

Some results related to consensus formation in graphon dynamics

(in collaboration with N. Pouradier Duteil and M. Sigalotti)

Benoît Bonnet-Weill
CNRS Researcher – LAAS-CNRS

Conference “Round Meanfield: Crowd-opinion-cell”
Ypatia Laboratory of Mathematical Sciences

September 29, 2022

Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics

Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics

Multi-agent systems – *Finite dimensional setting*

Multi-agents dynamics can be described by **systems of ODEs**

$$\dot{\mathbf{x}}_i(t) = \mathbf{v}_i(t, \mathbf{x}(t), \mathbf{x}_i(t)), \quad i \in \{1, \dots, N\},$$

where

- ◇ $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \in (\mathbb{R}^d)^N$ encodes the **states** of the agents,
- ◇ $\mathbf{v}_i : [0, T] \times (\mathbb{R}^d)^N \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ are **non-local velocity fields**.

Breadcrumb trail example (Time-dependent cooperative dynamics)

$$\mathbf{v}_i(t, \mathbf{x}, \mathbf{x}_i) = \frac{1}{N} \sum_{j=1}^N a_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (\mathbf{x}_j - \mathbf{x}_i).$$

Central observation (pattern formation)

Simple **microscopic interactions** \rightsquigarrow rich **macroscopic structures**.

Multi-agent systems – *Finite dimensional setting*

Multi-agents dynamics can be described by **systems of ODEs**

$$\dot{\mathbf{x}}_i(t) = \mathbf{v}_i(t, \mathbf{x}(t), \mathbf{x}_i(t)), \quad i \in \{1, \dots, N\},$$

where

- ◇ $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \in (\mathbb{R}^d)^N$ encodes the **states** of the agents,
- ◇ $\mathbf{v}_i : [0, T] \times (\mathbb{R}^d)^N \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ are **non-local velocity fields**.

Breadcrumb trail example (Time-dependent cooperative dynamics)

$$\mathbf{v}_i(t, \mathbf{x}, \mathbf{x}_i) = \frac{1}{N} \sum_{j=1}^N \mathbf{a}_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (\mathbf{x}_j - \mathbf{x}_i).$$

Central observation (pattern formation)

Simple **microscopic interactions** \rightsquigarrow rich **macroscopic structures**.

Multi-agent systems – *Finite dimensional setting*

Multi-agents dynamics can be described by **systems of ODEs**

$$\dot{\mathbf{x}}_i(t) = \mathbf{v}_i(t, \mathbf{x}(t), \mathbf{x}_i(t)), \quad i \in \{1, \dots, N\},$$

where

- ◇ $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \in (\mathbb{R}^d)^N$ encodes the **states** of the agents,
- ◇ $\mathbf{v}_i : [0, T] \times (\mathbb{R}^d)^N \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ are **non-local velocity fields**.

Breadcrumb trail example (Time-dependent cooperative dynamics)

$$\mathbf{v}_i(t, \mathbf{x}, \mathbf{x}_i) = \frac{1}{N} \sum_{j=1}^N \mathbf{a}_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (\mathbf{x}_j - \mathbf{x}_i).$$

Central observation (pattern formation)

Simple **microscopic interactions** \rightsquigarrow rich **macroscopic structures**.

Multi-agent systems – *Formation of global patterns*

Example (Classical patterns arising in multi-agent systems)

- ◊ **Consensus** (everybody goes at the same place)
- ◊ **Flocking** (everybody goes in the same direction)
- ◊ **Synchronisation** (periodic motions arise in the system)

Macroscopic approximations (Main motivations)

- ◊ Interest for **global** patterns, i.e. that involve **many agents**,
- ◊ N is usually **very large** \rightsquigarrow **numerical** issues

Today: Consensus for **micro** and **macro** cooperative systems.

Multi-agent systems – *Formation of global patterns*

Example (Classical patterns arising in multi-agent systems)

- ◊ **Consensus** (everybody goes at the same place)
- ◊ **Flocking** (everybody goes in the same direction)
- ◊ **Synchronisation** (periodic motions arise in the system)

Macroscopic approximations (Main motivations)

- ◊ Interest for **global** patterns, i.e. that involve **many** agents,
- ◊ N is usually **very large** \rightsquigarrow **numerical** issues

Today: Consensus for **micro** and **macro** cooperative systems.

Multi-agent systems – *Formation of global patterns*

Example (Classical patterns arising in multi-agent systems)

- ◊ **Consensus** (everybody goes at the same place)
- ◊ **Flocking** (everybody goes in the same direction)
- ◊ **Synchronisation** (periodic motions arise in the system)

Macroscopic approximations (Main motivations)

- ◊ Interest for **global** patterns, i.e. that involve **many** agents,
- ◊ N is usually **very large** \rightsquigarrow **numerical** **issues**

Today: Consensus for **micro** and **macro** cooperative systems.

Multi-agent systems – *Formation of global patterns*

Example (Classical patterns arising in multi-agent systems)

- ◊ **Consensus** (everybody goes at the same place)
- ◊ **Flocking** (everybody goes in the same direction)
- ◊ **Synchronisation** (periodic motions arise in the system)

Macroscopic approximations (Main motivations)

- ◊ Interest for **global** patterns, i.e. that involve **many** agents,
- ◊ N is usually **very large** \rightsquigarrow **numerical** issues

Today: Consensus for **micro** and **macro** cooperative systems.

Multi-agent systems – General cooperative dynamics

We consider the **cooperative** dynamics

$$\dot{\mathbf{x}}_i(t) = \frac{1}{N} \sum_{j=1}^N a_{ij}(t) \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|) (\mathbf{x}_j(t) - \mathbf{x}_i(t)),$$

where

- ◇ $\phi \in \text{Lip}(\mathbb{R}_+, \mathbb{R}_+^*)$ encodes **distance-based** interactions,
- ◇ $a_{ij}(\cdot) \in L^\infty(\mathbb{R}_+, [0, 1])$ represent **communication** links.

Definition (Graph-Laplacian operators)

The **graph-Laplacian** $\mathbf{L}_N(t, \mathbf{x}) : (\mathbb{R}^d)^N \rightarrow (\mathbb{R}^d)^N$ is defined by

$$\mathbf{L}_N(t, \mathbf{x})\mathbf{y} = \left(\frac{1}{N} \sum_{i=1}^N a_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (y_j - y_i) \right)_{1 \leq i \leq N}.$$

↪ Semilinear reformulation of the dynamics

$$\dot{\mathbf{x}}(t) = -\mathbf{L}_N(t, \mathbf{x}(t))\mathbf{x}(t). \quad (\text{CS})$$

Multi-agent systems – General cooperative dynamics

We consider the **cooperative** dynamics

$$\dot{\mathbf{x}}_i(t) = \frac{1}{N} \sum_{j=1}^N a_{ij}(t) \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|) (\mathbf{x}_j(t) - \mathbf{x}_i(t)),$$

where

- ◇ $\phi \in \text{Lip}(\mathbb{R}_+, \mathbb{R}_+^*)$ encodes **distance-based interactions**,
- ◇ $a_{ij}(\cdot) \in L^\infty(\mathbb{R}_+, [0, 1])$ represent **communication links**.

Definition (Graph-Laplacian operators)

The **graph-Laplacian** $\mathbf{L}_N(t, \mathbf{x}) : (\mathbb{R}^d)^N \rightarrow (\mathbb{R}^d)^N$ is defined by

$$\mathbf{L}_N(t, \mathbf{x})\mathbf{y} = \left(\frac{1}{N} \sum_{i=1}^N a_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (y_j - y_i) \right)_{1 \leq i \leq N}.$$

↪ Semilinear reformulation of the dynamics

$$\dot{\mathbf{x}}(t) = -\mathbf{L}_N(t, \mathbf{x}(t))\mathbf{x}(t). \quad (\text{CS})$$

Multi-agent systems – General cooperative dynamics

We consider the **cooperative** dynamics

$$\dot{\mathbf{x}}_i(t) = \frac{1}{N} \sum_{j=1}^N a_{ij}(t) \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|) (\mathbf{x}_j(t) - \mathbf{x}_i(t)),$$

where

- ◇ $\phi \in \text{Lip}(\mathbb{R}_+, \mathbb{R}_+^*)$ encodes **distance-based interactions**,
- ◇ $a_{ij}(\cdot) \in L^\infty(\mathbb{R}_+, [0, 1])$ represent **communication links**.

Definition (Graph-Laplacian operators)

The **graph-Laplacian** $\mathbf{L}_N(t, \mathbf{x}) : (\mathbb{R}^d)^N \rightarrow (\mathbb{R}^d)^N$ is defined by

$$\mathbf{L}_N(t, \mathbf{x})\mathbf{y} = \left(\frac{1}{N} \sum_{i=1}^N a_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (y_j - y_i) \right)_{1 \leq i \leq N}.$$

↪ Semilinear reformulation of the dynamics

$$\dot{\mathbf{x}}(t) = -\mathbf{L}_N(t, \mathbf{x}(t))\mathbf{x}(t). \quad (\text{CS})$$

Multi-agent systems – General cooperative dynamics

We consider the **cooperative** dynamics

$$\dot{\mathbf{x}}_i(t) = \frac{1}{N} \sum_{j=1}^N a_{ij}(t) \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|) (\mathbf{x}_j(t) - \mathbf{x}_i(t)),$$

where

- ◇ $\phi \in \text{Lip}(\mathbb{R}_+, \mathbb{R}_+^*)$ encodes **distance-based interactions**,
- ◇ $a_{ij}(\cdot) \in L^\infty(\mathbb{R}_+, [0, 1])$ represent **communication links**.

Definition (Graph-Laplacian operators)

The **graph-Laplacian** $\mathbf{L}_N(t, \mathbf{x}) : (\mathbb{R}^d)^N \rightarrow (\mathbb{R}^d)^N$ is defined by

$$\mathbf{L}_N(t, \mathbf{x})\mathbf{y} = \left(\frac{1}{N} \sum_{i=1}^N a_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (\mathbf{y}_j - \mathbf{y}_i) \right)_{1 \leq i \leq N}.$$

↪ Semilinear reformulation of the dynamics

$$\dot{\mathbf{x}}(t) = -\mathbf{L}_N(t, \mathbf{x}(t))\mathbf{x}(t). \quad (\text{CS})$$

Multi-agent systems – General cooperative dynamics

We consider the **cooperative** dynamics

$$\dot{\mathbf{x}}_i(t) = \frac{1}{N} \sum_{j=1}^N a_{ij}(t) \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|) (\mathbf{x}_j(t) - \mathbf{x}_i(t)),$$

where

- ◇ $\phi \in \text{Lip}(\mathbb{R}_+, \mathbb{R}_+^*)$ encodes **distance-based interactions**,
- ◇ $a_{ij}(\cdot) \in L^\infty(\mathbb{R}_+, [0, 1])$ represent **communication links**.

Definition (Graph-Laplacian operators)

The **graph-Laplacian** $\mathbf{L}_N(t, \mathbf{x}) : (\mathbb{R}^d)^N \rightarrow (\mathbb{R}^d)^N$ is defined by

$$\mathbf{L}_N(t, \mathbf{x})\mathbf{y} = \left(\frac{1}{N} \sum_{i=1}^N a_{ij}(t) \phi(|\mathbf{x}_i - \mathbf{x}_j|) (\mathbf{y}_j - \mathbf{y}_i) \right)_{1 \leq i \leq N}.$$

↪ Semilinear reformulation of the dynamics

$$\dot{\mathbf{x}}(t) = -\mathbf{L}_N(t, \mathbf{x}(t))\mathbf{x}(t). \quad (\text{CS})$$

Multi-agent systems – *Reformulation as graphons (1)*

Idea: Study consensus for the **mean-field approximation**

$$\partial_t \mu_N(t) + \operatorname{div}_x (\Phi(t) \star \mu_N(t) \mu_N(t)) = 0$$

[Ha&Liu'09, Carrillo,Fornasier,Rosado&Toscani'10, Piccoli,Rossi&Trélat'15].

Problem: Mean-field needs **indistinguishability**, i.e. $a_{ij}(t) = 1$.

Definition (Graph limit)[LS'07,M'14]

Given a solution $\mathbf{x}(\cdot)$ of (CS), define the **piecewise constant** maps

$$i \in I \mapsto x_N(t, i) := \sum_{k=1}^N x_k(t) \mathbb{1}_{\left[\frac{k-1}{N}, \frac{k}{N}\right)}(i)$$

and

$$i, j \in I \mapsto a_N(t, i, j) := \sum_{k,l=1}^N a_{kl}(t) \mathbb{1}_{\left[\frac{k-1}{N}, \frac{k}{N}\right)}(i) \mathbb{1}_{\left[\frac{l-1}{N}, \frac{l}{N}\right)}(j)$$

and denote by $I := [0, 1]$ the (continuum of) **indices**.

