



Disease



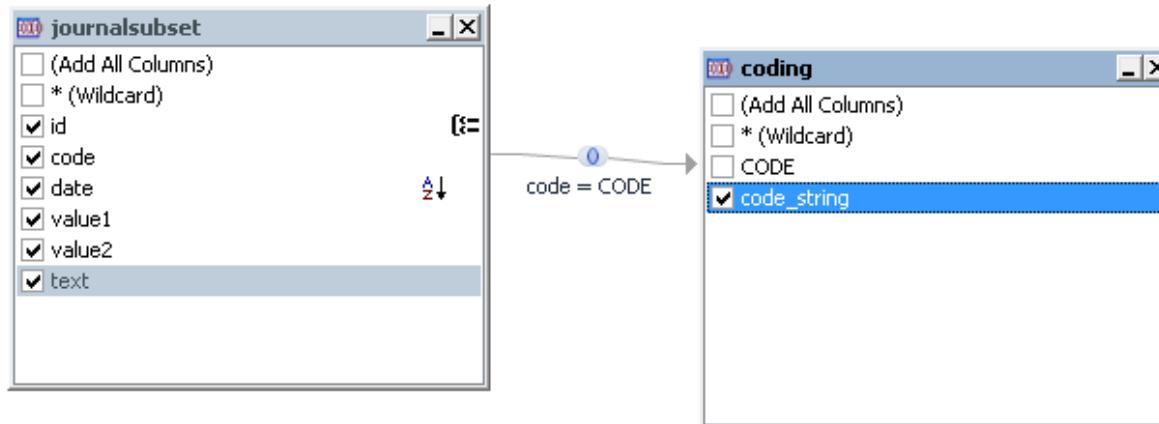
What information is available?



Patient table

id	dob	depscore	isMale	race	pracID	imd
26015	1967	15.32	0	1	56	5
26016	1937	23.66	1	6	56	7
26017	1976	23.66	1	7	56	7
26018	1947	23.66	0	7	56	7
26019	1920	5.59	1	7	56	1
26020	1957	4.00	1	7	56	1
26021	1932	8.08	0	7	56	2
26022	1931	8.68	0	7	56	3
26023	1975	23.66	1	7	56	7
26024	1950	23.66	1	7	56	7
26025	1954	23.66	0	7	56	7
26026	1981	23.66	0	7	56	7
26027	1972	10.27	0	7	56	3
26028	1961	5.85	1	7	56	2
26029	1964	6.47	0	1	56	2
26030	1925	23.66	0	1	56	7
26031	1962	6.47	1	7	56	2

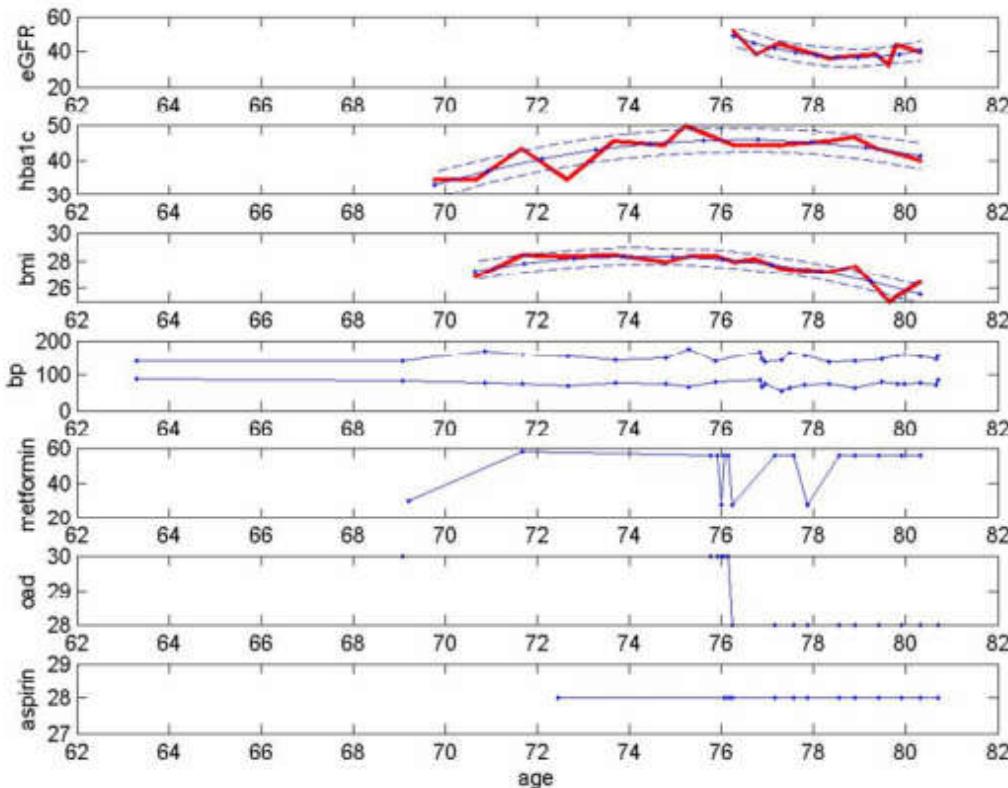
Journal and Coding table



```
SELECT journalsubset.id,  
       journalsubset.code,  
       coding.code_string,  
       journalsubset.`date`,  
       journalsubset.value1,  
       journalsubset.value2,  
       journalsubset.`text`  
  FROM qickd2.journalsubset journalsubset  
       INNER JOIN qickd2.coding coding ON  
(journalsubset.code = coding.CODE)  
 GROUP BY journalsubset.id  
 ORDER BY journalsubset.`date` ASC
```

