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1. Topological interactions
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4Flocking dynamics

System with locally interacting agents
Emergence of spatio-temporal coordination

Patterns, structures, correlations, synchronization

No leader
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5Interaction types

Mean-field (metric) interaction
Particle interact with all particles within a certain distance

Examples: Alignment (Vicsek . . . )
Consensus (Cucker-Smale, Motsch-Tadmor, . . . )
Attraction-repulsion (Bertozzi, Carrillo, . . . )

Binary (ternary, . . . )
Particle interacts with a partner at contact

Examples: Hard-sphere collisions (Boltzmann . . . )
Alignment (Bertin, Droz & Grégoire, . . . )

R

Xk

Vk
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6Third type: topological interactions

Particles interact with other particles
according to their rank

[Ballerini et al, PNAS 2008]
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7Kinetic models for topological interactions

Kinetic models

Largely investigated for mean-field metric

or binary interactions

Kinetic models for topological interactions are recent:

J. Haskovec [Physica D 2013], Benedetto et al [arxiv 2021]
for Cucker-Smale type interactions

Y. Brenier
for a competition model

Our work: Boltzmann approach
Adapting ’Choose the Leader’ model from

[Carlen, D., Wennberg, M3AS 2013],

[Carlen, Chatelin, D., Wennberg, Physica D 2013]
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2. Smooth rank-based dynamics

A. Blanchet & P. D., J. Stat. Phys 163 (2016) 41-60

P. D. & M. Pulvirenti, Ann. Appl. Prob. 29 (2019) 2594-2612
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9Rank

N particles (xi(t), vi(t))i=1,...,N , (xi, vi) ∈ R
2n

At given time t, Rank RN(i, j) of j w.r.t. i:
Sort (|xk − xi|)k=1,...,n, k 6=i by increasing order

RN (i, j) is rank of |xj − xi| in the list

RN (i, j) ∈ {1, . . . , N − 1}

x1

x2

x4

x3

R(1, 4) = 3R(1, 2) = 2R(1, 3) = 1
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10Interaction probabilities

Normalized rank: rN(i, j) =
RN(i, j)

N − 1
∈

N
⋃

k=1

{
k

N − 1
}

Given: K : [0, 1] → [0,∞) s.t.
∫ 1

0
K(r) dr = 1

define KN (r) =
K(r)

∑N−1
k=1 K( k

N−1)

Interaction probabilities:

πN
ij probability of i interacting with j: πN

ij = KN (rN (i, j))

Note:

N
∑

j=1

j 6=i

πN
ij =

N
∑

j=1

j 6=i

KN (rN (i, j)) = 1
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11N -particle dynamics

Free flights ẋi = vi, v̇i = 0

Collisions: at Poisson random times with rate N :

Pick i ∈ {1, . . . , N} with uniform probability 1/N

Pick j ∈ {1, . . . , N}, j 6= i with probability πN
ij

Perform: (xi, xj) remains unchanged

(vi, vj) changed into (vj , vj)

π14

π12

π13

x2

x4

x3

x1
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12Properties & Goal

Properties

Rank is a function of positions rN (i, j) = rN (i, j)(x1, . . . , xN )

and so is πN
ij : πN

ij = KN (rN (i, j)(x1, . . . , xN ))

Rank is permutation-invariant
rN (σ(i)σ(j))(xσ(1), . . . , xσ(N)) = rN (i, j)(x1, . . . , xN )

Goal

Derive a Boltzmann operator
under Propagation of Chaos assumption

Note: BBGKY does not work in general
because all particles interact with all particles
but works if K is real analytic [P.D., Pulvirenti]

Previous work using similar ideas:
[D. & Ringhofer, SIAM Appl. Math. 2007] (min interaction)
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13Master equation

Notations: ~x = (x1, . . . , xN ), ~v = (v1, . . . , vN )

Zj = (xj , vj), ~Z = (Z1, . . . , ZN ), d~Z = dZ1 . . . dZN

fN(~Z, t): N -particle distribution function

Find eq. for fN (master equation)
Follow strategy of [Carlen, D., Wennberg, M3AS 2013]

Take ΦN (~Z) a test function
Drop drift term for simplicity

d

dt

∫

fN ΦN d~Z =

N

∫

[ 1

N

∑

i 6=j

πN
ij (~x) Φ

N (Z1, . . . , xi, vj , . . . xj , vj , . . . ZN )− ΦN (~Z)
]

fN (~Z, t) d~Z

If fN |t=0 is permutation invariant

then fN (t) is permutation invariant
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14Marginals and propagation of chaos

Marginal: fk
N (Z1, . . . , Zk, t) =

∫

fN (~Z, t) dZk+1 . . . dZN

To compute eq. for f1
N , use ΦN (~Z) = φ(Z1)