Multi-agent systems – *Reformulation as graphons (1)*

Idea: Study consensus for the **mean-field approximation**

$$\partial_t \mu_N(t) + \operatorname{div}_x (\Phi(t) \star \mu_N(t) \mu_N(t)) = 0$$

[Ha&Liu'09, Carrillo,Fornasier,Rosado&Toscani'10, Piccoli,Rossi&Trélat'15].

Problem: Mean-field **needs indistinguishability**, i.e. $a_{ij}(t) = 1$.

Definition (Graph limit)[LS'07,M'14]

Given a solution $\mathbf{x}(\cdot)$ of (CS), define the **piecewise constant** maps

$$i \in I \mapsto x_N(t, i) := \sum_{k=1}^N x_k(t) \mathbb{1}_{\left[\frac{k-1}{N}, \frac{k}{N}\right)}(i)$$

and

$$i, j \in I \mapsto a_N(t, i, j) := \sum_{k,l=1}^N a_{kl}(t) \mathbb{1}_{\left[\frac{k-1}{N}, \frac{k}{N}\right)}(i) \mathbb{1}_{\left[\frac{l-1}{N}, \frac{l}{N}\right)}(j)$$

and denote by $I := [0, 1]$ the (continuum of) **indices**.

Multi-agent systems – *Reformulation as graphons (1)*

Idea: Study consensus for the **mean-field approximation**

$$\partial_t \mu_N(t) + \operatorname{div}_x (\Phi(t) \star \mu_N(t) \mu_N(t)) = 0$$

[Ha&Liu'09, Carrillo,Fornasier,Rosado&Toscani'10, Piccoli,Rossi&Trélat'15].

Problem: Mean-field **needs indistinguishability**, i.e. $a_{ij}(t) = 1$.

Definition (Graph limit)[LS'07,M'14]

Given a solution $\mathbf{x}(\cdot)$ of **(CS)**, define the **piecewise constant** maps

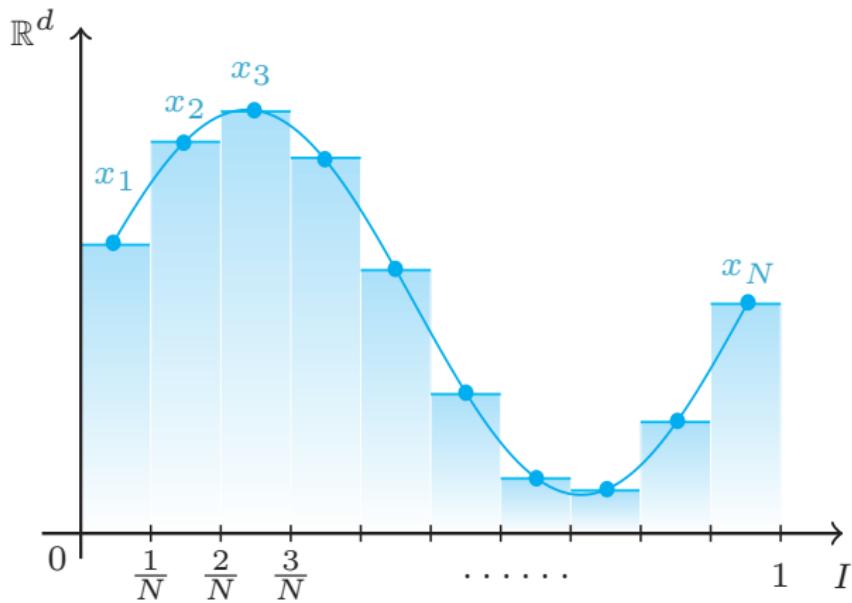
$$i \in I \mapsto x_N(t, i) := \sum_{k=1}^N x_k(t) \mathbb{1}_{\left[\frac{k-1}{N}, \frac{k}{N}\right)}(i)$$

and

$$i, j \in I \mapsto a_N(t, i, j) := \sum_{k,l=1}^N a_{kl}(t) \mathbb{1}_{\left[\frac{k-1}{N}, \frac{k}{N}\right)}(i) \mathbb{1}_{\left[\frac{l-1}{N}, \frac{l}{N}\right)}(j)$$

and denote by $I := [0, 1]$ the (continuum of) **indices**.

Multi-agent systems – Reformulation as graphons (2)

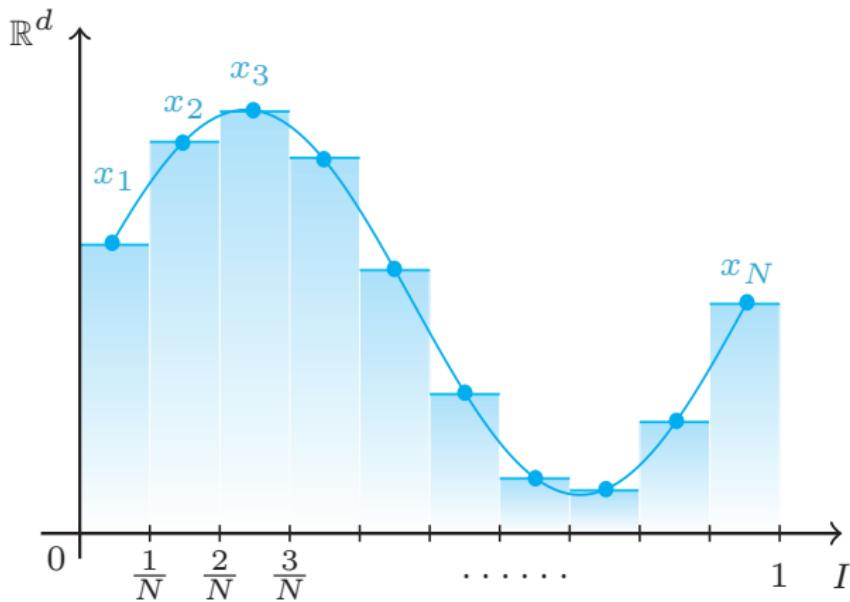


Graphon reformulation of (CS) \rightsquigarrow infinite dimensional ODEs

$$\partial_t x(t, i) = \int_I a(t, i, j) \phi(|x(t, i) - x(t, j)|) (x(t, j) - x(t, i)) dj \quad (\text{GD})$$

for \mathcal{L}^1 -almost every $i \in I$.

Multi-agent systems – Reformulation as graphons (2)



Graphon reformulation of (CS) \rightsquigarrow **infinite dimensional** **ODEs**

$$\partial_t \textcolor{blue}{x}(t, i) = \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{blue}{x}(t, i) - \textcolor{blue}{x}(t, j)|) (\textcolor{blue}{x}(t, j) - \textcolor{blue}{x}(t, i)) dj \quad (\text{GD})$$

for \mathcal{L}^1 -almost every $i \in I$.

Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics

Consensus – *Definition and main ideas*

Definition (Asymptotic consensus formation)

A solution $\mathbf{x}(\cdot)$ of (CS) converges to **consensus** if

$$\lim_{t \rightarrow +\infty} |\mathbf{x}_i(t) - x^\infty| = 0,$$

for all $i \in \{1, \dots, N\}$ and some $x^\infty \in \mathbb{R}^d$.

Idea: Quantitative convergence results \rightsquigarrow Lyapunov methods!

Definition (Candidate energy functionals)

We define the **variance** functional

$$\mathcal{V}(\mathbf{x}) := \frac{1}{2N} \sum_{i=1}^N |\mathbf{x}_i - \bar{\mathbf{x}}|^2 \quad (\ell_2\text{-convergence}),$$

and the **diameter**

$$\mathcal{D}(\mathbf{x}) := \max_{i, j \in \{1, \dots, N\}} |\mathbf{x}_i - \mathbf{x}_j| \quad (\ell_\infty\text{-convergence}),$$

→ Decay prescribed by two **intrinsic scalar quantities**.

Consensus – *Definition and main ideas*

Definition (Asymptotic consensus formation)

A solution $\mathbf{x}(\cdot)$ of (CS) converges to **consensus** if

$$\lim_{t \rightarrow +\infty} |\mathbf{x}_i(t) - x^\infty| = 0,$$

for all $i \in \{1, \dots, N\}$ and some $x^\infty \in \mathbb{R}^d$.

Idea: Quantitative convergence results \rightsquigarrow **Lyapunov** methods!

Definition (Candidate energy functionals)

We define the **variance** functional

$$\mathcal{V}(\mathbf{x}) := \frac{1}{2N} \sum_{i=1}^N |\mathbf{x}_i - \bar{\mathbf{x}}|^2 \quad (\ell_2\text{-convergence}),$$

and the **diameter**

$$\mathcal{D}(\mathbf{x}) := \max_{i, j \in \{1, \dots, N\}} |\mathbf{x}_i - \mathbf{x}_j| \quad (\ell_\infty\text{-convergence}),$$

→ Decay prescribed by two **intrinsic scalar quantities**.

Consensus – *Definition and main ideas*

Definition (Asymptotic consensus formation)

A solution $\mathbf{x}(\cdot)$ of (CS) converges to **consensus** if

$$\lim_{t \rightarrow +\infty} |\mathbf{x}_i(t) - x^\infty| = 0,$$

for all $i \in \{1, \dots, N\}$ and some $x^\infty \in \mathbb{R}^d$.

Idea: Quantitative convergence results \rightsquigarrow **Lyapunov** methods!

Definition (Candidate energy functionals)

We define the **variance functional**

$$\mathcal{V}(\mathbf{x}) := \frac{1}{2N} \sum_{i=1}^N |\mathbf{x}_i - \bar{\mathbf{x}}|^2 \quad (\ell_2\text{-convergence}),$$

and the **diameter**

$$\mathcal{D}(\mathbf{x}) := \max_{i, j \in \{1, \dots, N\}} |\mathbf{x}_i - \mathbf{x}_j| \quad (\ell_\infty\text{-convergence}),$$

→ Decay prescribed by two **intrinsic scalar quantities**.

Consensus – *Definition and main ideas*

Definition (Asymptotic consensus formation)

A solution $\mathbf{x}(\cdot)$ of (CS) converges to **consensus** if

$$\lim_{t \rightarrow +\infty} |\mathbf{x}_i(t) - x^\infty| = 0,$$

for all $i \in \{1, \dots, N\}$ and some $x^\infty \in \mathbb{R}^d$.

Idea: Quantitative convergence results \rightsquigarrow **Lyapunov** methods!

Definition (Candidate energy functionals)

We define the **variance functional**

$$\mathcal{V}(\mathbf{x}) := \frac{1}{2N} \sum_{i=1}^N |\mathbf{x}_i - \bar{\mathbf{x}}|^2 \quad (\ell_2\text{-convergence}),$$

and the **diameter**

$$\mathcal{D}(\mathbf{x}) := \max_{i, j \in \{1, \dots, N\}} |\mathbf{x}_i - \mathbf{x}_j| \quad (\ell_\infty\text{-convergence}),$$

→ Decay prescribed by two **intrinsic scalar quantities**.

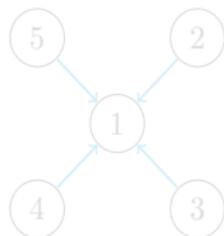
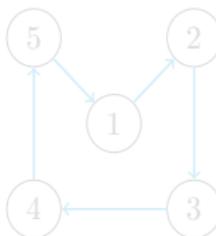
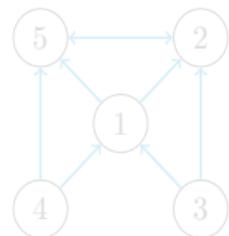
Consensus – Scrambling coefficient and diameter estimates

Definition (Scrambling coefficient)[Seneta'79]

The **scrambling** of a graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ satisfying $a_{ii} = 1$ is

$$\eta(\mathbf{A}_N) := \min_{1 \leq i, j \leq N} \frac{1}{N} \left(\sum_{k=1, k \neq i, j}^N \min \{a_{ik}, a_{jk}\} + a_{ij} + a_{ji} \right)$$

↪ Positive if each (i, j) either **interact** or **follow** the same k .