[View file](#)

Key difficulties



- How to represent irregularly sampled time-series with real and binary values?
- How to model the trajectories?
- Millions of patients; each of which has few observations (multi-task learning? Hierarchical model?)
- Can we develop models that can explain its reasoning, yet flexible enough to fit the data and generalize to unseen data?

CASE STUDIES BASED ON CHRONIC KIDNEY DISEASE

Some basic medical terminology

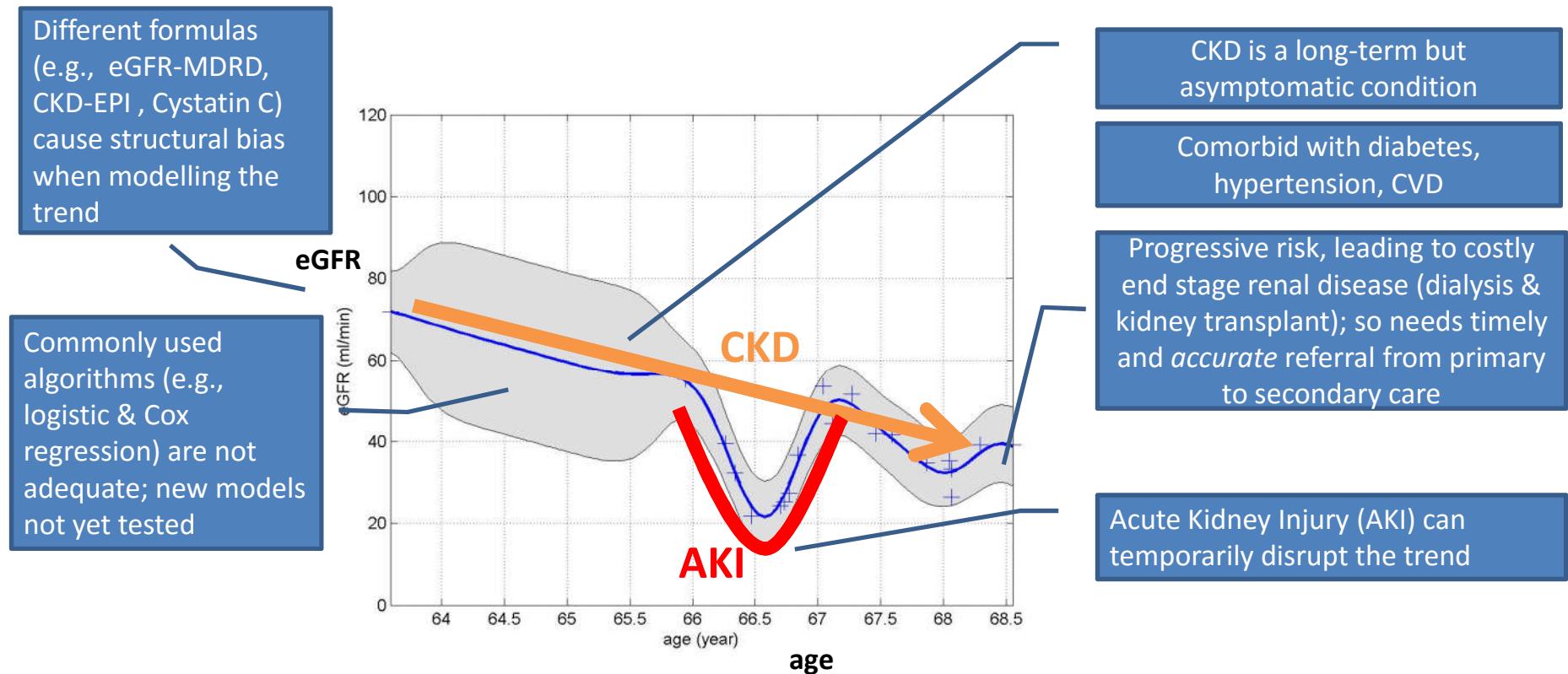
English	French
Chronic Kidney Disease (CKD)	l'insuffisance rénale chronique
Acute Kidney Injury (AKI)	l'insuffisance rénale aiguë
estimated Glomerular Filtration Rate (eGFR)	Débit de filtration glomérulaire (DFG)

Classiquement, on distingue l'insuffisance rénale aiguë de l'insuffisance rénale chronique.

