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Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics
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Multi-agent systems – Finite dimensional setting

Multi-agents dynamics can be described by systems of ODEs

ẋi(t) = vi(t,x(t), xi(t)), i ∈ {1, . . . , N},

where

⋄ x = (x1, ..., xN ) ∈ (Rd)N encodes the states of the agents,

⋄ vi : [0, T ]× (Rd)N × Rd → Rd are non-local velocity fields.

Breadcrumb trail example (Time-dependent cooperative dynamics)

vi(t,x, xi) =
1

N

N∑
j=1

aij(t)ϕ(|xi − xj |)(xj − xi).

Central observation (pattern formation)

Simple microscopic interactions⇝ rich macroscopic structures.
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Multi-agent systems – Formation of global patterns

Example (Classical patterns arising in multi-agent systems)

⋄ Consensus (everybody goes at the same place)

⋄ Flocking (everybody goes in the same direction)

⋄ Synchronisation (periodic motions arise in the system)

Macroscopic approximations (Main motivations)

⋄ Interest for global patterns, i.e. that involve many agents,

⋄ N is usually very large ⇝ numerical issues

Today: Consensus for micro and macro cooperative systems.
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Multi-agent systems – General cooperative dynamics

We consider the cooperative dynamics

ẋi(t) =
1

N

N∑
j=1

aij(t)ϕ(|xi(t)− xj(t)|)(xj(t)− xi(t)),

where

⋄ ϕ ∈ Lip(R+,R∗
+) encodes distance-based interactions,

⋄ aij(·) ∈ L∞(R+, [0, 1]) represent communication links.

Definition (Graph-Laplacian operators)

The graph-Laplacian LN (t,x) : (Rd)N → (Rd)N is defined by

LN (t,x)y =

(
1
N

N∑
i=1

aij(t)ϕ(|xi − xj |)(yj − yi)

)
1≤i≤N

.

↪→ Semilinear reformulation of the dynamics

ẋ(t) = −LN (t,x(t))x(t). (CS)
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Multi-agent systems – Reformulation as graphons (1)

Idea: Study consensus for the mean-field approximation

∂tµN (t) + divx
(
Φ(t) ⋆ µN (t)µN (t)

)
= 0

[Ha&Liu’09, Carrillo,Fornasier,Rosado&Toscani’10, Piccoli,Rossi&Trélat’15].

Problem: Mean-field needs indistinguishability, i.e. aij(t) = 1.

Definition (Graph limit)[LS’07,M’14]

Given a solution x(·) of (CS), define the piecewise constant maps

i ∈ I 7→ xN (t, i) :=

N∑
k=1

xk(t)1[k−1
N ,

k
N

)(i)
and

i, j ∈ I 7→ aN (t, i, j) :=

N∑
k,l=1

akl(t)1[k−1
N ,

k
N

)(i)1[ l−1
N ,

l
N

)(j)
and denote by I := [0, 1] the (continuum of) indices.
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Multi-agent systems – Reformulation as graphons (2)

I

Rd

x1

x2

x3

xN

0 1
N

2
N

3
N

. . . . . . 1

Graphon reformulation of (CS) ⇝ infinite dimensional ODEs

∂tx(t, i) =

∫
I
a(t, i, j)ϕ(|x(t, i)−x(t, j)|)(x(t, j)−x(t, i))dj (GD)

for L 1-almost every i ∈ I.
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Consensus – Definition and main ideas
Definition (Asymptotic consensus formation)

A solution x(·) of (CS) converges to consensus if

lim
t→+∞

|xi(t)− x∞| = 0,

for all i ∈ {1, . . . , N} and some x∞ ∈ Rd.

Idea: Quantitative convergence results ⇝ Lyapunov methods!