Theorem (Quantitative diameter decay)[Motsch&Tadmor'14]

For each $\mathbf{x}^0 \in (\mathbb{R}^d)^N$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\mathbf{x}(t)) \leq \mathcal{D}(\mathbf{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathbf{A}_N(s)) ds \right).$$

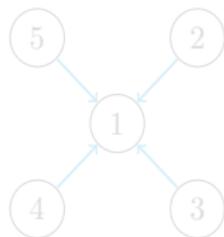
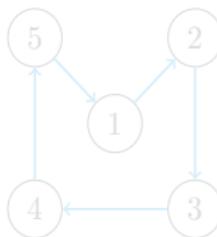
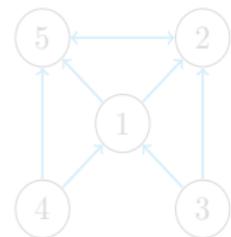
Consensus – Scrambling coefficient and diameter estimates

Definition (Scrambling coefficient)[Seneta'79]

The **scrambling** of a graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ satisfying $a_{ii} = 1$ is

$$\eta(\mathbf{A}_N) := \min_{1 \leq i, j \leq N} \frac{1}{N} \left(\sum_{k=1, k \neq i, j}^N \min \{a_{ik}, a_{jk}\} + a_{ij} + a_{ji} \right)$$

↪ Positive if each (i, j) either **interact** or **follow** the same k .



Theorem (Quantitative diameter decay)[Motsch&Tadmor'14]

For each $\mathbf{x}^0 \in (\mathbb{R}^d)^N$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\mathbf{x}(t)) \leq \mathcal{D}(\mathbf{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathbf{A}_N(s)) ds \right).$$

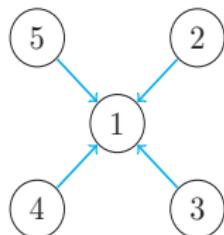
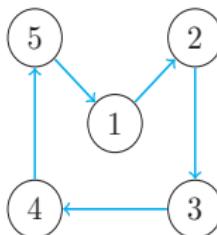
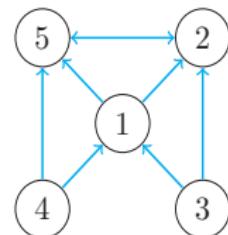
Consensus – Scrambling coefficient and diameter estimates

Definition (Scrambling coefficient)[Seneta'79]

The **scrambling** of a graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ satisfying $a_{ii} = 1$ is

$$\eta(\mathbf{A}_N) := \min_{1 \leq i, j \leq N} \frac{1}{N} \left(\sum_{k=1, k \neq i, j}^N \min \{a_{ik}, a_{jk}\} + a_{ij} + a_{ji} \right)$$

→ Positive if each (i, j) either **interact** or **follow** the same k .



Theorem (Quantitative diameter decay)[Motsch&Tadmor'14]

For each $\mathbf{x}^0 \in (\mathbb{R}^d)^N$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\mathbf{x}(t)) \leq \mathcal{D}(\mathbf{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathbf{A}_N(s)) ds \right).$$

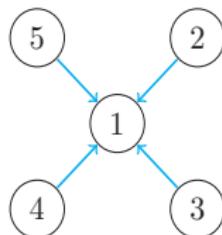
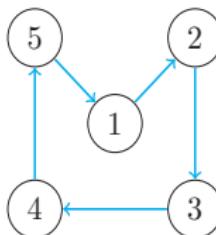
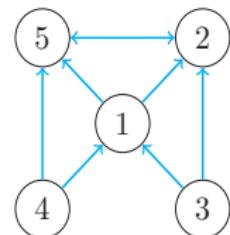
Consensus – Scrambling coefficient and diameter estimates

Definition (Scrambling coefficient)[Seneta'79]

The **scrambling** of a graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ satisfying $a_{ii} = 1$ is

$$\eta(\mathbf{A}_N) := \min_{1 \leq i, j \leq N} \frac{1}{N} \left(\sum_{k=1, k \neq i, j}^N \min \{a_{ik}, a_{jk}\} + a_{ij} + a_{ji} \right)$$

→ Positive if each (i, j) either **interact** or **follow** the same k .



Theorem (Quantitative diameter decay)[Motsch&Tadmor'14]

For each $\mathbf{x}^0 \in (\mathbb{R}^d)^N$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\mathbf{x}(t)) \leq \mathcal{D}(\mathbf{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathbf{A}_N(s)) ds \right).$$

Consensus – Fiedler number and variance estimates

Definition (Algebraic connectivity of a graph)[Fiedler'73, Mohar'91]

The **Fiedler number** of a symmetric graph $\mathbf{A}_N = (a_{ij})_{i=1}^N$ is

$$\lambda_2(\mathbf{A}_N) = \inf_{\mathbf{x} \in \mathcal{C}_N^\perp} \frac{\langle \mathbf{L}_N \mathbf{x}, \mathbf{x} \rangle_N}{\|\mathbf{x}\|_N^2},$$

where $(\mathbf{L}_N \mathbf{x})_i = \frac{1}{N} \sum_{j=1}^N a_{ij} (x_i - x_j)$, $\langle \mathbf{x}, \mathbf{y} \rangle_N := \frac{1}{N} \sum_{i=1}^N \langle \mathbf{x}_i, \mathbf{y}_i \rangle$ and

$$\mathcal{C}_N := \left\{ \mathbf{x} \in (\mathbb{R}^d)^N \text{ s.t. } \mathbf{x}_1 = \dots = \mathbf{x}_N \right\}$$

is the **consensus manifold**.

Theorem (Quantitative variance decay)[Motsch&Tadmor'14]

Suppose that $\mathbf{A}_N(t) = (a_{ij}(t))_{i,j=1}^N$ is symmetric for a.e. $t \in \mathbb{R}_+$.
Then for each $\mathbf{x}^0 \in (\mathbb{R}^d)^N$, there exists $\phi_0 >$ such that

$$\mathcal{V}(\mathbf{x}(t)) \leq \mathcal{V}(\mathbf{x}^0) \exp \left(-\phi_0 \int_0^t \lambda_2(\mathbf{A}_N(s)) ds \right).$$

Consensus – Fiedler number and variance estimates

Definition (Algebraic connectivity of a graph)[Fiedler'73, Mohar'91]

The **Fiedler number** of a symmetric graph $\mathbf{A}_N = (a_{ij})_{i=1}^N$ is

$$\lambda_2(\mathbf{A}_N) = \inf_{\mathbf{x} \in \mathcal{C}_N^\perp} \frac{\langle \mathbf{L}_N \mathbf{x}, \mathbf{x} \rangle_N}{\|\mathbf{x}\|_N^2},$$

where $(\mathbf{L}_N \mathbf{x})_i = \frac{1}{N} \sum_{j=1}^N a_{ij} (x_i - x_j)$, $\langle \mathbf{x}, \mathbf{y} \rangle_N := \frac{1}{N} \sum_{i=1}^N \langle \mathbf{x}_i, \mathbf{y}_i \rangle$ and

$$\mathcal{C}_N := \left\{ \mathbf{x} \in (\mathbb{R}^d)^N \text{ s.t. } \mathbf{x}_1 = \dots = \mathbf{x}_N \right\}$$

is the **consensus manifold**.

Theorem (Quantitative variance decay)[Motsch&Tadmor'14]

Suppose that $\mathbf{A}_N(t) = (a_{ij}(t))_{i,j=1}^N$ is symmetric for a.e. $t \in \mathbb{R}_+$.
Then for each $\mathbf{x}^0 \in (\mathbb{R}^d)^N$, there exists $\phi_0 >$ such that

$$\mathcal{V}(\mathbf{x}(t)) \leq \mathcal{V}(\mathbf{x}^0) \exp \left(-\phi_0 \int_0^t \lambda_2(\mathbf{A}_N(s)) ds \right).$$

Consensus – Idea of the proof in the symmetric case

$$\begin{aligned}\frac{d}{dt} \mathcal{V}(\mathbf{x}(t)) &= \frac{1}{N} \sum_{i=1}^N \langle \dot{\mathbf{x}}_i(t), \mathbf{x}_i(t) - \bar{\mathbf{x}} \rangle \\ &\quad \Downarrow \quad \mathbf{L}_N(t) \bar{\mathbf{x}} = 0 \\ &= \frac{1}{N} \sum_{i=1}^N \left\langle (\mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}))_i, (x_i(t) - \bar{\mathbf{x}}) \right\rangle \\ &\quad \Downarrow \quad \text{Def. of } \langle \cdot, \cdot \rangle_N \\ &= -\left\langle \mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}), (\mathbf{x}(t) - \bar{\mathbf{x}}) \right\rangle_N \\ &\quad \Downarrow \quad \text{Def. of } \lambda_2(\mathbf{A}_N(t)) \\ &\leq -\lambda_2(\mathbf{A}_N(t)) \|\mathbf{x}(t) - \bar{\mathbf{x}}\|_N^2 \\ &\quad \Downarrow \quad \text{Def. of } \mathcal{V}(\mathbf{x}(t)) \\ &= -\lambda_2(\mathbf{A}_N(t)) \mathcal{V}(\mathbf{x}(t))\end{aligned}$$

→ Grönwall lemma and we're done!

Consensus – Idea of the proof in the symmetric case

$$\begin{aligned}\frac{d}{dt} \mathcal{V}(\mathbf{x}(t)) &= \frac{1}{N} \sum_{i=1}^N \langle \dot{\mathbf{x}}_i(t), \mathbf{x}_i(t) - \bar{\mathbf{x}} \rangle \\ &\quad \Downarrow \quad \mathbf{L}_N(t) \bar{\mathbf{x}} = 0 \\ &= \frac{1}{N} \sum_{i=1}^N \left\langle (\mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}))_i, (\mathbf{x}_i(t) - \bar{\mathbf{x}}) \right\rangle \\ &\quad \Downarrow \quad \text{Def. of } \langle \cdot, \cdot \rangle_N \\ &= -\left\langle \mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}), (\mathbf{x}(t) - \bar{\mathbf{x}}) \right\rangle_N \\ &\quad \Downarrow \quad \text{Def. of } \lambda_2(\mathbf{A}_N(t)) \\ &\leq -\lambda_2(\mathbf{A}_N(t)) \|\mathbf{x}(t) - \bar{\mathbf{x}}\|_N^2 \\ &\quad \Downarrow \quad \text{Def. of } \mathcal{V}(\mathbf{x}(t)) \\ &= -\lambda_2(\mathbf{A}_N(t)) \mathcal{V}(\mathbf{x}(t))\end{aligned}$$

→ Grönwall lemma and we're done!

Consensus – Idea of the proof in the symmetric case

$$\begin{aligned}\frac{d}{dt} \mathcal{V}(\mathbf{x}(t)) &= \frac{1}{N} \sum_{i=1}^N \langle \dot{\mathbf{x}}_i(t), \mathbf{x}_i(t) - \bar{\mathbf{x}} \rangle \\ &\quad \Downarrow \quad \mathbf{L}_N(t) \bar{\mathbf{x}} = 0 \\ &= \frac{1}{N} \sum_{i=1}^N \left\langle (\mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}))_i, (\mathbf{x}_i(t) - \bar{\mathbf{x}}) \right\rangle \\ &\quad \Downarrow \quad \text{Def. of } \langle \cdot, \cdot \rangle_N \\ &= -\langle \mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}), (\mathbf{x}(t) - \bar{\mathbf{x}}) \rangle_N \\ &\quad \Downarrow \quad \text{Def. of } \lambda_2(\mathbf{A}_N(t)) \\ &\leq -\lambda_2(\mathbf{A}_N(t)) \|\mathbf{x}(t) - \bar{\mathbf{x}}\|_N^2 \\ &\quad \Downarrow \quad \text{Def. of } \mathcal{V}(\mathbf{x}(t)) \\ &= -\lambda_2(\mathbf{A}_N(t)) \mathcal{V}(\mathbf{x}(t))\end{aligned}$$

→ Grönwall lemma and we're done!

Consensus – Idea of the proof in the symmetric case

$$\begin{aligned}\frac{d}{dt} \mathcal{V}(\mathbf{x}(t)) &= \frac{1}{N} \sum_{i=1}^N \langle \dot{\mathbf{x}}_i(t), \mathbf{x}_i(t) - \bar{\mathbf{x}} \rangle \\ &\quad \Downarrow \quad \mathbf{L}_N(t) \bar{\mathbf{x}} = 0 \\ &= \frac{1}{N} \sum_{i=1}^N \left\langle (\mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}))_i, (\mathbf{x}_i(t) - \bar{\mathbf{x}}) \right\rangle \\ &\quad \Downarrow \quad \text{Def. of } \langle \cdot, \cdot \rangle_N \\ &= -\langle \mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}), (\mathbf{x}(t) - \bar{\mathbf{x}}) \rangle_N \\ &\quad \Downarrow \quad \text{Def. of } \lambda_2(\mathbf{A}_N(t)) \\ &\leq -\lambda_2(\mathbf{A}_N(t)) |\mathbf{x}(t) - \bar{\mathbf{x}}|_N^2 \\ &\quad \Downarrow \quad \text{Def. of } \mathcal{V}(\mathbf{x}(t)) \\ &= -\lambda_2(\mathbf{A}_N(t)) \mathcal{V}(\mathbf{x}(t))\end{aligned}$$

→ Grönwall lemma and we're done!