Globalement, une insuffisance rénale se caractérise par une diminution de la fonction, et du nombre des néphrons (unités de base constituant le rein et servant à débarrasser le sang des toxines qu'il contient, en élaborant l'urine primitive).

L'insuffisance rénale aiguë, contrairement à l'insuffisance rénale chronique, est généralement réversible et guérit le plus souvent. Elle consiste en une privation brutale de l'organisme de sa fonction rénale (fonctionnement des reins).

Challenges in modelling and predicting CKD

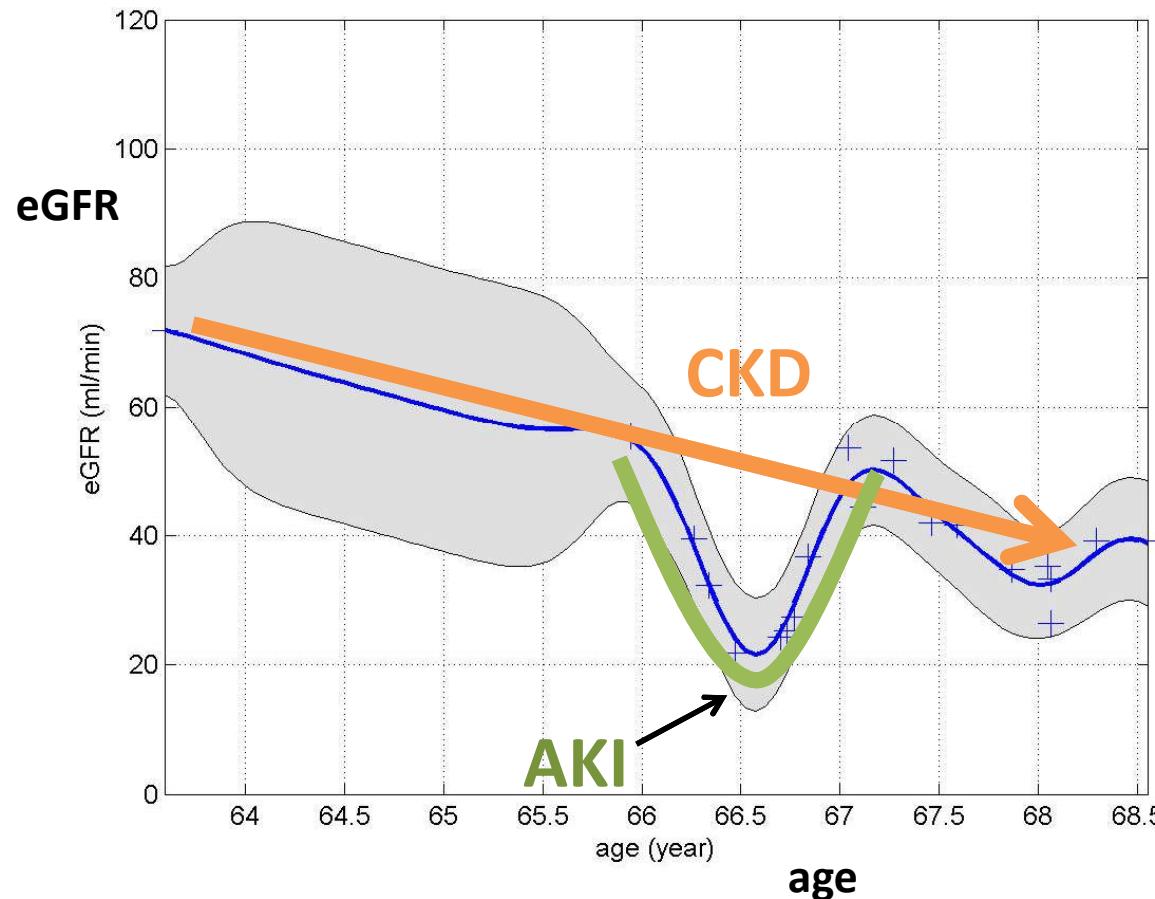


$$p(g|a) = \text{Gaussian Process Regression}$$

CKD and AKI

Regression

$p(g|a) = \text{Gaussian Process Regression}$

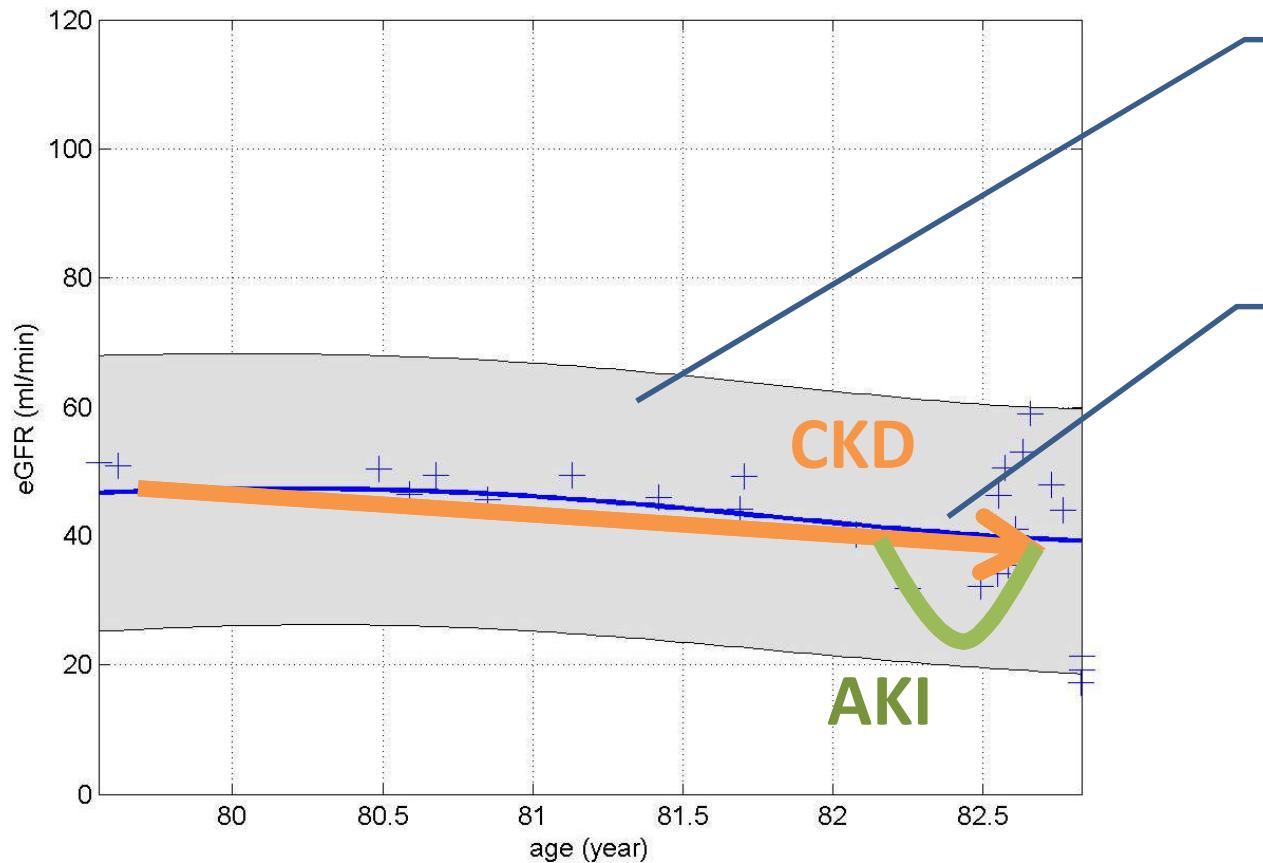


