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1. Topological interactions
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Flocking dynamics

System with locally interacting agents
Emergence of spatio-temporal coordination
Patterns, structures, correlations, synchronization

No leader
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Interaction types

Mean-field (metric) interaction

Particle interact with all particles within a certain distance
Examples: Alignment (Vicsek ... )
Consensus (Cucker-Smale, Motsch-Tadmor, ... )
Attraction-repulsion (Bertozzi, Carrillo, ... )

Binary (ternary, ...)

Particle interacts with a partner at contact
Examples: Hard-sphere collisions (Boltzmann .. .)
Alignment (Bertin, Droz & Grégoire, ... )
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Third type: topological interactions

Particles interact with other particles
according to their rank

[Ballerini et al, PNAS 2008] a

Interaction ruling animal collective behavior depends 180’
on topological rather than metric distance: Evidence
from a field study
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Kinetic models for topological interactions 7

Kinetic models

Largely investigated for mean-field metric
or binary interactions

Kinetic models for topological interactions are recent:
J. Haskovec [Physica D 2013], Benedetto et al [arxiv 2021]

for Cucker-Smale type interactions

Y. Brenier

for a competition model

Our work: Boltzmann approach
Adapting 'Choose the Leader’ model from
[Carlen, D., Wennberg, M3AS 2013],
[Carlen, Chatelin, D., Wennberg, Physica D 2013]
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2. Smooth rank-based dynamics

A. Blanchet & P. D., J. Stat. Phys 163 (2016) 41-60
P. D. & M. Pulvirenti, Ann. Appl. Prob. 29 (2019) 2594-2612
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Rank

N particles (SEi(t),fUi(t))i:Lm,N, (a:z-,vz-) = R2n

At given time ¢, Rank R™ (7, ) of 7 w.r.t. ¢
Sort (| — | )k=1,....n, ki by increasing order
RN (i,7) is rank of |z; — x;| in the list
RN(Gi,j) e {l,...,N —1}

R(1,3)=1 R(1,2) =2 R(1,4) =3
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Interaction probabilities 10

Normalized rank: 7 (i, j) = N(i’i) = U{—

Given: K : [0,1] — [0,00) s.t. [ K(r)dr =1
K(r)
o K ()

define KV (1) =

Interaction probabilities:
probablllty of i interacting with j: 7T = KN(rN (i, 5))

Note: wa ZKN =1

J;éz J#z
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N -particle dynamics 11

Free ﬂlghtS .Ct‘i = ;, ?.Jz' =0

Collisions: at Poisson random times with rate /V:
Pick ¢ € {1,..., N} with uniform probability 1/N
Pick j € {1,..., N}, j # i with probability 7,}
Perform: (x;,x;) remains unchanged

(vi,v;j) changed into (vj,v;)

N\
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Properties & Goal 12

Properties
Rank is a function of positions (i, ) = v (i, ) (z1,...,2N)
and so is m;;: 7 = KN(rN (i, ) (x4, ..., 2n))

Rank is permutation-invariant

rN (o) o(1))(@o1)s-- s Tony) =V (0, 5) (21, .- - ZN)

Goal

Derive a Boltzmann operator
under Propagation of Chaos assumption

Note: BBGKY does not work in general
because all particles interact with all particles
but works if K is real analytic [P.D., Pulvirenti]

Previous work using similar ideas:
[D. & Ringhofer, SIAM Appl. Math. 2007] (min interaction)
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Master equation 13

Notations: &= (z1,...,zn), U= (v1,...,0N)
Zj = (:I:j,vj), Z: (Zl,...,ZN), dZ: CZZl .. dZN
FN(Z,t): N-particle distribution function

Find eq. for & (master equation)
Follow strategy of [Carlen, D., Wennberg, M3AS 2013]

Take ®V(Z) a test function
Drop drift term for simplicity

i/chbNdZ:

/{ ZTFU (I)N Zl,...,iCi,’Uj,...ZIJj,’Uj,...ZN)—q)N(Z) fN(Z’t>dZ
i7]

If f¥|;—o is permutation invariant
then f~(t) is permutation invariant
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Marginals and propagation of chaos 14

|\/|argina|: f]l%(Zl,...,Zk, /f de—l—l AN

To compute eq. for fi,, use ON(Z) = ¢(Z1)

Propagation of chaos

N
Assume f( H (Zy,t)+ negligible terms as N — oo

Define p}, (z,t) :/f}\,(a:',v,t) dv
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Eq. for first marginal 15

%/le(Zl)¢(Z1)le = SNl(K)/((b(azl,vg)—cb(xhvl)) (21) 1Y (Z2)
x(/K(rN(l,Q)(:E’)) [1 o5 (o) doe) dz, dz,
=3
where .
SY(K) = 1 ¥ K<L) ~ 1K(r)dr: 1
N -1 — N -1 0
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Estimate of interaction term 16

[ K 0,200) T oo e = B{K 00,200, 22,250 )

(=3
when x3,...,x N are iid random variables following the law ,0]1\,
N-2 .
= 2 K(]‘zf—i;ll) (N]_ 2)Prob(Card{k €{3,...N}st. |z — z1| < |z2 — 21|} :j)

N—2 .