Consensus – Idea of the proof in the symmetric case

$$\begin{aligned}\frac{d}{dt} \mathcal{V}(\mathbf{x}(t)) &= \frac{1}{N} \sum_{i=1}^N \langle \dot{\mathbf{x}}_i(t), \mathbf{x}_i(t) - \bar{\mathbf{x}} \rangle \\ &\quad \Downarrow \quad \mathbf{L}_N(t) \bar{\mathbf{x}} = 0 \\ &= \frac{1}{N} \sum_{i=1}^N \left\langle (\mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}))_i, (\mathbf{x}_i(t) - \bar{\mathbf{x}}) \right\rangle \\ &\quad \Downarrow \quad \text{Def. of } \langle \cdot, \cdot \rangle_N \\ &= -\langle \mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}), (\mathbf{x}(t) - \bar{\mathbf{x}}) \rangle_N \\ &\quad \Downarrow \quad \text{Def. of } \lambda_2(\mathbf{A}_N(t)) \\ &\leq -\lambda_2(\mathbf{A}_N(t)) |\mathbf{x}(t) - \bar{\mathbf{x}}|_N^2 \\ &\quad \Downarrow \quad \text{Def. of } \mathcal{V}(\mathbf{x}(t)) \\ &= -\lambda_2(\mathbf{A}_N(t)) \mathcal{V}(\mathbf{x}(t))\end{aligned}$$

→ Grönwall lemma and we're done!

Consensus – Idea of the proof in the symmetric case

$$\begin{aligned}\frac{d}{dt} \mathcal{V}(\mathbf{x}(t)) &= \frac{1}{N} \sum_{i=1}^N \langle \dot{\mathbf{x}}_i(t), \mathbf{x}_i(t) - \bar{\mathbf{x}} \rangle \\ &\quad \Downarrow \quad \mathbf{L}_N(t) \bar{\mathbf{x}} = 0 \\ &= \frac{1}{N} \sum_{i=1}^N \left\langle (\mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}))_i, (\mathbf{x}_i(t) - \bar{\mathbf{x}}) \right\rangle \\ &\quad \Downarrow \quad \text{Def. of } \langle \cdot, \cdot \rangle_N \\ &= -\langle \mathbf{L}_N(t)(\mathbf{x}(t) - \bar{\mathbf{x}}), (\mathbf{x}(t) - \bar{\mathbf{x}}) \rangle_N \\ &\quad \Downarrow \quad \text{Def. of } \lambda_2(\mathbf{A}_N(t)) \\ &\leq -\lambda_2(\mathbf{A}_N(t)) |\mathbf{x}(t) - \bar{\mathbf{x}}|_N^2 \\ &\quad \Downarrow \quad \text{Def. of } \mathcal{V}(\mathbf{x}(t)) \\ &= -\lambda_2(\mathbf{A}_N(t)) \mathcal{V}(\mathbf{x}(t))\end{aligned}$$

↪ **Grönwall lemma** and we're done!

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity) [Mohar'91]

A symmetric graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ is **strongly connected**, i.e.

for all i, j there exists $i = k_1, \dots, k_m = j$ s.t. $a_{k_l k_{l+1}} > 0$

if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Question: What happens when \mathbf{A}_N is not symmetric ?

Theorem (Characterisation of graph connectivity) [Wu'05]

A graph \mathbf{A}_N is a **disjoint union** of str. connected components (“DUSCC”) if and only if there exists $(v_1, \dots, v_N) \in (\mathbb{R}_+^*)^N$ s.t.

$$\mathbf{L}_N^* \mathbf{v} = 0 \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^N v_i = 1$$

where $\mathbf{v} := (v_1, \dots, v_1, \dots, v_N, \dots, v_N) \in (\mathbb{R}_+^*)^{dN}$.

Remark: $\mathbf{L}_N^*(1, \dots, 1) = 0$ if \mathbf{A}_N is symmetric \rightsquigarrow always DUSCC!

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity) [Mohar'91]

A symmetric graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ is **strongly connected**, i.e.

for all i, j there exists $i = k_1, \dots, k_m = j$ s.t. $a_{k_l k_{l+1}} > 0$

if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Question: What happens when \mathbf{A}_N is not symmetric ?

Theorem (Characterisation of graph connectivity) [Wu'05]

A graph \mathbf{A}_N is a **disjoint union of str. connected components** (“DUSCC”) if and only if there exists $(v_1, \dots, v_N) \in (\mathbb{R}_+^*)^N$ s.t.

$$\mathbf{L}_N^* \mathbf{v} = 0 \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^N v_i = 1$$

where $\mathbf{v} := (v_1, \dots, v_1, \dots, v_N, \dots, v_N) \in (\mathbb{R}_+^*)^{dN}$.

Remark: $\mathbf{L}_N^*(1, \dots, 1) = 0$ if \mathbf{A}_N is symmetric \rightsquigarrow always DUSCC!

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity) [Mohar'91]

A symmetric graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ is **strongly connected**, i.e.

for all i, j there exists $i = k_1, \dots, k_m = j$ s.t. $a_{k_l k_{l+1}} > 0$

if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Question: What happens when \mathbf{A}_N is not symmetric ?

Theorem (Characterisation of graph connectivity) [Wu'05]

A graph \mathbf{A}_N is a **disjoint union** of str. connected components (“DUSCC”) if and only if there exists $(v_1, \dots, v_N) \in (\mathbb{R}_+^*)^N$ s.t.

$$\mathbf{L}_N^* \mathbf{v} = 0 \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^N v_i = 1$$

where $\mathbf{v} := (v_1, \dots, v_1, \dots, v_N, \dots, v_N) \in (\mathbb{R}_+^*)^{dN}$.

Remark: $\mathbf{L}_N^*(1, \dots, 1) = 0$ if \mathbf{A}_N is symmetric \rightsquigarrow always DUSCC!

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar'91]

A symmetric graph $A_N = (a_{ij})_{i,j=1}^N$ is **strongly connected**, i.e.

for all i, j there exists $i = k_1, \dots, k_m = j$ s.t. $a_{k_l k_{l+1}} > 0$

if and only if $\lambda_2(A_N) > 0$.

Question: What happens when A_N is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu'05]

A graph A_N is a **disjoint union** of **str. connected components** (“DUSCC”) if and only if there exists $(v_1, \dots, v_N) \in (\mathbb{R}_+^*)^N$ s.t.

$$L_N^* v = 0 \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^N v_i = 1$$

where $v := (v_1, \dots, v_1, \dots, v_N, \dots, v_N) \in (\mathbb{R}_+^*)^{dN}$.

Remark: $L_N^*(1, \dots, 1) = 0$ if A_N is symmetric \rightsquigarrow always DUSCC!

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity) [Mohar'91]

A symmetric graph $A_N = (a_{ij})_{i,j=1}^N$ is **strongly connected**, i.e.

for all i, j there exists $i = k_1, \dots, k_m = j$ s.t. $a_{k_l k_{l+1}} > 0$

if and only if $\lambda_2(A_N) > 0$.

Question: What happens when A_N is not symmetric ?

Theorem (Characterisation of graph connectivity) [Wu'05]

A graph A_N is a **disjoint union** of **str. connected components** (“DUSCC”) **if and only if** there exists $(v_1, \dots, v_N) \in (\mathbb{R}_+^*)^N$ s.t.

$$L_N^* \mathbf{v} = 0 \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^N v_i = 1$$

where $\mathbf{v} := (v_1, \dots, v_1, \dots, v_N, \dots, v_N) \in (\mathbb{R}_+^*)^{dN}$.

Remark: $L_N^*(1, \dots, 1) = 0$ if A_N is symmetric \rightsquigarrow always DUSCC!

Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity) [Mohar'91]

A symmetric graph $\mathbf{A}_N = (a_{ij})_{i,j=1}^N$ is **strongly connected**, i.e.

for all i, j there exists $i = k_1, \dots, k_m = j$ s.t. $a_{k_l k_{l+1}} > 0$

if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Question: What happens when \mathbf{A}_N is not symmetric ?

Theorem (Characterisation of graph connectivity) [Wu'05]

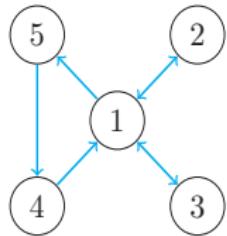
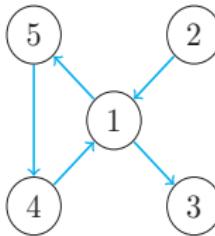
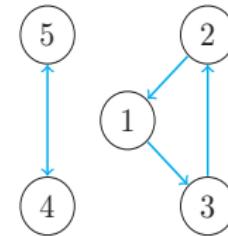
A graph \mathbf{A}_N is a **disjoint union** of **str. connected components** (“DUSCC”) **if and only if** there exists $(v_1, \dots, v_N) \in (\mathbb{R}_+^*)^N$ s.t.

$$\mathbf{L}_N^* \mathbf{v} = 0 \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^N v_i = 1$$

where $\mathbf{v} := (v_1, \dots, v_1, \dots, v_N, \dots, v_N) \in (\mathbb{R}_+^*)^{dN}$.

Remark: $\mathbf{L}_N^*(1, \dots, 1) = 0$ if \mathbf{A}_N is symmetric \rightsquigarrow always DUSCC!

Consensus – About algebraic and graph connectivity (2)



Definition (Generalised algebraic connectivity for graphs)[Wu'05]

The **algebraic connectivity** of a DUSCC graph \mathbf{A}_N is

$$\lambda_2(\mathbf{A}_N) := \inf_{\mathbf{x} \in \mathcal{C}_N^\perp} \frac{\langle \mathbf{L}_N^v \mathbf{x}, \mathbf{x} \rangle_N}{\|\mathbf{x}\|_N^2}$$

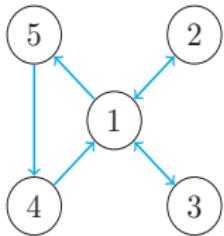
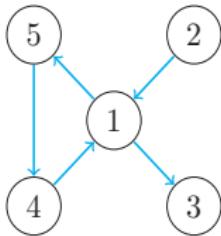
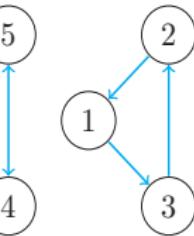
where $\mathbf{L}_N^v := \text{diag}(v)\mathbf{L}_N$ is the **renormalised graph-Laplacian**.

Question: Link with **graph connectivity** and variance estimates ?

Theorem (Characterisation of graph connectivity)[Wu'05]

A DUSCC graph \mathbf{A}_N is str. connected if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Consensus – About algebraic and graph connectivity (2)



Definition (Generalised algebraic connectivity for graphs)[Wu'05]

The **algebraic connectivity** of a DUSCC graph \mathbf{A}_N is

$$\lambda_2(\mathbf{A}_N) := \inf_{\mathbf{x} \in \mathcal{C}_N^\perp} \frac{\langle \mathbf{L}_N^v \mathbf{x}, \mathbf{x} \rangle_N}{\|\mathbf{x}\|_N^2}$$

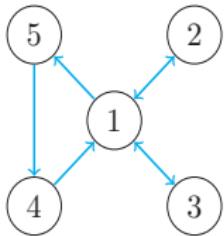
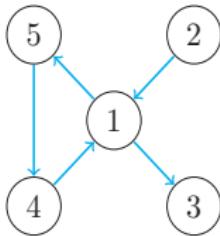
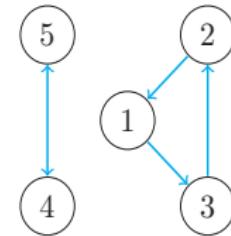
where $\mathbf{L}_N^v := \text{diag}(v) \mathbf{L}_N$ is the **renormalised graph-Laplacian**.

Question: Link with graph connectivity and variance estimates ?