Classical regression does not work

Non-parametric regression works sometimes but not a guarantee

AKI not always modelled

$p(g|a) = \text{Gaussian Process Regression}$



Learning to tune GPR hyper-parameters

Another solution:
Mixture of experts,
mixture of (2)
regressions

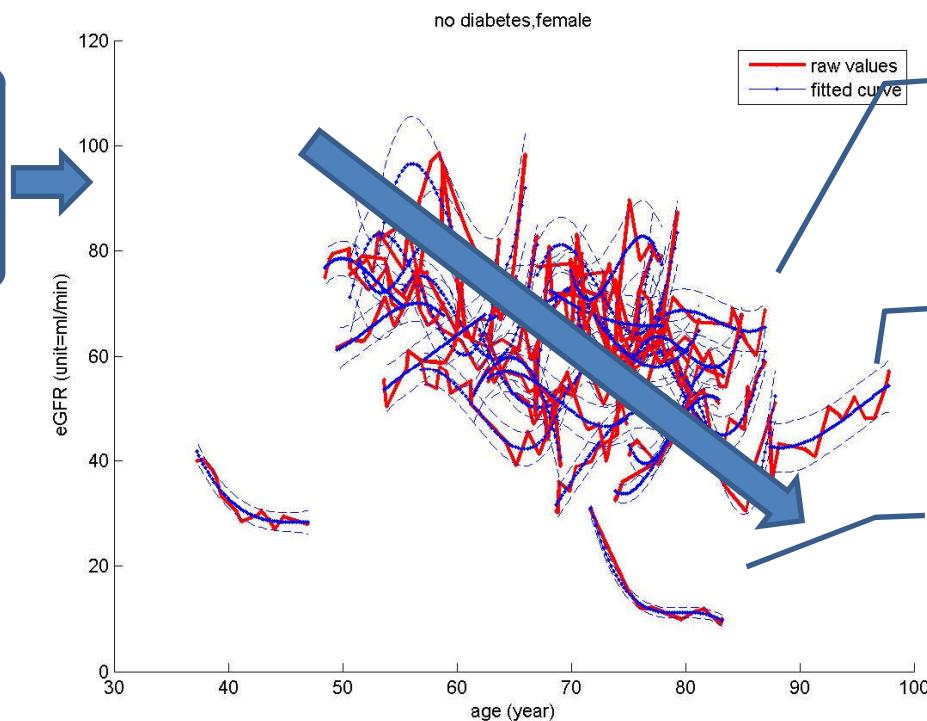
Methodology

Data + Machine Learning
+ Expert feedback = Clinically useful models

Using routinely collected data: QICKD, Qresearch, ResearchOne, East Kent, ASSIST-CKD, RCGP data sets

Objectives:

1. Predict eGFR
2. Stratify patients
3. Predict AKI



Obj 1: Model & predict individual eGFR

Understand factors contributing to renal progression & regression
(renal regeneration not normally expected)