Propagation of chaos

Assume fN (~Z, t) =

N
∏

ℓ=1

f1
N (Zℓ, t)+ negligible terms as N → ∞

Define ρ1N (x, t) =

∫

f1
N (x, v, t) dv
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15Eq. for first marginal

d

dt

∫

fN
1 (Z1)φ(Z1) dZ1 =

1

SN (K)

∫

(

φ(x1, v2)− φ(x1, v1)
)

fN
1 (Z1) f

N
1 (Z2)

×
(

∫

K
(

rN (1, 2)(~x)
)

N
∏

ℓ=3

ρ1N (xℓ) dxℓ

)

dZ1 dZ2

where

SN (K) =
1

N − 1

N−1
∑

k=1

K
( k

N − 1

)

≈

∫ 1

0

K(r) dr = 1

Need to estimate the behavior as N → ∞ of:

∫

K
(

rN (1, 2)(~x)
)

N
∏

ℓ=3

ρ1N (xℓ) dxℓ
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16Estimate of interaction term

∫

K
(

rN (1, 2)(~x)
)

N
∏

ℓ=3

ρ1N (xℓ) dxℓ = E

{

K
(

rN (1, 2)(x1, x2, x3, . . . , xN )
)

}

when x3, . . . , xN are iid random variables following the law ρ1N

=

N−2
∑

j=0

K
( j + 1

N − 1

)

(N − 2

j

)

Prob
(

Card
{

k ∈ {3, . . . N} s.t. |xk − x1| ≤ |x2 − x1|
}

= j
)

=

N−2
∑

j=0

K
( j + 1

N − 1

)

(N − 2

j

)

mj (1−m)(N−2)−j

where m = Mρ1

N

(x1, |x2 − x1|) =

∫

|x−x1|≤|x2−x1|

ρ1N (x) dx

≈ Bernstein polynomial approximation of K(m)

= K(m) +O( 1
N
)
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17Kinetic equation (smooth dynamics)

In the limit N → ∞, if f 1
N(Z1) → f(Z1), then

d

dt

∫

f(Z1, t)φ(Z1) dZ1 =

=

∫

(

φ(x1, v2)− φ(x1, v1)
)

f(Z1) f(Z2)K
(

Mρ(x1, |x2 − x1|)
)

dZ1 dZ2

In strong form (adding back the drift term):

∂tf + v · ∇xf = Q(f)

Q(f)(x, v) = ρ(x)

∫

f(x′, v)K
(

Mρ(x, |x
′ − x|)

)

dx′ − f(x, v)

with Mρ(x, s) =

∫

|x′−x|≤s

ρ(x′) dx′
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18Mass conservation

∫

Q(f) dv = ρ(x)
(

∫

ρ(x′)K
(

Mρ(x, |x
′ − x|)

)

dx′ − 1
)

= ρ(x)
(

∫

K(m) dm− 1
)

= 0

So, the continuity eq. is satified

∂tρ+∇x · j = 0, j(x, t) =

∫

Rn

f(x, v, t) v dv
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3. Nearest neighbor

A. Blanchet & P. D., J. Stat. Phys. 169 (2019), 929-950
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20Nearest neighbor interaction

At each collision event:

A particle is selected randomly with uniform probability

When selected, particle i follows its nearest neighbor

i.e. the probability πN
ij of i interacting with j is

πN
ij = δ

(

RN (i, j)− 1
)

here: rank is un-normalized: RN (i, j) ∈ {1, . . . , N − 1}, so:

πN
ij = 0 except if j = nearest neighbor in which case πN

ij = 1

Rate of collision events: λ(N)N with λ(N) → ∞ TBD

Master eq. unchanged: - multiply by λ(N)

- replace KN (rN (i, j)) by δ(RN (i, j)− 1)
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21Eq. for first marginal

d

dt

∫

fN
1 (Z1)φ(Z1) dZ1 =

∫

(

φ(x1, v2)− φ(x1, v1)
)

fN
1 (Z1) f

N
1 (Z2)

×
(

λ(N) (N − 1)

∫

δ
(

RN (1, 2)(~x)− 1
)

N
∏

ℓ=3

ρ1N (xℓ) dxℓ

)

dZ1 dZ2

Need to estimate the behavior as N → ∞ of:

λ(N) (N − 1)

∫

δ
(

RN (1, 2)(~x)− 1
)

N
∏

ℓ=3

ρ1N (xℓ) dxℓ

Drop scripts N and 1 for clarity

e.g. fN
1 replaced by f ; ρN1 replaced by ρ
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22Estimate of interaction term

∫

δ
(

RN (1, 2)(~x)− 1
)

N
∏

ℓ=3

ρ(xℓ) dxℓ = E

{

δ
(

RN (1, 2)(~x)− 1
)

}

when x3, . . . , xN are iid random variables following the law ρ

= Prob
(

Card
{

k ∈ {3, . . . N} s.t. |xk − x1| ≤ |x2 − x1|
}

= 0
)