Definition (Candidate energy functionals)

We define the variance functional

V(x) := 1

2N

N∑
i=1

|xi − x̄|2 (ℓ2-convergence),

and the diameter

D(x) := max
i, j∈{1,...,N}

|xi − xj | (ℓ∞-convergence),

↪→ Decay prescribed by two intrinsic scalar quantities.
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Consensus – Scrambling coefficient and diameter estimates
Definition (Scrambling coefficient)[Seneta’79]

The scrambling of a graph AN = (aij)
N
i,j=1 satisfying aii = 1 is

η(AN ) := min
1≤i,j≤N

1

N

( N∑
k=1,k ̸=i,j

min
{
aik, ajk

}
+ aij + aji

)
↪→ Positive if each (i, j) either interact or follow the same k.

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

Theorem (Quantitative diameter decay)[Motsch&Tadmor’14]

For each x0 ∈ (Rd)N , there exists ϕ0 > 0 such that

D(x(t)) ≤ D(x0) exp

(
− ϕ0

∫ t

0
η(AN (s))ds

)
.
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Consensus – Fiedler number and variance estimates
Definition (Algebraic connectivity of a graph)[Fiedler’73, Mohar’91]

The Fiedler number of a symmetric graph AN = (aij)
N
i=1 is

λ2(AN ) = inf
x∈C⊥

N

⟨LN x,x⟩N
|x|2N

,

where (LNx)i =
1
N

N∑
j=1

aij(xi − xj), ⟨x,y⟩N := 1
N

N∑
i=1

⟨xi, yi⟩ and

CN :=
{
x ∈ (Rd)N s.t. x1 = · · · = xN

}
is the consensus manifold.

Theorem (Quantitative variance decay)[Motsch&Tadmor’14]

Suppose that AN (t) = (aij(t))
N
i,j=1 is symmetric for a.e. t ∈ R+.

Then for each x0 ∈ (Rd)N , there exists ϕ0 > such that

V(x(t)) ≤ V(x0) exp

(
− ϕ0

∫ t

0
λ2(AN (s))ds

)
.
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Consensus – Idea of the proof in the symmetric case

d
dtV(x(t)) =

1
N

N∑
i=1

〈
ẋi(t), xi(t)− x̄

〉

= 1
N

N∑
i=1

〈(
LN (t)(x(t)− x̄)

)
i
, (xi(t)− x̄)

〉⇓ LN (t)x̄ = 0

= −
〈
LN (t)(x(t)− x̄), (x(t)− x̄)

〉
N

⇓ Def. of ⟨·, ·⟩N

≤ −λ2(AN (t))|x(t)− x̄|2N

⇓ Def. of λ2(AN (t))

= −λ2(AN (t))V(x(t))

⇓ Def. of V(x(t))

↪→ Grönwall lemma and we’re done!
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⇓ Def. of V(x(t))

↪→ Grönwall lemma and we’re done!
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Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar’91]

A symmetric graph AN = (aij)
N
i,j=1 is strongly connected, i.e.

for all i, j there exists i = k1, . . . , km = j s.t. aklkl+1
> 0

if and only if λ2(AN ) > 0.

Question: What happens when AN is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A graph AN is a disjoint union of str. connected components
(“DUSCC”) if and only if there exists (v1, . . . , vN ) ∈ (R∗

+)
N s.t.

L∗
Nv = 0 and 1

N

N∑
i=1

vi = 1

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (R∗
+)

dN .

Remark: L∗
N (1, . . . , 1) = 0 if AN is symmetric ⇝ always DUSCC!



14/25

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar’91]

A symmetric graph AN = (aij)
N
i,j=1 is strongly connected, i.e.

for all i, j there exists i = k1, . . . , km = j s.t. aklkl+1
> 0

if and only if λ2(AN ) > 0.

Question: What happens when AN is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A graph AN is a disjoint union of str. connected components
(“DUSCC”) if and only if there exists (v1, . . . , vN ) ∈ (R∗

+)
N s.t.

L∗
Nv = 0 and 1

N

N∑
i=1

vi = 1

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (R∗
+)

dN .

Remark: L∗
N (1, . . . , 1) = 0 if AN is symmetric ⇝ always DUSCC!