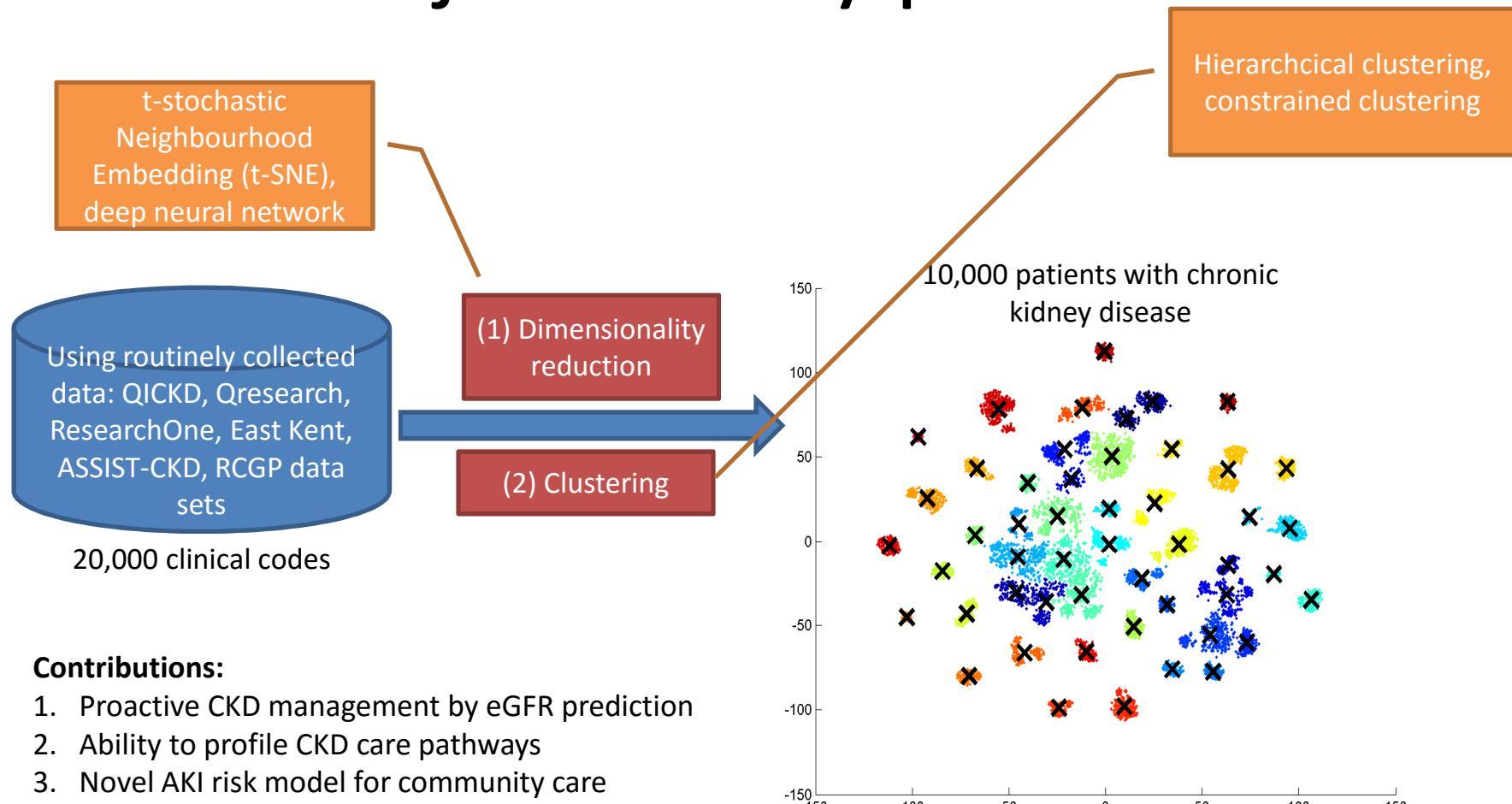
Hierarchical regression model

Obj 2: Model AKI risk

AKI risk modelling

Mixture of regression

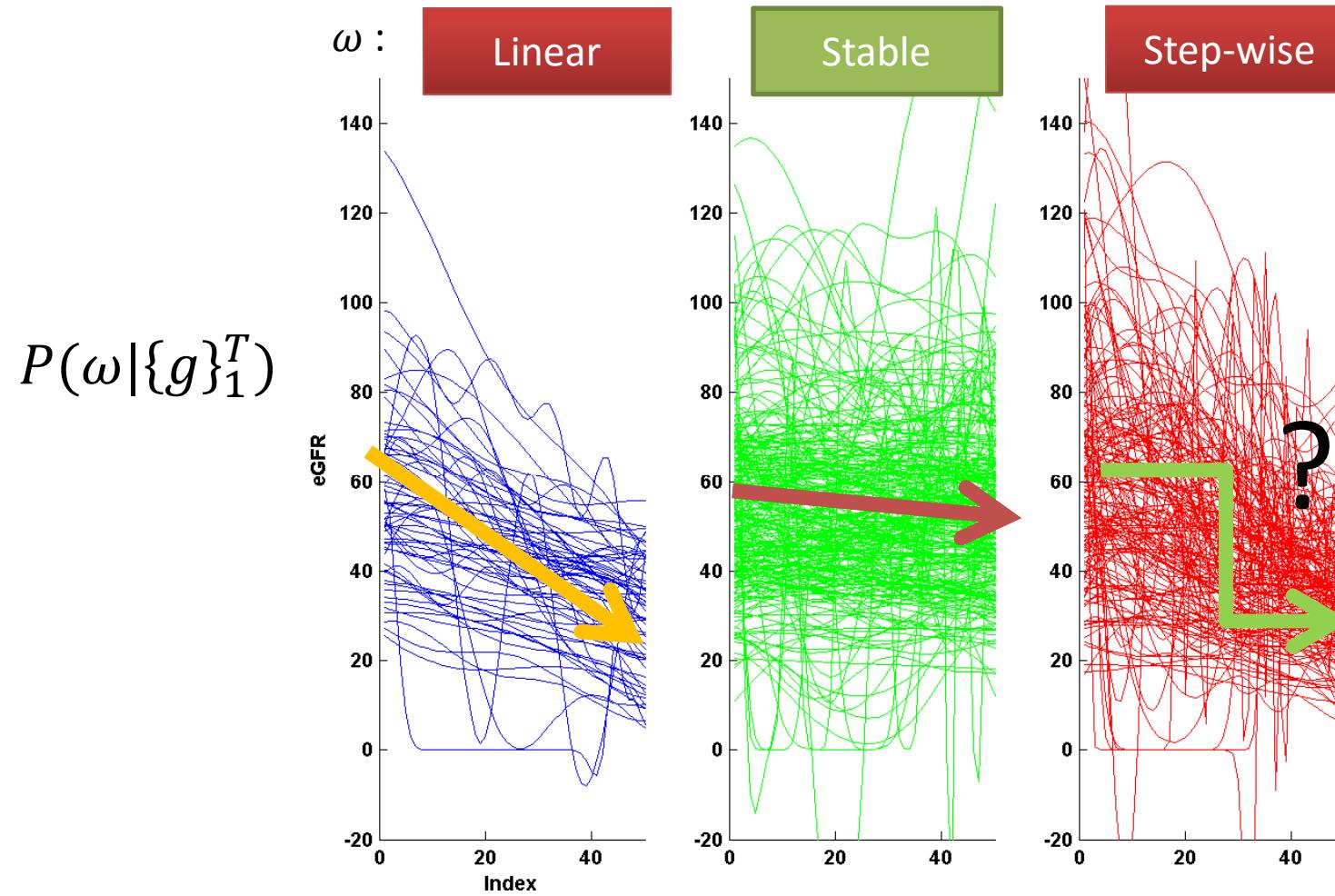
Obj 3. Stratify patients