Theorem (Characterisation of graph connectivity)[Wu'05]

A DUSCC graph \mathbf{A}_N is str. connected if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Consensus – About algebraic and graph connectivity (2)



Definition (Generalised algebraic connectivity for graphs)[Wu'05]

The **algebraic connectivity** of a DUSCC graph \mathbf{A}_N is

$$\lambda_2(\mathbf{A}_N) := \inf_{\mathbf{x} \in \mathcal{C}_N^\perp} \frac{\langle \mathbf{L}_N^v \mathbf{x}, \mathbf{x} \rangle_N}{\|\mathbf{x}\|_N^2}$$

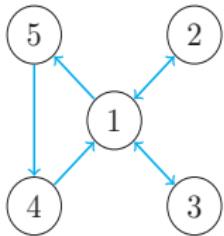
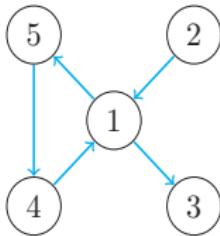
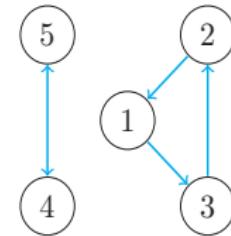
where $\mathbf{L}_N^v := \text{diag}(v) \mathbf{L}_N$ is the **renormalised graph-Laplacian**.

Question: Link with **graph connectivity** and variance estimates ?

Theorem (Characterisation of graph connectivity)[Wu'05]

A DUSCC graph \mathbf{A}_N is str. connected if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Consensus – About algebraic and graph connectivity (2)



Definition (Generalised algebraic connectivity for graphs)[Wu'05]

The **algebraic connectivity** of a DUSCC graph \mathbf{A}_N is

$$\lambda_2(\mathbf{A}_N) := \inf_{\mathbf{x} \in \mathcal{C}_N^\perp} \frac{\langle \mathbf{L}_N^v \mathbf{x}, \mathbf{x} \rangle_N}{\|\mathbf{x}\|_N^2}$$

where $\mathbf{L}_N^v := \text{diag}(v) \mathbf{L}_N$ is the **renormalised graph-Laplacian**.

Question: Link with **graph connectivity** and variance estimates ?

Theorem (Characterisation of graph connectivity)[Wu'05]

A DUSCC graph \mathbf{A}_N is str. connected if and only if $\lambda_2(\mathbf{A}_N) > 0$.

Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics

Graphon dynamics – *Adjacency and graph-Laplacian*

We consider the graphon dynamics

$$\partial_t \textcolor{blue}{x}(t, i) = \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{blue}{x}(t, i) - \textcolor{blue}{x}(t, j)|) (\textcolor{blue}{x}(t, j) - \textcolor{blue}{x}(t, i)) \mathrm{d}j$$

where $\textcolor{brown}{a}(t) \in L^\infty(I \times I, [0, 1])$ represents the **communications**.

Definition (Adjacency, degree and graph-Laplacian operators)

We define the **adjacency** operator by

$$\mathcal{A}(t, \textcolor{blue}{x}) \textcolor{brown}{y} : i \in I \mapsto \int_I \textcolor{brown}{a}(t, i, j) \phi(|x(i) - x(j)|) y(j) \mathrm{d}j,$$

as well as the **graph-Laplacian** $\mathbb{L}(t, \textcolor{blue}{x}) : L^2(I, \mathbb{R}^d) \rightarrow L^2(I, \mathbb{R}^d)$

$$\mathbb{L}(t, \textcolor{blue}{x}) \textcolor{brown}{y} : i \in I \mapsto \int_I \textcolor{brown}{a}(t, i, j) \phi(|x(i) - x(j)|) (\textcolor{brown}{y}(i) - \textcolor{brown}{y}(j)) \mathrm{d}j.$$

↪ Semilinear reformulation of the dynamics

$$\dot{x}(t) = -\mathbb{L}(t, x(t))x(t). \quad (\text{GD})$$

Graphon dynamics – *Adjacency and graph-Laplacian*

We consider the graphon dynamics

$$\partial_t \textcolor{teal}{x}(t, i) = \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{teal}{x}(t, i) - \textcolor{teal}{x}(t, j)|) (\textcolor{teal}{x}(t, j) - \textcolor{teal}{x}(t, i)) \mathrm{d}j$$

where $\textcolor{brown}{a}(t) \in L^\infty(I \times I, [0, 1])$ represents the **communications**.

Definition (Adjacency, degree and graph-Laplacian operators)

We define the **adjacency** operator by

$$\mathcal{A}(t, \textcolor{teal}{x}) \textcolor{teal}{y} : i \in I \mapsto \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{teal}{x}(i) - \textcolor{teal}{x}(j)|) \textcolor{teal}{y}(j) \mathrm{d}j,$$

as well as the **graph-Laplacian** $\mathbb{L}(t, \textcolor{teal}{x}) : L^2(I, \mathbb{R}^d) \rightarrow L^2(I, \mathbb{R}^d)$

$$\mathbb{L}(t, \textcolor{teal}{x}) \textcolor{teal}{y} : i \in I \mapsto \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{teal}{x}(i) - \textcolor{teal}{x}(j)|) (\textcolor{teal}{y}(i) - \textcolor{teal}{y}(j)) \mathrm{d}j.$$

↪ Semilinear reformulation of the dynamics

$$\dot{\textcolor{teal}{x}}(t) = -\mathbb{L}(t, \textcolor{teal}{x}(t)) \textcolor{teal}{x}(t). \quad (\text{GD})$$

Graphon dynamics – *Adjacency and graph-Laplacian*

We consider the graphon dynamics

$$\partial_t \textcolor{teal}{x}(t, i) = \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{teal}{x}(t, i) - \textcolor{teal}{x}(t, j)|) (\textcolor{teal}{x}(t, j) - \textcolor{teal}{x}(t, i)) \mathrm{d}j$$

where $\textcolor{brown}{a}(t) \in L^\infty(I \times I, [0, 1])$ represents the **communications**.

Definition (Adjacency, degree and graph-Laplacian operators)

We define the **adjacency** operator by

$$\mathcal{A}(t, \textcolor{teal}{x}) \textcolor{teal}{y} : i \in I \mapsto \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{teal}{x}(i) - \textcolor{teal}{x}(j)|) \textcolor{teal}{y}(j) \mathrm{d}j,$$

as well as the **graph-Laplacian** $\mathbb{L}(t, \textcolor{teal}{x}) : L^2(I, \mathbb{R}^d) \rightarrow L^2(I, \mathbb{R}^d)$

$$\mathbb{L}(t, \textcolor{teal}{x}) \textcolor{teal}{y} : i \in I \mapsto \int_I \textcolor{brown}{a}(t, i, j) \phi(|\textcolor{teal}{x}(i) - \textcolor{teal}{x}(j)|) (\textcolor{teal}{y}(i) - \textcolor{teal}{y}(j)) \mathrm{d}j.$$

↪ Semilinear reformulation of the dynamics

$$\dot{\textcolor{teal}{x}}(t) = -\mathbb{L}(t, \textcolor{teal}{x}(t)) \textcolor{teal}{x}(t). \quad (\text{GD})$$

Graphon dynamics – *Scrambling and diameter estimate*

Definition (Scrambling coefficient and diameter)[BPDS'22]

We define the **scrambling coefficient** of a graphon \mathcal{A} by

$$\eta(\mathcal{A}) := \inf_{i,j \in I} \int_I \min\{\mathcal{a}(i,k), \mathcal{a}(j,k)\} dk,$$

as well as the **diameter** of a map $\mathbf{x} \in L^\infty(I, \mathbb{R}^d)$

$$\mathcal{D}(\mathbf{x}) := \sup_{i,j \in I} |\mathbf{x}(i) - \mathbf{x}(j)|.$$

Theorem (Quantitative diameter decay)[BPDS'22]

For each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\mathbf{x}(t)) \leq \mathcal{D}(\mathbf{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathcal{A}(s)) ds \right).$$

Two technical novelties

- ◊ No stochastic **normalisation** trick \rightsquigarrow **Geometric** argument.
- ◊ $t \mapsto \mathcal{D}(\mathbf{x}(t))$ not diff. \rightsquigarrow approx. with **Scorza-Dragoni**.

Graphon dynamics – *Scrambling and diameter estimate*

Definition (Scrambling coefficient and diameter)[BPDS'22]

We define the **scrambling coefficient** of a graphon \mathcal{A} by

$$\eta(\mathcal{A}) := \inf_{i,j \in I} \int_I \min\{\mathcal{a}(i,k), \mathcal{a}(j,k)\} dk,$$

as well as the **diameter** of a map $\textcolor{teal}{x} \in L^\infty(I, \mathbb{R}^d)$

$$\mathcal{D}(\textcolor{teal}{x}) := \sup_{i,j \in I} |\textcolor{teal}{x}(i) - \textcolor{teal}{x}(j)|.$$

Theorem (Quantitative diameter decay)[BPDS'22]

For each $\textcolor{teal}{x}^0 \in L^\infty(I, \mathbb{R}^d)$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\textcolor{teal}{x}(t)) \leq \mathcal{D}(\textcolor{teal}{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathcal{A}(s)) ds \right).$$

Two technical novelties

- ◊ No stochastic **normalisation** trick \rightsquigarrow **Geometric** argument.
- ◊ $t \mapsto \mathcal{D}(\textcolor{teal}{x}(t))$ not diff. \rightsquigarrow approx. with **Scorza-Dragoni**.

Graphon dynamics – *Scrambling and diameter estimate*

Definition (Scrambling coefficient and diameter)[BPDS'22]

We define the **scrambling coefficient** of a graphon \mathcal{A} by

$$\eta(\mathcal{A}) := \inf_{i,j \in I} \int_I \min\{\mathcal{a}(i,k), \mathcal{a}(j,k)\} dk,$$

as well as the **diameter** of a map $\textcolor{teal}{x} \in L^\infty(I, \mathbb{R}^d)$

$$\mathcal{D}(\textcolor{teal}{x}) := \sup_{i,j \in I} |\textcolor{teal}{x}(i) - \textcolor{teal}{x}(j)|.$$

Theorem (Quantitative diameter decay)[BPDS'22]

For each $\textcolor{teal}{x}^0 \in L^\infty(I, \mathbb{R}^d)$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\textcolor{teal}{x}(t)) \leq \mathcal{D}(\textcolor{teal}{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathcal{A}(s)) ds \right).$$

Two technical novelties

- ◊ No stochastic **normalisation** trick \rightsquigarrow **Geometric** argument.
- ◊ $t \mapsto \mathcal{D}(\textcolor{teal}{x}(t))$ not diff. \rightsquigarrow approx. with **Scorza-Dragoni**.

Graphon dynamics – *Scrambling and diameter estimate*

Definition (Scrambling coefficient and diameter)[BPDS'22]

We define the **scrambling coefficient** of a graphon \mathcal{A} by

$$\eta(\mathcal{A}) := \inf_{i,j \in I} \int_I \min\{\mathcal{a}(i,k), \mathcal{a}(j,k)\} dk,$$

as well as the **diameter** of a map $\textcolor{teal}{x} \in L^\infty(I, \mathbb{R}^d)$

$$\mathcal{D}(\textcolor{teal}{x}) := \sup_{i,j \in I} |\textcolor{teal}{x}(i) - \textcolor{teal}{x}(j)|.$$

Theorem (Quantitative diameter decay)[BPDS'22]

For each $\textcolor{teal}{x}^0 \in L^\infty(I, \mathbb{R}^d)$, there exists $\phi_0 > 0$ such that

$$\mathcal{D}(\textcolor{teal}{x}(t)) \leq \mathcal{D}(\textcolor{teal}{x}^0) \exp \left(-\phi_0 \int_0^t \eta(\mathcal{A}(s)) ds \right).$$

Two technical novelties

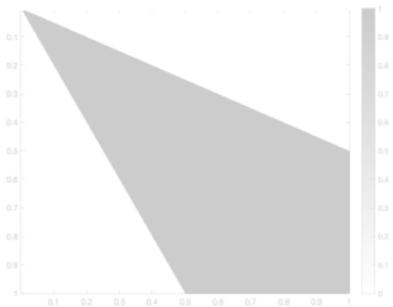
- ◇ No **stochastic normalisation** trick \rightsquigarrow **Geometric** argument.
- ◇ $t \mapsto \mathcal{D}(\textcolor{teal}{x}(t))$ not diff. \rightsquigarrow approx. with **Scorza-Dragoni**.

Graphon dynamics – *Strong connectivity for graphons*

Definition (Graphon connectivity)[Boudin,Salvarini&Trélat'21]

A graphon \mathcal{A} is **strongly connected** if the following holds.

- (i) **(Connectivity)** For \mathcal{L}^1 -almost every $i, j \in I$, there exists $i = k_1, \dots, k_m = j$ such that $k_{l+1} \in \text{supp}(a(k_l, \cdot))$.
- (ii) **(Degree lower-bound)** $\inf_{i \in I} \int_I a(i, j) dj \geq \delta > 0$.