14/25

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar’91]

A symmetric graph AN = (aij)
N
i,j=1 is strongly connected, i.e.

for all i, j there exists i = k1, . . . , km = j s.t. aklkl+1
> 0

if and only if λ2(AN ) > 0.

Question: What happens when AN is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A graph AN is a disjoint union of str. connected components
(“DUSCC”) if and only if there exists (v1, . . . , vN ) ∈ (R∗

+)
N s.t.

L∗
Nv = 0 and 1

N

N∑
i=1

vi = 1

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (R∗
+)

dN .

Remark: L∗
N (1, . . . , 1) = 0 if AN is symmetric ⇝ always DUSCC!



14/25

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar’91]

A symmetric graph AN = (aij)
N
i,j=1 is strongly connected, i.e.

for all i, j there exists i = k1, . . . , km = j s.t. aklkl+1
> 0

if and only if λ2(AN ) > 0.

Question: What happens when AN is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A graph AN is a disjoint union of str. connected components
(“DUSCC”) if and only if there exists (v1, . . . , vN ) ∈ (R∗

+)
N s.t.

L∗
Nv = 0 and 1

N

N∑
i=1

vi = 1

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (R∗
+)

dN .

Remark: L∗
N (1, . . . , 1) = 0 if AN is symmetric ⇝ always DUSCC!



14/25

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar’91]

A symmetric graph AN = (aij)
N
i,j=1 is strongly connected, i.e.

for all i, j there exists i = k1, . . . , km = j s.t. aklkl+1
> 0

if and only if λ2(AN ) > 0.

Question: What happens when AN is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A graph AN is a disjoint union of str. connected components
(“DUSCC”) if and only if there exists (v1, . . . , vN ) ∈ (R∗

+)
N s.t.

L∗
Nv = 0 and 1

N

N∑
i=1

vi = 1

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (R∗
+)

dN .

Remark: L∗
N (1, . . . , 1) = 0 if AN is symmetric ⇝ always DUSCC!



14/25

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar’91]

A symmetric graph AN = (aij)
N
i,j=1 is strongly connected, i.e.

for all i, j there exists i = k1, . . . , km = j s.t. aklkl+1
> 0

if and only if λ2(AN ) > 0.

Question: What happens when AN is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A graph AN is a disjoint union of str. connected components
(“DUSCC”) if and only if there exists (v1, . . . , vN ) ∈ (R∗

+)
N s.t.

L∗
Nv = 0 and 1

N

N∑
i=1

vi = 1

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (R∗
+)

dN .

Remark: L∗
N (1, . . . , 1) = 0 if AN is symmetric ⇝ always DUSCC!



15/25

Consensus – About algebraic and graph connectivity (2)
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Definition (Generalised algebraic connectivity for graphs)[Wu’05]

The algebraic connectivity of a DUSCC graph AN is

λ2(AN ) := inf
x∈C⊥

N

⟨Lv
N x,x⟩N
|x|2N

where Lv
N := diag(v)LN is the renormalised graph-Laplacian.

Question: Link with graph connectivity and variance estimates ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A DUSCC graph AN is str. connected if and only if λ2(AN ) > 0.
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Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics
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Graphon dynamics – Adjacency and graph-Laplacian

We consider the graphon dynamics

∂tx(t, i) =

∫
I
a(t, i, j)ϕ(|x(t, i)− x(t, j)|)(x(t, j)− x(t, i))dj

where a(t) ∈ L∞(I × I, [0, 1]) represents the communications.

Definition (Adjacency, degree and graph-Laplacian operators)

We define the adjacency operator by

A(t, x) y : i ∈ I 7→
∫
I
a(t, i, j)ϕ(|x(i)− x(j)|)y(j)dj,

as well as the graph-Laplacian L(t, x) : L2(I,Rd) → L2(I,Rd)

L(t, x)y : i ∈ I 7→
∫
I
a(t, i, j)ϕ(|x(i)− x(j)|)(y(i)− y(j))dj.