= (1−m)(N−2)

where m = Mρ(x1, |x2 − x1|) =

∫

|x−x1|≤|x2−x1|

ρ(x) dx

So: λ(N) (N − 1)

∫

δ
(

RN (1, 2)(~x)− 1
)

N
∏

ℓ=3

ρ(xℓ) dxℓ =

= λ(N) (N − 1)
(

1−Mρ(x1, |x2 − x1|)
)(N−2)
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23Estimate of first marginal

d

dt

∫

f(Z1)φ(Z1) dZ1 =

∫

(

φ(x1, v2)− φ(x1, v1)
)

f(x1, v1) f(x2, v2)

×λ(N) (N − 1)
(

1−Mρ(x1, |x2 − x1|)
)(N−2)

dx1 dx2 dv1 dv2

Use polar coordinates x2 = x1 + rω, r ∈ [0,∞), ω ∈ S
n−1

d

dt

∫

f(Z1)φ(Z1) dZ1 =

=

∫

(

φ(x1, v2)− φ(x1, v1)
)

f(x1, v1)F
N
f (x1, v2) dx1 dv1 dv2

FN
f (x1, v2) = λ(N) (N − 1)

∫

f(x1 + rω, v2)
(

1−Mρ(x1, r)
)(N−2)

rn−1 dr dω
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24Estimate of FN
f

Change of variables m = Mρ(x1, r) ⇔ r = Rρ(x1,m), m ∈ [0, 1)

FN
f (x1, v2) = λ(N) (N − 1)

∫ 1

0

Gf (x1, v2,m) (1−m)N−2 dm

with Gf (x1, v2,m) =

∫

f(x1 +Rρ(x1,m)ω, v2) dω
∫

ρ(x1 +Rρ(x1,m)ω) dω

As m → 0

Gf (x1, v2,m) =
f(x1, v2)

ρ(x1)
+m

2

n

n
2

n
−1

2

1

ρ
2

n
+1(x1)

D(ρ, f)(x1, v2) + o
(

m
2

n

)

with

D(ρ, f)(x1, v2) = ∆xf(x1, v2)−
f(x1, v2)

ρ(x1)
∆xρ(x1)
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25Collision frequency scaling

Take:
1

λ(N)
= (N − 1)

n
2

n
−1

2

∫ 1

0

m
2

n (1−m)N−2 dm

λ(N) → ∞ as N → ∞. For instance: λ(N) = 2N if n = 2

larger frequency than in smooth case

Then, as N → ∞:

FN
f (x1, v2)− λ(N)

f(x1, v2)

ρ(x1)
−→

1

ρ
2

n
+1(x1)

D(ρ, f)(x1, v2)

Concentration of measure at m = 0
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26Kinetic equation (nearest neighbor)

In the limit N → ∞, if f 1
N(Z1) → f(Z1), then

d

dt

∫

f(x1, v1, t
′)φ(x1, v1) dx1 dv1 =

=

∫

(

φ(x1, v2)− φ(x1, v1)
)

f(x1, v1)
1

ρ
2

n
+1(x1)

D(ρ, f)(x1, v2) dx1 dx2 dv2

=

∫

φ(x1, v1)
1

ρ
2

n (x1)

[

∆xf(x1, v1)−
f(x1, v1)

ρ(x1)
∆xρ(x1)

]

dx1 dv1

In strong form (adding back the drift term):

∂tf + v · ∇xf = Q(f)

Q(f)(x, v) =
1

ρ(x)
2

n

(

∆xf(x, v)−
f(x, v)

ρ(x)
∆xρ(x)

)
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27Mass conservation

∫

Q(f) dv = 0 (obvious)

So, the continuity eq. is satisfied

∂tρ+∇x · j = 0, j(x, t) =

∫

Rn

f(x, v, t) v dv
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4. Conclusion
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29Conclusion and perspectives

Smooth rank-based topological interaction

Derivation of spatially non-local Boltzmann model

Highly nonlinear new collision operator

Proof of propagation of chaos and convergence

Nearest-neighbor interaction

gives rise to spatial nonlinear diffusion

Still preserves continuity eq.

Perspectives

Well-posedness of the resulting eqs.

Proof of propagation of chaos in NN interaction

Hydrodynamic limits

Extension to more complex interaction rules


	
	hypertarget {sum}{Summary}
	
	Flocking dynamics
	Interaction types
	Third type: topological interactions
	Kinetic models for topological interactions
	
	Rank
	Interaction probabilities
	$N$-particle dynamics
	Properties & Goal
	Master equation
	Marginals and propagation of chaos
	Eq. for first marginal
	Estimate of interaction term
	Kinetic equation (smooth dynamics)
	Mass conservation
	
	Nearest neighbor interaction
	Eq. for first marginal
	Estimate of interaction term
	Estimate of first marginal
	Estimate of $F^N_{f}$
	Collision frequency scaling
	Kinetic equation (nearest neighbor)
	Mass conservation
	
	Conclusion and perspectives