Theorem (Canonical kernel of \mathbb{L}^*)[Boudin,Salvarini&Trélat'21]

If \mathcal{A} is strongly connected, there exists a unique $v \in L^2(I, \mathbb{R}_+^*)$ s.t.

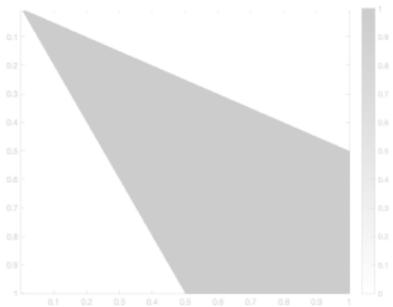
$$\mathbb{L}^*v = 0 \quad \text{and} \quad \int_I v(i) di = 1.$$

Graphon dynamics – *Strong connectivity for graphons*

Definition (Graphon connectivity)[Boudin,Salvarini&Trélat'21]

A graphon \mathcal{A} is **strongly connected** if the following holds.

- (i) **(Connectivity)** For \mathcal{L}^1 -almost every $i, j \in I$, there exists $i = k_1, \dots, k_m = j$ such that $k_{l+1} \in \text{supp}(a(k_l, \cdot))$.
- (ii) **(Degree lower-bound)** $\inf_{i \in I} \int_I a(i, j) dj \geq \delta > 0$.



Theorem (Canonical kernel of \mathbb{L}^*)[Boudin,Salvarini&Trélat'21]

If \mathcal{A} is strongly connected, there exists a unique $v \in L^2(I, \mathbb{R}_+^*)$ s.t.

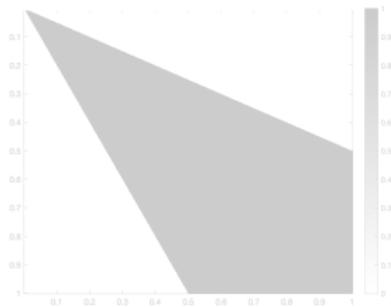
$$\mathbb{L}^*v = 0 \quad \text{and} \quad \int_I v(i) di = 1.$$

Graphon dynamics – *Strong connectivity for graphons*

Definition (Graphon connectivity)[Boudin,Salvarini&Trélat'21]

A graphon \mathcal{A} is **strongly connected** if the following holds.

- (i) **(Connectivity)** For \mathcal{L}^1 -almost every $i, j \in I$, there exists $i = k_1, \dots, k_m = j$ such that $k_{l+1} \in \text{supp}(\mathcal{A}(k_l, \cdot))$.
- (ii) **(Degree lower-bound)** $\inf_{i \in I} \int_I \mathcal{A}(i, j) dj \geq \delta > 0$.



Theorem (Canonical kernel of \mathbb{L}^*)[Boudin,Salvarini&Trélat'21]

If \mathcal{A} is strongly connected, there exists a unique $v \in L^2(I, \mathbb{R}_+^*)$ s.t.

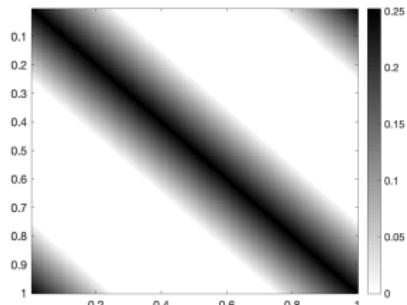
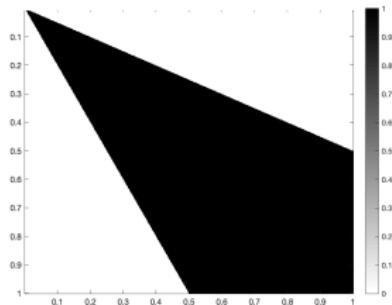
$$\mathbb{L}^*v = 0 \quad \text{and} \quad \int_I v(i) di = 1.$$

Graphon dynamics – *Strong connectivity for graphons*

Definition (Graphon connectivity)[Boudin,Salvarini&Trélat'21]

A graphon \mathcal{A} is **strongly connected** if the following holds.

- (i) **(Connectivity)** For \mathcal{L}^1 -almost every $i, j \in I$, there exists $i = k_1, \dots, k_m = j$ such that $k_{l+1} \in \text{supp}(\mathcal{A}(k_l, \cdot))$.
- (ii) **(Degree lower-bound)** $\inf_{i \in I} \int_I \mathcal{A}(i, j) dj \geq \delta > 0$.



Theorem (Canonical kernel of \mathbb{L}^*)[Boudin,Salvarini&Trélat'21]

If \mathcal{A} is strongly connected, there exists a unique $v \in L^2(I, \mathbb{R}_+^*)$ s.t.

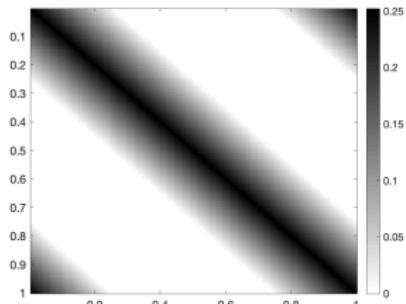
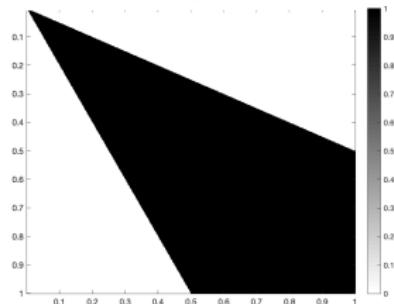
$$\mathbb{L}^*v = 0 \quad \text{and} \quad \int_I v(i) di = 1.$$

Graphon dynamics – *Strong connectivity for graphons*

Definition (Graphon connectivity)[Boudin,Salvarini&Trélat'21]

A graphon \mathcal{A} is **strongly connected** if the following holds.

- (i) **(Connectivity)** For \mathcal{L}^1 -almost every $i, j \in I$, there exists $i = k_1, \dots, k_m = j$ such that $k_{l+1} \in \text{supp}(\mathcal{a}(k_l, \cdot))$.
- (ii) **(Degree lower-bound)** $\inf_{i \in I} \int_I \mathcal{a}(i, j) dj \geq \delta > 0$.



Theorem (Canonical kernel of \mathbb{L}^*)[Boudin,Salvarini&Trélat'21]

If \mathcal{A} is strongly connected, there exists a unique $v \in L^2(I, \mathbb{R}_+^*)$ s.t.

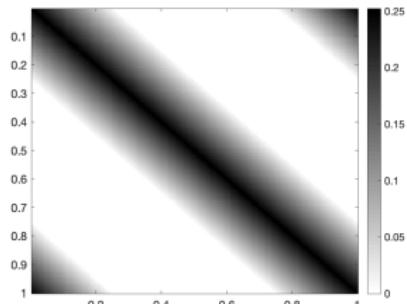
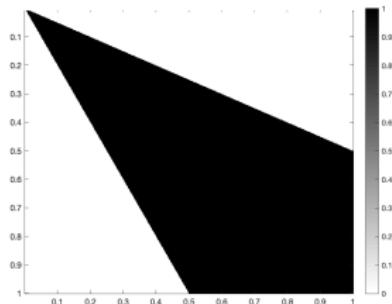
$$\mathbb{L}^*v = 0 \quad \text{and} \quad \int_I v(i) di = 1.$$

Graphon dynamics – *Strong connectivity for graphons*

Definition (Graphon connectivity)[Boudin,Salvarini&Trélat'21]

A graphon \mathcal{A} is **strongly connected** if the following holds.

- (i) **(Connectivity)** For \mathcal{L}^1 -almost every $i, j \in I$, there exists $i = k_1, \dots, k_m = j$ such that $k_{l+1} \in \text{supp}(\mathcal{a}(k_l, \cdot))$.
- (ii) **(Degree lower-bound)** $\inf_{i \in I} \int_I \mathcal{a}(i, j) dj \geq \delta > 0$.



Theorem (Canonical kernel of \mathbb{L}^*)[Boudin,Salvarini&Trélat'21]

If \mathcal{A} is strongly connected, there exists a unique $v \in L^2(I, \mathbb{R}_+^*)$ s.t.

$$\mathbb{L}^*v = 0 \quad \text{and} \quad \int_I v(i) di = 1.$$

Graphon dynamics – *Algebraic and graphon connectivity*

Definition (Generalised algebraic connectivity)

We define the **algebraic connectivity** of a DCUSCC graphon \mathcal{A} by

$$\lambda_2(\mathcal{A}) := \inf_{\mathbf{x} \in \mathcal{C}^\perp} \frac{\langle \mathbb{L}_v \mathbf{x}, \mathbf{x} \rangle_{L^2(I)}}{\|\mathbf{x}\|_{L^2(I)}^2}$$

where

- ◊ $\mathcal{C} := \{\mathbf{x} \in L^2(I, \mathbb{R}^d) \text{ constant}\}$ is the **consensus manifold**,
- ◊ $\mathbb{L}_v := \mathcal{M}_v \mathbb{L}$ the **renormalised graph-Laplacian**.

Theorem (On algebraic and graphon connectivity)[BPDS'22]

For a graphon \mathcal{A} , the following connectivity characterisations hold.

- ◊ If \mathcal{A} is **symmetric**, strong connectedness $\iff \lambda_2(\mathcal{A}) > 0$.
- ◊ If \mathcal{A} is **DCUSCC**, strong connectedness $\iff \lambda_2(\mathcal{A}) > 0$.

Open problem: Is \mathcal{A} DCUSCC whenever $v \in \text{Ker}(\mathbb{L}^*)$ exists ?

Graphon dynamics – *Algebraic and graphon connectivity*

Definition (Generalised algebraic connectivity)

We define the **algebraic connectivity** of a DCUSCC graphon \mathcal{A} by

$$\lambda_2(\mathcal{A}) := \inf_{\mathcal{C}^\perp} \frac{\langle \mathbb{L}_v \mathbf{x}, \mathbf{x} \rangle_{L^2(I)}}{\|\mathbf{x}\|_{L^2(I)}^2}$$

where

- ◊ $\mathcal{C} := \{\mathbf{x} \in L^2(I, \mathbb{R}^d) \text{ constant}\}$ is the **consensus manifold**,
- ◊ $\mathbb{L}_v := \mathcal{M}_v \mathbb{L}$ the **renormalised graph-Laplacian**.

Theorem (On algebraic and graphon connectivity) [BPDS'22]

For a graphon \mathcal{A} , the following connectivity characterisations hold.

- ◊ If \mathcal{A} is **symmetric**, strong connectedness $\iff \lambda_2(\mathcal{A}) > 0$.
- ◊ If \mathcal{A} is **DCUSCC**, strong connectedness $\iff \lambda_2(\mathcal{A}) > 0$.

Open problem: Is \mathcal{A} DCUSCC whenever $v \in \text{Ker}(\mathbb{L}^*)$ exists ?

Graphon dynamics – *Algebraic and graphon connectivity*

Definition (Generalised algebraic connectivity)

We define the **algebraic connectivity** of a DCUSCC graphon \mathcal{A} by

$$\lambda_2(\mathcal{A}) := \inf_{\mathcal{C}^\perp} \frac{\langle \mathbb{L}_v \mathbf{x}, \mathbf{x} \rangle_{L^2(I)}}{\|\mathbf{x}\|_{L^2(I)}^2}$$

where

- ◊ $\mathcal{C} := \{\mathbf{x} \in L^2(I, \mathbb{R}^d) \text{ constant}\}$ is the **consensus manifold**,
- ◊ $\mathbb{L}_v := \mathcal{M}_v \mathbb{L}$ the **renormalised graph-Laplacian**.

Theorem (On algebraic and graphon connectivity) [BPDS'22]

For a graphon \mathcal{A} , the following connectivity characterisations hold.

- ◊ If \mathcal{A} is **symmetric**, strong connectedness $\iff \lambda_2(\mathcal{A}) > 0$.
- ◊ If \mathcal{A} is **DCUSCC**, strong connectedness $\iff \lambda_2(\mathcal{A}) > 0$.