— N —1 J
7=0

where m = M1 (1, |22 — 21]) :/ py () d

[z —z1|[<|z2—x1]

~ Bernstein polynomial approximation of K(m)

= K(m) + O(x)

i
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Kinetic equation (smooth dynamics) 17

In the limit N — oo, if f3,(Z,) — f(Z,), then

4 [ 1@z iz -
= / (¢(21,v2) = d(21,01)) f(Z1) [(Za) K (Mp(21, |22 — 21]))dZ1 dZ3

In strong form (adding back the drift term):

Of+v-Vof =Q(f
(z,v) = p(x /f:v v) z,|z" — xz|)) dz’ — f(z,v)

with Mp(x,s):/ p(x") da’
|z’ —x|<s
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Mass conservation 18

/Q(f)dvz( / 7') K (M,(, |x—a:\))dx’—1)

/K dm—l =0

So, the continuity eq. is satified

Op+ V- j=0, j(z,t) = f(x,v,t)vdv
R™

i
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3. Nearest neighbor

A. Blanchet & P. D., J. Stat. Phys. 169 (2019), 929-950

i
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Nearest neighbor interaction 20

At each collision event:
A particle is selected randomly with uniform probability
When selected, particle ¢ follows its nearest neighbor

I.e. the probability 7r . of ¢ interacting with 7 is

N = 5(RN(i,j) _ 1)

here: rank is un-normalized: R™ (i,5) € {1,. — 1} so:

777{\7’ = (0 except if j = nearest neighbor in Whlch case 7T =1

Rate of collision events: A\(N) N with A(N) — oo TBD

Master eq. unchanged: - multiply by A(V)
- replace K™ (r™V (i, 7)) by 6(RN (4, 5) — 1)
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Eq. for first marginal 21

d

dt

/ffV(Zl)¢(Zl)d21 :/(</5(5L‘17712)—Gﬁ(xlvvl))ffv(zl)ffv(zz)

(A (V- 1) / S(RY (1L.2)(@) — 1) [] phe(e) dae) d2, dZy
=3

Need to estimate the behavior as N — oo of:
N
AN (¥ = 1) [ 8(RY(1,2)(@) 1) T (o) d
=3

Drop scripts IV and 1 for clarity
e.g. I replaced by f; pi¥ replaced by p

i
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Estimate of interaction term 290

/5(RN (1,2)( Hp z¢) dzy = {5(RN(1,2)(:E) _ 1)}
when x3,...,xy are iid random variables following the law p

— Prob(Card{k c{3,...N} s.t. |z —x1| <|xo —561‘} — O)
— (1—m>(N_2)

where m = M, (z1, |z — x1]) :/ p(x) dx
|lz—x1 |<|w2—21]

So: A(N) (N — 1) /5(RN(1, 2) () — 1) [ plexe) dace =
{=3

= A(N) (N = 1)(1 = M, (a1, |22 — 21])) "
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Estimate of first marginal 23

d

dat / F(21) 6(21) dzy = / (9(@1,02) = d(@r,v1) f(21,01) f (@2, 02)

XA(N) (N — 1)(1 — M, (x1, |x2 — :Cl\))(N_Q) dx1 dxo dvy dvsy

Use polar coordinates zy = 1 + 7w, r € [0,00), w € S*~1
d
E/f(21)¢(21)d21 =
- / (gb(a:l, v2) — (1, Ul)) f(xlavl)Ff?V(Qfl,UQ) dx1 dvy dvs

F?(zl,vg) = A(N) (N — 1)/f(:1;1 + rw, vg) (1 — Mp(ajl,r))(N_2) r" 1 dr dw
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Estimate of F]{V o4

Change of variables m = M,(z1,r) & r = R,(x1,m), m € [0,1)

F}V(azl,vg):)\(]\f) (N—l)/o Gr(x1,ve,m) (1 —m)N 2dm

. [ f(z1 + Ry(x1,m)w, ve) dw
h —
with  Gg(x1,v2, m) T oo & Ry (an,m)w) d

As m — 0
f(x1,v2) 2 pn 1 2
Gs(x1,v2,m) = +mn > D(p, f)(x1,v2) +o(m™n
with

D(p, f)(@1,v2) = Ag f(@1,v2) — f(wl’UQ)AxP(ﬂfl)
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Collision frequency scaling 25

Take:

1 '__1 2
— = (N-1) w(1—m)™¥?d

A(N) — 00 as N — oo. For instance: A\(N) = 2N if n =2

larger frequency than in smooth case

Then, as N — oc:

f($177]2) y 1
p(z1) pnt(z)

Concentration of measure at m =0

F¥(x1,v2) = A(N) D(p, f)(@1,v2)

i
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Kinetic equation (nearest neighbor) 26

In the limit N — oo, if f3,(Z,) — f(Z,), then

/f r1,v1,t) ¢(x1,v1) dry dvy =

= /( ¢(x1,v2) — Qb(xla’Ul)) f(x1,v1) pii( ) D(p, f)(x1,v9) dx das dvg
= 1,0 L 1,V —f(xl’vl) T 21 dv
_/qb( 1, 1)10% o) |:Aa:f( 1,01) o(27) Azp( 1)}d 1 duq

In strong form (adding back the drift term):

6tf+v'vxf:Q(f>

_ ! I (GO
QAN @) =~z (Aaf(@0) = = 5 Arp(@))

i
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Mass conservation 27

/Q(f) dv =10 (obvious)

So, the continuity eq. is satisfied

Op+ V- j=0, j(z,t) = f(x,v,t)vdv
R’I’L

i
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4. Conclusion

il
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Conclusion and perspectives 29

Smooth rank-based topological interaction

Derivation of spatially non-local Boltzmann model
Highly nonlinear new collision operator

Proof of propagation of chaos and convergence

Nearest-neighbor interaction

gives rise to spatial nonlinear diffusion

Still preserves continuity eq.

Perspectives
Well-posedness of the resulting egs.

Proof of propagation of chaos in NN interaction
Hydrodynamic limits

Extension to more complex interaction rules

i
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