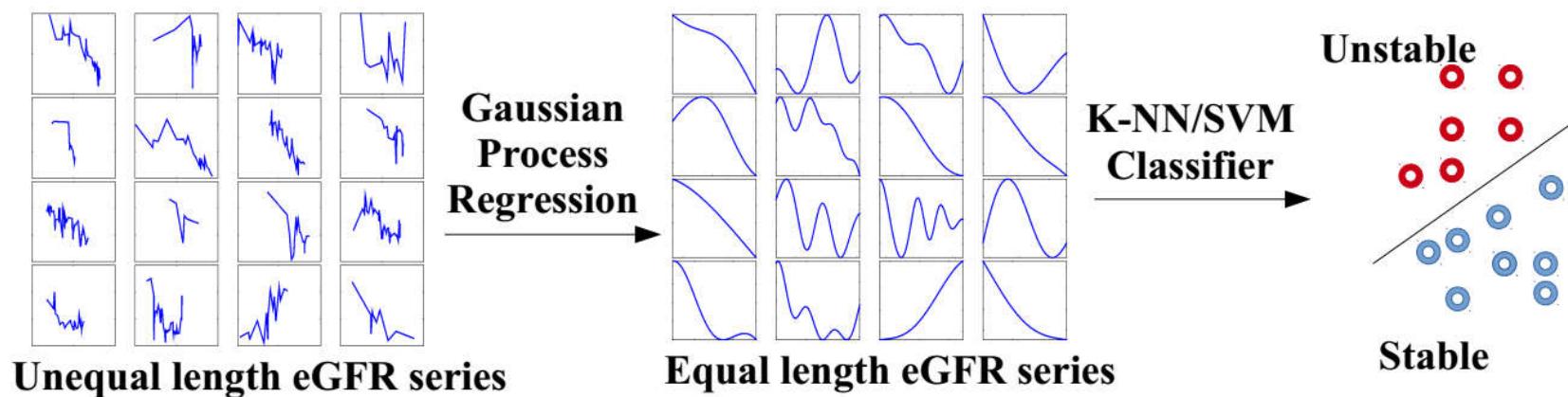
Contributions:

1. Proactive CKD management by eGFR prediction
2. Ability to profile CKD care pathways
3. Novel AKI risk model for community care