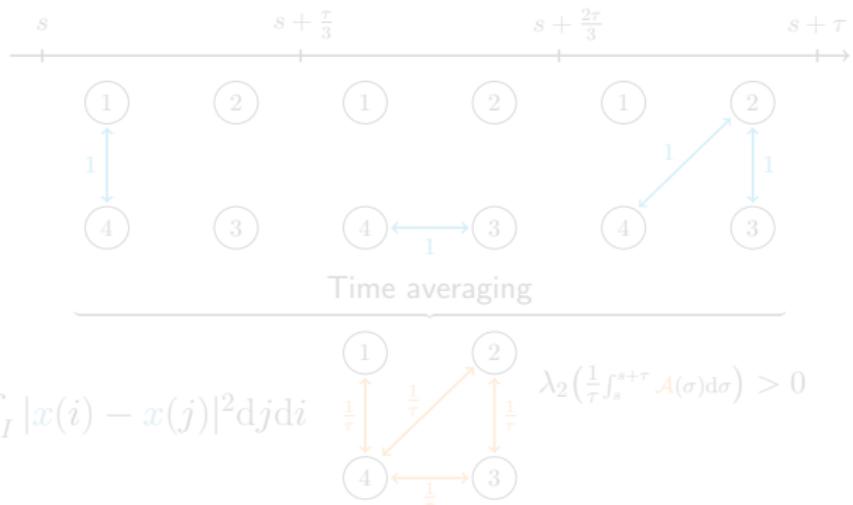
Open problem: Is \mathcal{A} DCUSCC whenever $v \in \text{Ker}(\mathbb{L}^*)$ exists ?

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons) [BPDS'22, BF'21]

Suppose that $\mathcal{A}(t)$ is symmetric for a.e. $t \in \mathbb{R}_+$. Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$ and every $\tau > 0$, there exist $\phi_0, \alpha_\tau, \gamma_\tau > 0$ s.t.

$$\mathcal{V}(\mathbf{x}(t)) \leq \alpha_\tau \mathcal{V}(\mathbf{x}^0) \exp \left(-\phi_0 \gamma_\tau \int_0^t \lambda_2 \left(\frac{1}{\tau} \int_s^{s+\tau} \mathcal{A}(\sigma) d\sigma \right) ds \right).$$



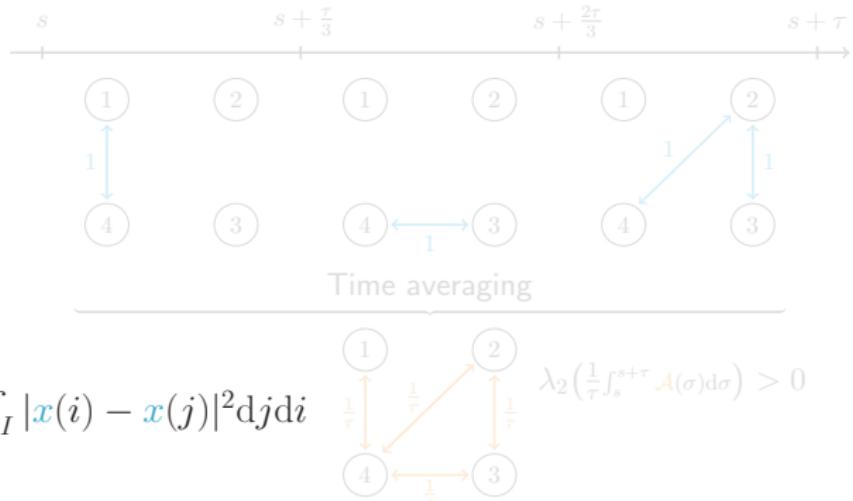
Idea: Exponential consensus with mere average connectivity.

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]

Suppose that $\mathcal{A}(t)$ is symmetric for a.e. $t \in \mathbb{R}_+$. Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$ and every $\tau > 0$, there exist $\phi_0, \alpha_\tau, \gamma_\tau > 0$ s.t.

$$\mathcal{V}(\mathbf{x}(t)) \leq \alpha_\tau \mathcal{V}(\mathbf{x}^0) \exp \left(-\phi_0 \gamma_\tau \int_0^t \lambda_2 \left(\frac{1}{\tau} \int_s^{s+\tau} \mathcal{A}(\sigma) d\sigma \right) ds \right).$$



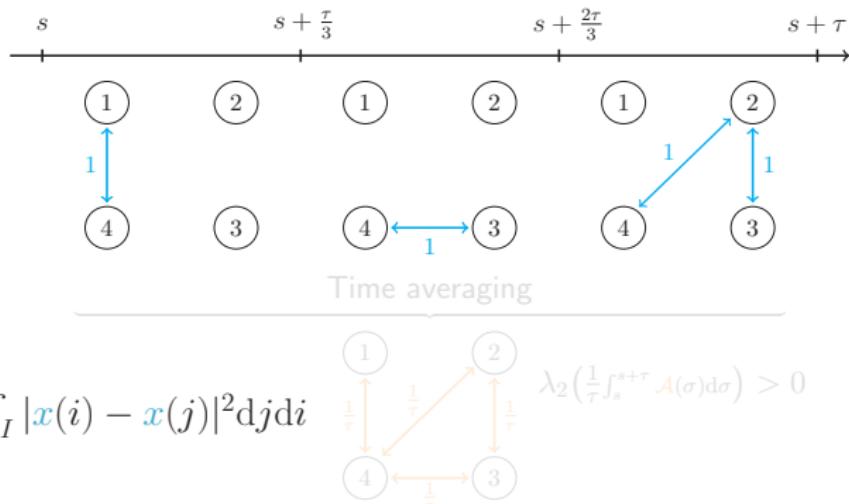
Idea: Exponential consensus with mere average connectivity.

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons) [BPDS'22, BF'21]

Suppose that $\mathcal{A}(t)$ is symmetric for a.e. $t \in \mathbb{R}_+$. Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$ and every $\tau > 0$, there exist $\phi_0, \alpha_\tau, \gamma_\tau > 0$ s.t.

$$\mathcal{V}(\mathbf{x}(t)) \leq \alpha_\tau \mathcal{V}(\mathbf{x}^0) \exp \left(-\phi_0 \gamma_\tau \int_0^t \lambda_2 \left(\frac{1}{\tau} \int_s^{s+\tau} \mathcal{A}(\sigma) d\sigma \right) ds \right).$$



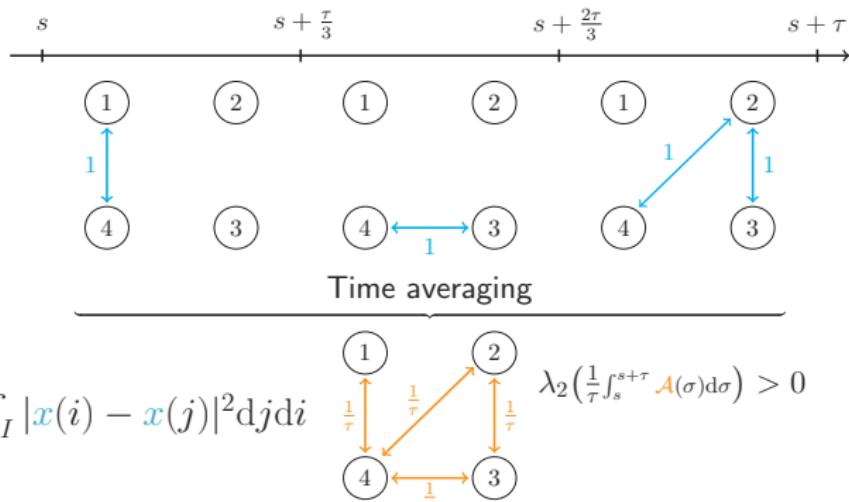
Idea: Exponential consensus with mere **average connectivity**.

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons) [BPDS'22, BF'21]

Suppose that $\mathcal{A}(t)$ is symmetric for a.e. $t \in \mathbb{R}_+$. Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$ and every $\tau > 0$, there exist $\phi_0, \alpha_\tau, \gamma_\tau > 0$ s.t.

$$\mathcal{V}(\mathbf{x}(t)) \leq \alpha_\tau \mathcal{V}(\mathbf{x}^0) \exp \left(-\phi_0 \gamma_\tau \int_0^t \lambda_2 \left(\frac{1}{\tau} \int_s^{s+\tau} \mathcal{A}(\sigma) d\sigma \right) ds \right).$$



$$\mathcal{V}(\mathbf{x}) := \frac{1}{2} \int_I \int_I |\mathbf{x}(i) - \mathbf{x}(j)|^2 dj di$$

$$\lambda_2 \left(\frac{1}{\tau} \int_s^{s+\tau} \mathcal{A}(\sigma) d\sigma \right) > 0$$

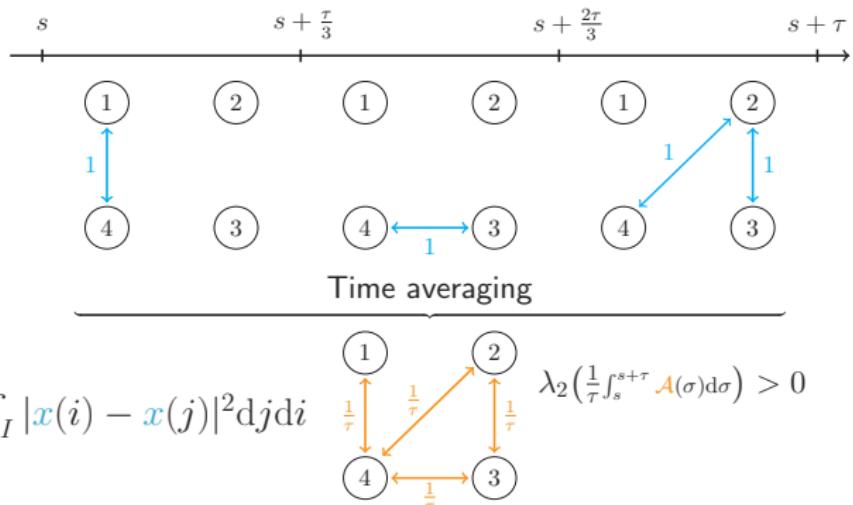
Idea: Exponential consensus with mere average connectivity.

Graphon dynamics – Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons) [BPDS'22, BF'21]

Suppose that $\mathcal{A}(t)$ is symmetric for a.e. $t \in \mathbb{R}_+$. Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$ and every $\tau > 0$, there exist $\phi_0, \alpha_\tau, \gamma_\tau > 0$ s.t.

$$\mathcal{V}(\mathbf{x}(t)) \leq \alpha_\tau \mathcal{V}(\mathbf{x}^0) \exp \left(-\phi_0 \gamma_\tau \int_0^t \lambda_2 \left(\frac{1}{\tau} \int_s^{s+\tau} \mathcal{A}(\sigma) d\sigma \right) ds \right).$$



$$\mathcal{V}(\mathbf{x}) := \frac{1}{2} \int_I \int_I |\mathbf{x}(i) - \mathbf{x}(j)|^2 dj di$$

$$\lambda_2 \left(\frac{1}{\tau} \int_s^{s+\tau} \mathcal{A}(\sigma) d\sigma \right) > 0$$

Idea: Exponential consensus with mere average connectivity.

Graphon dynamics – Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon \mathcal{A} is said to be **balanced** if $\mathbb{L}^* \mathbf{1} = 0$, namely

$$\int_I a(i, j) dj = \int_I a(j, i) dj.$$

↪ Equality between the **in-degree** and **out-degree** at each node.

Theorem (Variance decay for balanced graphons) [BPDS'22]

Suppose that $\mathcal{A}(t)$ is balanced for \mathcal{L}^1 -almost every $t \in [0, T]$ and that $\phi(\cdot) \equiv 1$. Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$, it holds that

$$\mathcal{V}(\mathbf{x}(t)) \leq \mathcal{V}(\mathbf{x}^0) \exp \left(- \int_0^t \lambda_2(\mathcal{A}(s)) ds \right).$$

Open problem: Average condition like in the symmetric case ?

Graphon dynamics – Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon \mathcal{A} is said to be **balanced** if $\mathbb{L}^* \mathbf{1} = 0$, namely

$$\int_I a(i, j) dj = \int_I a(j, i) dj.$$

↪ Equality between the **in-degree** and **out-degree** at each node.

Theorem (Variance decay for balanced graphons) [BPDS'22]

Suppose that $\mathcal{A}(t)$ is balanced for \mathcal{L}^1 -almost every $t \in [0, T]$ and that $\phi(\cdot) \equiv 1$. Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$, it holds that

$$\mathcal{V}(\mathbf{x}(t)) \leq \mathcal{V}(\mathbf{x}^0) \exp \left(- \int_0^t \lambda_2(\mathcal{A}(s)) ds \right).$$

Open problem: Average condition like in the symmetric case ?

Graphon dynamics – Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon \mathcal{A} is said to be **balanced** if $\mathbb{L}^* \mathbf{1} = 0$, namely

$$\int_I a(i, j) dj = \int_I a(j, i) dj.$$

↪ Equality between the **in-degree** and **out-degree** at each node.