↪→ Semilinear reformulation of the dynamics

ẋ(t) = −L(t, x(t))x(t). (GD)
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Graphon dynamics – Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS’22]

We define the scrambling coefficient of a graphon A by

η(A) := inf
i,j∈I

∫
I
min{a(i, k), a(j, k)}dk,

as well as the diameter of a map x ∈ L∞(I,Rd)

D(x) := sup
i,j∈I

|x(i)− x(j)|.

Theorem (Quantitative diameter decay)[BPDS’22]

For each x0 ∈ L∞(I,Rd), there exists ϕ0 > 0 such that

D(x(t)) ≤ D(x0) exp

(
− ϕ0

∫ t

0
η(A(s))ds

)
.

Two technical novelties

⋄ No stochastic normalisation trick ⇝ Geometric argument.

⋄ t 7→ D(x(t)) not diff. ⇝ approx. with Scorza-Dragoni.



18/25

Graphon dynamics – Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS’22]

We define the scrambling coefficient of a graphon A by

η(A) := inf
i,j∈I

∫
I
min{a(i, k), a(j, k)}dk,

as well as the diameter of a map x ∈ L∞(I,Rd)

D(x) := sup
i,j∈I

|x(i)− x(j)|.

Theorem (Quantitative diameter decay)[BPDS’22]

For each x0 ∈ L∞(I,Rd), there exists ϕ0 > 0 such that

D(x(t)) ≤ D(x0) exp

(
− ϕ0

∫ t

0
η(A(s))ds

)
.

Two technical novelties

⋄ No stochastic normalisation trick ⇝ Geometric argument.

⋄ t 7→ D(x(t)) not diff. ⇝ approx. with Scorza-Dragoni.



18/25

Graphon dynamics – Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS’22]

We define the scrambling coefficient of a graphon A by

η(A) := inf
i,j∈I

∫
I
min{a(i, k), a(j, k)}dk,

as well as the diameter of a map x ∈ L∞(I,Rd)

D(x) := sup
i,j∈I

|x(i)− x(j)|.

Theorem (Quantitative diameter decay)[BPDS’22]

For each x0 ∈ L∞(I,Rd), there exists ϕ0 > 0 such that

D(x(t)) ≤ D(x0) exp

(
− ϕ0

∫ t

0
η(A(s))ds

)
.

Two technical novelties

⋄ No stochastic normalisation trick ⇝ Geometric argument.

⋄ t 7→ D(x(t)) not diff. ⇝ approx. with Scorza-Dragoni.



18/25

Graphon dynamics – Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS’22]

We define the scrambling coefficient of a graphon A by

η(A) := inf
i,j∈I

∫
I
min{a(i, k), a(j, k)}dk,

as well as the diameter of a map x ∈ L∞(I,Rd)

D(x) := sup
i,j∈I

|x(i)− x(j)|.

Theorem (Quantitative diameter decay)[BPDS’22]

For each x0 ∈ L∞(I,Rd), there exists ϕ0 > 0 such that

D(x(t)) ≤ D(x0) exp

(
− ϕ0

∫ t

0
η(A(s))ds

)
.

Two technical novelties

⋄ No stochastic normalisation trick ⇝ Geometric argument.

⋄ t 7→ D(x(t)) not diff. ⇝ approx. with Scorza-Dragoni.



19/25

Graphon dynamics – Strong connectivity for graphons
Definition (Graphon connectivity)[Boudin,Salvarini&Trélat’21]

A graphon A is strongly connected if the following holds.

(i) (Connectivity) For L 1-almost every i, j ∈ I, there exists
i = k1, . . . , km = j such that kl+1 ∈ supp(a(kl, ·)).

(ii) (Degree lower-bound) infi∈I
∫
I a(i, j)dj ≥ δ > 0.

Theorem (Canonical kernel of L∗)[Boudin,Salvarini&Trélat’21]

If A is strongly connected, there exists a unique v ∈ L2(I,R∗
+) s.t.