Automatic classification of eGFR trends

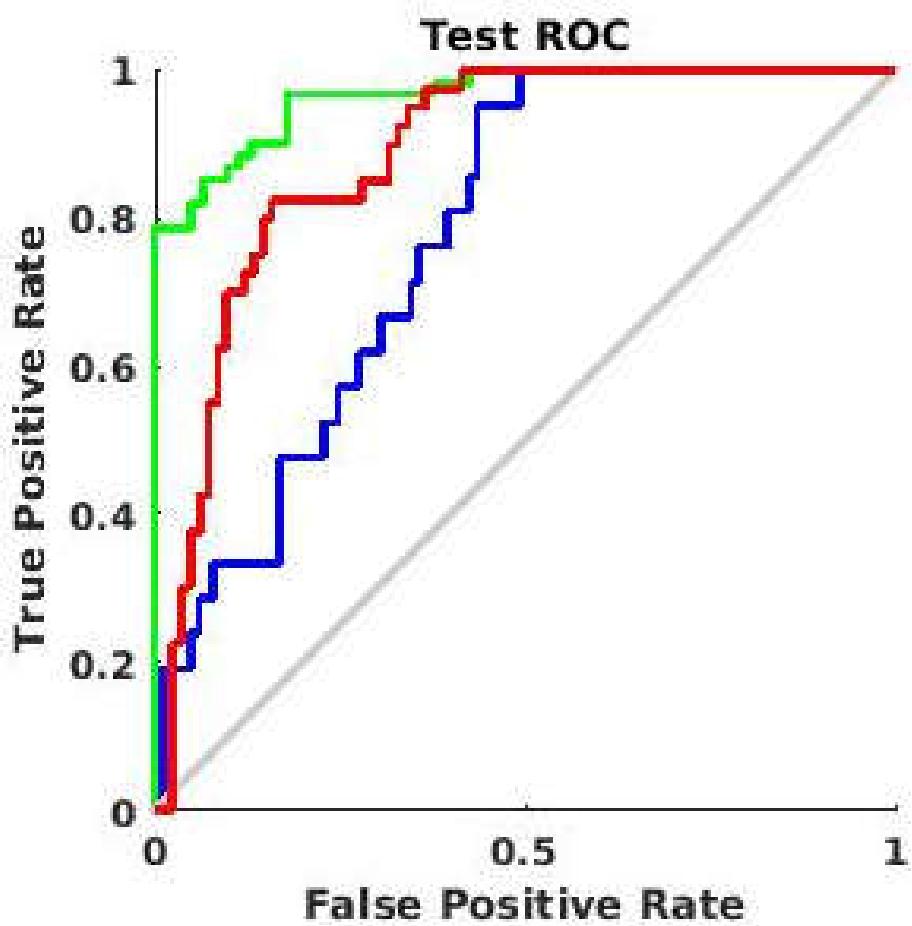


Approach



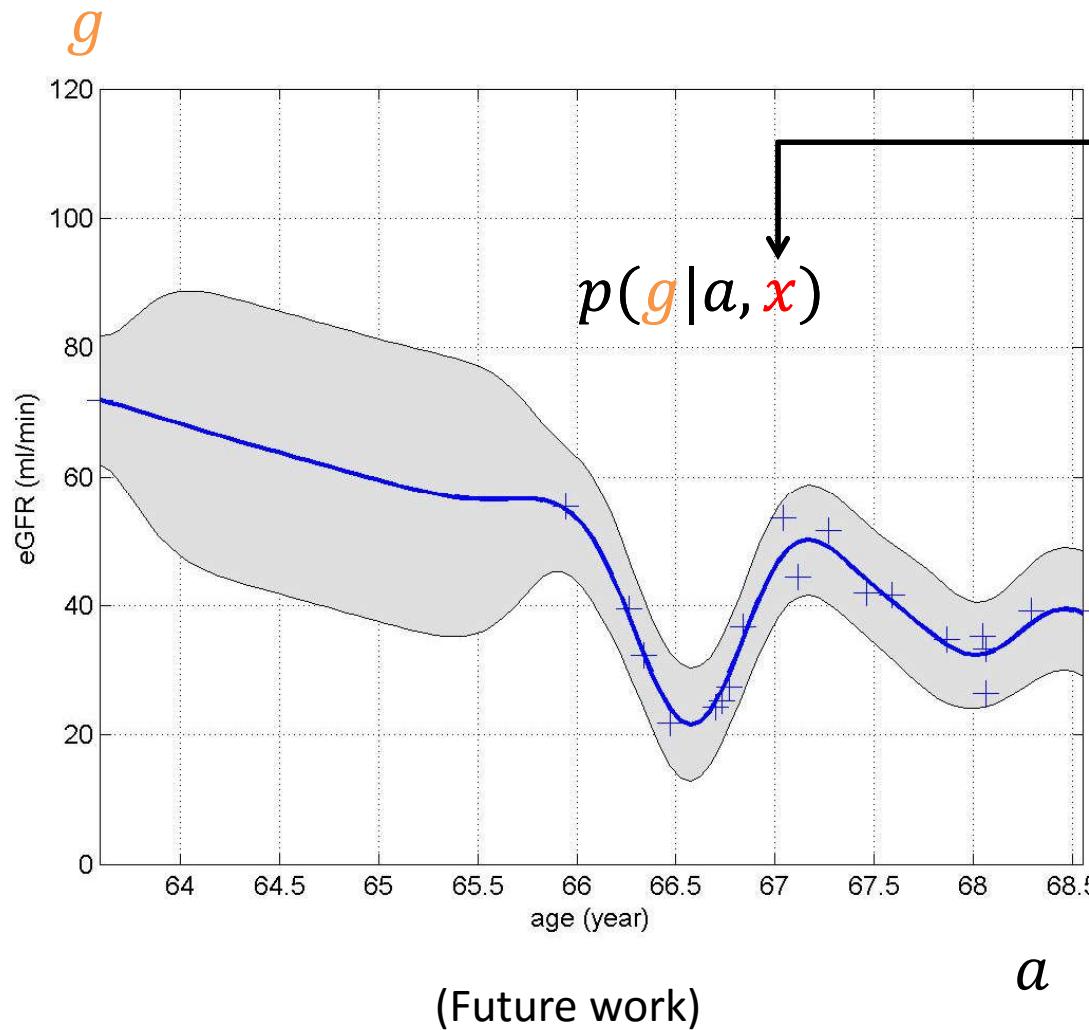
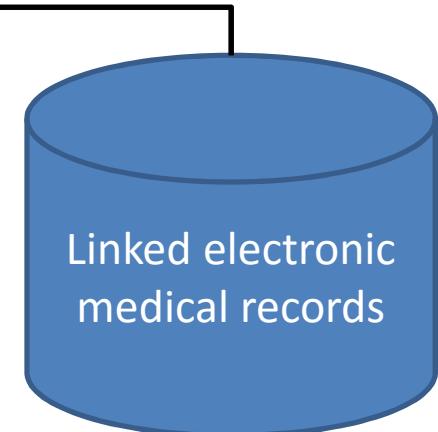
Some preliminary results

Linear **stable** **step-wise**



<http://arxiv.org/pdf/1605.05142.pdf>

Prediction with additional information



x is a compact representation of the patient's records