L∗v = 0 and
∫
I v(i)di = 1.



19/25

Graphon dynamics – Strong connectivity for graphons
Definition (Graphon connectivity)[Boudin,Salvarini&Trélat’21]
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Graphon dynamics – Algebraic and graphon connectivity

Definition (Generalised algebraic connectivity)

We define the algebraic connectivity of a DCUSCC graphon A by

λ2(A) := inf
x∈C⊥

⟨Lv x, x⟩L2(I)

∥x∥2
L2(I)

where

⋄ C :=
{
x ∈ L2(I,Rd) constant

}
is the consensus manifold,

⋄ Lv := Mv L the renormalised graph-Laplacian.

Theorem (On algebraic and graphon connectivity)[BPDS’22]

For a graphon A, the following connectivity characterisations hold.

⋄ If A is symmetric, strong connectedness ⇐⇒ λ2(A) > 0.

⋄ If A is DCUSCC, strong connectedness ⇐⇒ λ2(A) > 0.

Open problem: Is A DCUSCC whenever v ∈ Ker(L∗) exists ?
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Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS’22,BF’21]

Suppose that A(t) is symmetric for a.e. t ∈ R+. Then for each
x0 ∈ L∞(I,Rd) and every τ > 0, there exist ϕ0, ατ , γτ > 0 s.t.

V(x(t)) ≤ ατV(x0) exp
(
− ϕ0γτ

∫ t

0
λ2

(
1
τ

∫ s+τ
s A(σ)dσ

)
ds

)
.

V(x) := 1
2

∫
I

∫
I |x(i)− x(j)|2djdi

s s+ τ
3 s+ 2τ

3
s+ τ

1 2

34

1

1 2

34
1

1 2

34

1
1

1 2

34

1
τ

1
τ

1
τ

1
τ

λ2

(
1
τ

∫ s+τ

s
A(σ)dσ

)
> 0

Time averaging

Idea: Exponential consensus with mere average connectivity.



21/25

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS’22,BF’21]

Suppose that A(t) is symmetric for a.e. t ∈ R+. Then for each
x0 ∈ L∞(I,Rd) and every τ > 0, there exist ϕ0, ατ , γτ > 0 s.t.

V(x(t)) ≤ ατV(x0) exp
(
− ϕ0γτ

∫ t

0
λ2

(
1
τ

∫ s+τ
s A(σ)dσ

)
ds

)
.

V(x) := 1
2

∫
I

∫
I |x(i)− x(j)|2djdi

s s+ τ
3 s+ 2τ

3
s+ τ

1 2

34

1

1 2

34
1

1 2

34

1
1

1 2

34

1
τ

1
τ

1
τ

1
τ

λ2

(
1
τ

∫ s+τ

s
A(σ)dσ

)
> 0

Time averaging

Idea: Exponential consensus with mere average connectivity.



21/25

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS’22,BF’21]

Suppose that A(t) is symmetric for a.e. t ∈ R+. Then for each
x0 ∈ L∞(I,Rd) and every τ > 0, there exist ϕ0, ατ , γτ > 0 s.t.

V(x(t)) ≤ ατV(x0) exp
(
− ϕ0γτ

∫ t

0
λ2

(
1
τ

∫ s+τ
s A(σ)dσ

)
ds

)
.

V(x) := 1
2

∫
I

∫
I |x(i)− x(j)|2djdi

s s+ τ
3 s+ 2τ

3
s+ τ

1 2

34

1

1 2

34
1

1 2

34

1
1

1 2

34

1
τ

1
τ

1
τ

1
τ

λ2

(
1
τ

∫ s+τ

s
A(σ)dσ

)
> 0

Time averaging

Idea: Exponential consensus with mere average connectivity.



21/25

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS’22,BF’21]

Suppose that A(t) is symmetric for a.e. t ∈ R+. Then for each
x0 ∈ L∞(I,Rd) and every τ > 0, there exist ϕ0, ατ , γτ > 0 s.t.

V(x(t)) ≤ ατV(x0) exp
(
− ϕ0γτ

∫ t

0
λ2

(
1
τ

∫ s+τ
s A(σ)dσ

)
ds

)
.

V(x) := 1
2

∫
I

∫
I |x(i)− x(j)|2djdi

s s+ τ
3 s+ 2τ

3
s+ τ

1 2

34

1

1 2

34
1

1 2

34

1
1

1 2

34

1
τ

1
τ

1
τ

1
τ

λ2

(
1
τ

∫ s+τ

s
A(σ)dσ

)
> 0

Time averaging

Idea: Exponential consensus with mere average connectivity.
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Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS’22,BF’21]

Suppose that A(t) is symmetric for a.e. t ∈ R+. Then for each
x0 ∈ L∞(I,Rd) and every τ > 0, there exist ϕ0, ατ , γτ > 0 s.t.

V(x(t)) ≤ ατV(x0) exp
(
− ϕ0γτ

∫ t

0
λ2

(
1
τ

∫ s+τ
s A(σ)dσ

)
ds

)
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Graphon dynamics – Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon A is said to be balanced if L∗1 = 0, namely∫
I
a(i, j)dj =

∫
I
a(j, i)dj.

↪→ Equality between the in-degree and out-degree at each node.

Theorem (Variance decay for balanced graphons)[BPDS’22]

Suppose that A(t) is balanced for L 1-almost every t ∈ [0, T ] and
that ϕ(·) ≡ 1. Then for each x0 ∈ L∞(I,Rd), it holds that

V(x(t)) ≤ V(x0) exp
(
−
∫ t

0
λ2(A(s))ds

)
.

Open problem: Average condition like in the symmetric case ?
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Graphon dynamics – Variance decay and connectivity (3)

Issue: If A(t) is DCUSCC ⇝ V(·) not Lyapunov anymore!

Definition (Weighted variance)

If a graphon A is DCUSCC, we define the weighted variance by

Vv(x) :=
1

2

∫
I

∫
I
v(i)v(j)|x(i)− x(j)|2djdi.

Theorem (Variance decay for DCUSCC dwelling graphons)[BPDS’22]

Suppose that A(t) is DCUSCC for L 1-a.e. t ∈ R+ with

ν ≤ v(t, i) ≤ 1
ν for L 1-a.e. i ∈ I,

and that ϕ(·) ≡ 1. Moreover, suppose that t 7→ A(t) is piece.
const. with dwell-time τd. Then for each x0 ∈ L∞(I,Rd), it holds

V(x(t)) ≤ 1

ν2
V(x0) exp

(
− ν2

∫ t

0
λ2(A(s))ds− 2

τd
log

(
1
ν

)
t

)
.

Open problem: Could we derive an estimate without dwell-times ?
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Graphon dynamics – Link between L2- and L∞-consensus

Observation: Under the sufficient condition for L2-consensus

λ2

(
1

τ

∫ t+τ

t
A(s)ds

)
≥ µ or

1

τ

∫ t+τ

t
λ2(A(s))ds ≥ µ

we numerically observed L∞-consensus ⇝ true in general ?

Theorem (Equivalence between L2- and L∞-consensus)[BPDS’22]

Suppose that there exist constants (τ, µ) ∈ R∗
+ × (0, 1] s.t.

1

τ

∫ t+τ

t

∫
I
a(s, i, j)djds ≥ µ

for L 1-almost every i ∈ I. Then

∥x(t)− x∞∥L2(I) −→
t→+∞

0

for some x∞ ∈ Rd if and only if

∥x(t)− x∞∥L∞(I) −→
t→+∞

0.
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Conclusion – That’s all friends!
Wrap-up (Summary of presentation)

1. Convergence to consensus in micro and macro dynamics.

2. Generalisation of the scrambling and Fiedler numbers.

3. Some interesting open problems to investigate!

Thank you for your attention !
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