Theorem (Variance decay for balanced graphons) [BPDS'22]

Suppose that $\mathcal{A}(t)$ is balanced for \mathcal{L}^1 -almost every $t \in [0, T]$ and that $\phi(\cdot) \equiv 1$. Then for each $\textcolor{teal}{x}^0 \in L^\infty(I, \mathbb{R}^d)$, it holds that

$$\mathcal{V}(\textcolor{teal}{x}(t)) \leq \mathcal{V}(\textcolor{teal}{x}^0) \exp \left(- \int_0^t \lambda_2(\mathcal{A}(s)) ds \right).$$

Open problem: Average condition like in the symmetric case ?

Graphon dynamics – Variance decay and connectivity (3)

Issue: If $\mathcal{A}(t)$ is DCUSCC $\rightsquigarrow \mathcal{V}(\cdot)$ **not Lyapunov** anymore!

Definition (Weighted variance)

If a graphon \mathcal{A} is DCUSCC, we define the **weighted variance** by

$$\mathcal{V}_v(\mathbf{x}) := \frac{1}{2} \int_I \int_I v(i) v(j) |\mathbf{x}(i) - \mathbf{x}(j)|^2 dj di.$$

Theorem (Variance decay for DCUSCC dwelling graphons)[BPDS'22]

Suppose that $\mathcal{A}(t)$ is DCUSCC for \mathcal{L}^1 -a.e. $t \in \mathbb{R}_+$ with

$$\nu \leq v(t, i) \leq \frac{1}{\nu} \quad \text{for } \mathcal{L}^1\text{-a.e. } i \in I,$$

and that $\phi(\cdot) \equiv 1$. Moreover, suppose that $t \mapsto \mathcal{A}(t)$ is piece. const. with **dwell-time** τ_d . Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$, it holds

$$\mathcal{V}(\mathbf{x}(t)) \leq \frac{1}{\nu^2} \mathcal{V}(\mathbf{x}^0) \exp \left(-\nu^2 \int_0^t \lambda_2(\mathcal{A}(s)) ds - \frac{2}{\tau_d} \log \left(\frac{1}{\nu} \right) t \right).$$

Open problem: Could we derive an estimate without dwell-times ?

Graphon dynamics – Variance decay and connectivity (3)

Issue: If $\mathcal{A}(t)$ is DCUSCC $\rightsquigarrow \mathcal{V}(\cdot)$ **not Lyapunov** anymore!

Definition (Weighted variance)

If a graphon \mathcal{A} is DCUSCC, we define the **weighted variance** by

$$\mathcal{V}_v(\mathbf{x}) := \frac{1}{2} \int_I \int_I v(i) v(j) |\mathbf{x}(i) - \mathbf{x}(j)|^2 djd_i.$$

Theorem (Variance decay for DCUSCC dwelling graphons) [BPDS'22]

Suppose that $\mathcal{A}(t)$ is DCUSCC for \mathcal{L}^1 -a.e. $t \in \mathbb{R}_+$ with

$$\nu \leq v(t, i) \leq \frac{1}{\nu} \quad \text{for } \mathcal{L}^1\text{-a.e. } i \in I,$$

and that $\phi(\cdot) \equiv 1$. Moreover, suppose that $t \mapsto \mathcal{A}(t)$ is piece. const. with **dwell-time** τ_d . Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$, it holds

$$\mathcal{V}(\mathbf{x}(t)) \leq \frac{1}{\nu^2} \mathcal{V}(\mathbf{x}^0) \exp \left(-\nu^2 \int_0^t \lambda_2(\mathcal{A}(s)) ds - \frac{2}{\tau_d} \log \left(\frac{1}{\nu} \right) t \right).$$

Open problem: Could we derive an estimate without dwell-times ?

Graphon dynamics – Variance decay and connectivity (3)

Issue: If $\mathcal{A}(t)$ is DCUSCC $\rightsquigarrow \mathcal{V}(\cdot)$ **not Lyapunov** anymore!

Definition (Weighted variance)

If a graphon \mathcal{A} is DCUSCC, we define the **weighted variance** by

$$\mathcal{V}_v(\mathbf{x}) := \frac{1}{2} \int_I \int_I v(i) v(j) |\mathbf{x}(i) - \mathbf{x}(j)|^2 djd_i.$$

Theorem (Variance decay for DCUSCC dwelling graphons) [BPDS'22]

Suppose that $\mathcal{A}(t)$ is DCUSCC for \mathcal{L}^1 -a.e. $t \in \mathbb{R}_+$ with

$$\nu \leq v(t, i) \leq \frac{1}{\nu} \quad \text{for } \mathcal{L}^1\text{-a.e. } i \in I,$$

and that $\phi(\cdot) \equiv 1$. Moreover, suppose that $t \mapsto \mathcal{A}(t)$ is piece. const. with **dwell-time** τ_d . Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$, it holds

$$\mathcal{V}(\mathbf{x}(t)) \leq \frac{1}{\nu^2} \mathcal{V}(\mathbf{x}^0) \exp \left(-\nu^2 \int_0^t \lambda_2(\mathcal{A}(s)) ds - \frac{2}{\tau_d} \log \left(\frac{1}{\nu} \right) t \right).$$

Open problem: Could we derive an estimate without dwell-times ?

Graphon dynamics – Variance decay and connectivity (3)

Issue: If $\mathcal{A}(t)$ is DCUSCC $\rightsquigarrow \mathcal{V}(\cdot)$ **not Lyapunov** anymore!

Definition (Weighted variance)

If a graphon \mathcal{A} is DCUSCC, we define the **weighted variance** by

$$\mathcal{V}_v(\mathbf{x}) := \frac{1}{2} \int_I \int_I v(i) v(j) |\mathbf{x}(i) - \mathbf{x}(j)|^2 djddi.$$

Theorem (Variance decay for DCUSCC dwelling graphons) [BPDS'22]

Suppose that $\mathcal{A}(t)$ is DCUSCC for \mathcal{L}^1 -a.e. $t \in \mathbb{R}_+$ with

$$\nu \leq v(t, i) \leq \frac{1}{\nu} \quad \text{for } \mathcal{L}^1\text{-a.e. } i \in I,$$

and that $\phi(\cdot) \equiv 1$. Moreover, suppose that $t \mapsto \mathcal{A}(t)$ is piece. const. with **dwell-time** τ_d . Then for each $\mathbf{x}^0 \in L^\infty(I, \mathbb{R}^d)$, it holds

$$\mathcal{V}(\mathbf{x}(t)) \leq \frac{1}{\nu^2} \mathcal{V}(\mathbf{x}^0) \exp \left(-\nu^2 \int_0^t \lambda_2(\mathcal{A}(s)) ds - \frac{2}{\tau_d} \log \left(\frac{1}{\nu} \right) t \right).$$

Open problem: Could we derive an estimate without dwell-times ?

Graphon dynamics – *Link between L^2 - and L^∞ -consensus*

Observation: Under the **sufficient condition** for L^2 -consensus

$$\lambda_2 \left(\frac{1}{\tau} \int_t^{t+\tau} \mathcal{A}(s) ds \right) \geq \mu \quad \text{or} \quad \frac{1}{\tau} \int_t^{t+\tau} \lambda_2(\mathcal{A}(s)) ds \geq \mu$$

we **numerically** observed L^∞ -consensus \rightsquigarrow true in general ?

Theorem (Equivalence between L^2 - and L^∞ -consensus) [BPDS'22]

Suppose that there exist constants $(\tau, \mu) \in \mathbb{R}_+^* \times (0, 1]$ s.t.

$$\frac{1}{\tau} \int_t^{t+\tau} \int_I \mathcal{a}(s, i, j) dj ds \geq \mu$$

for \mathcal{L}^1 -almost every $i \in I$. Then

$$\|x(t) - x^\infty\|_{L^2(I)} \xrightarrow[t \rightarrow +\infty]{} 0$$

for some $x^\infty \in \mathbb{R}^d$ **if and only if**

$$\|x(t) - x^\infty\|_{L^\infty(I)} \xrightarrow[t \rightarrow +\infty]{} 0.$$

Graphon dynamics – *Link between L^2 - and L^∞ -consensus*

Observation: Under the **sufficient condition** for L^2 -consensus

$$\lambda_2 \left(\frac{1}{\tau} \int_t^{t+\tau} \mathcal{A}(s) ds \right) \geq \mu \quad \text{or} \quad \frac{1}{\tau} \int_t^{t+\tau} \lambda_2(\mathcal{A}(s)) ds \geq \mu$$

we **numerically** observed L^∞ -consensus \rightsquigarrow true in general ?

Theorem (Equivalence between L^2 - and L^∞ -consensus) [BPDS'22]

Suppose that there exist constants $(\tau, \mu) \in \mathbb{R}_+^* \times (0, 1]$ s.t.

$$\frac{1}{\tau} \int_t^{t+\tau} \int_I \mathcal{A}(s, i, j) dj ds \geq \mu$$

for \mathcal{L}^1 -almost every $i \in I$. Then

$$\|x(t) - x^\infty\|_{L^2(I)} \xrightarrow[t \rightarrow +\infty]{} 0$$

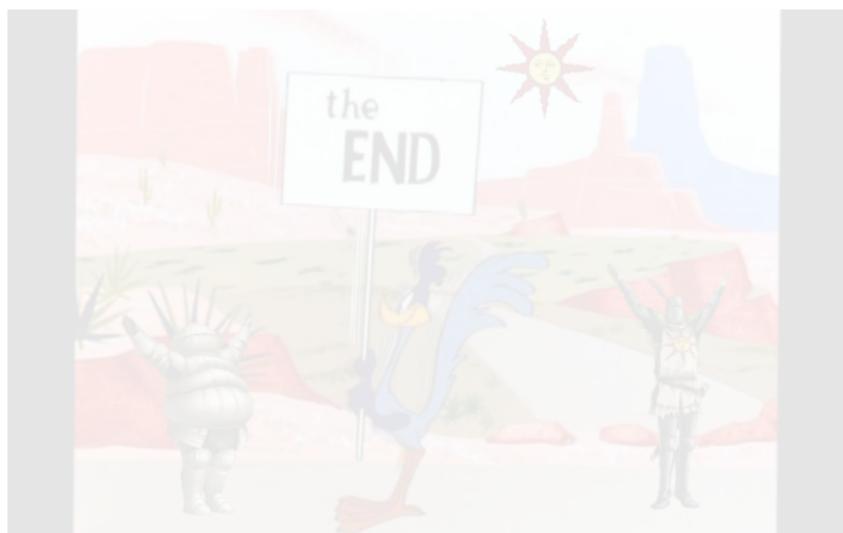
for some $x^\infty \in \mathbb{R}^d$ **if and only if**

$$\|x(t) - x^\infty\|_{L^\infty(I)} \xrightarrow[t \rightarrow +\infty]{} 0.$$

Conclusion – *That's all friends!*

Wrap-up (Summary of presentation)

1. Convergence to **consensus** in **micro** and **macro** dynamics.
2. Generalisation of the **scrambling** and **Fiedler** numbers.
3. Some interesting **open problems** to investigate!

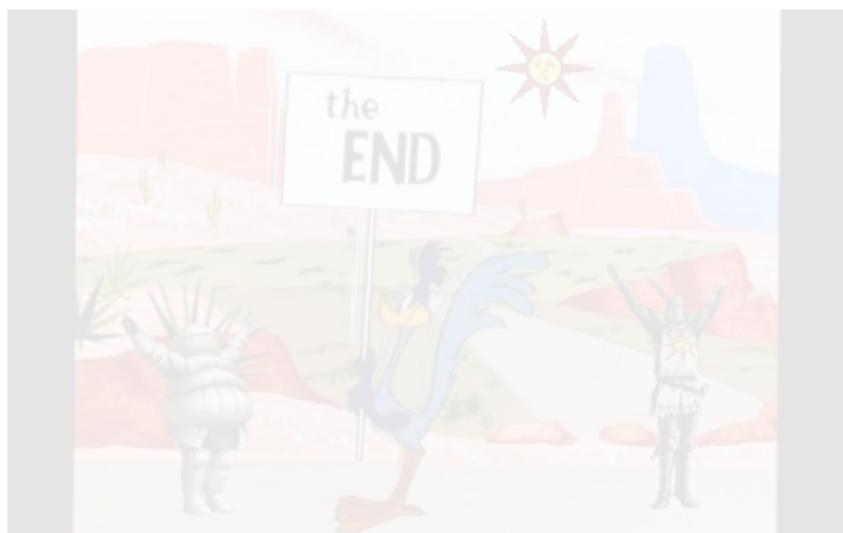


Thank you for your attention !

Conclusion – *That's all friends!*

Wrap-up (Summary of presentation)

1. Convergence to **consensus** in **micro** and **macro** dynamics.
2. Generalisation of the **scrambling** and **Fiedler** numbers.
3. Some interesting **open problems** to investigate!

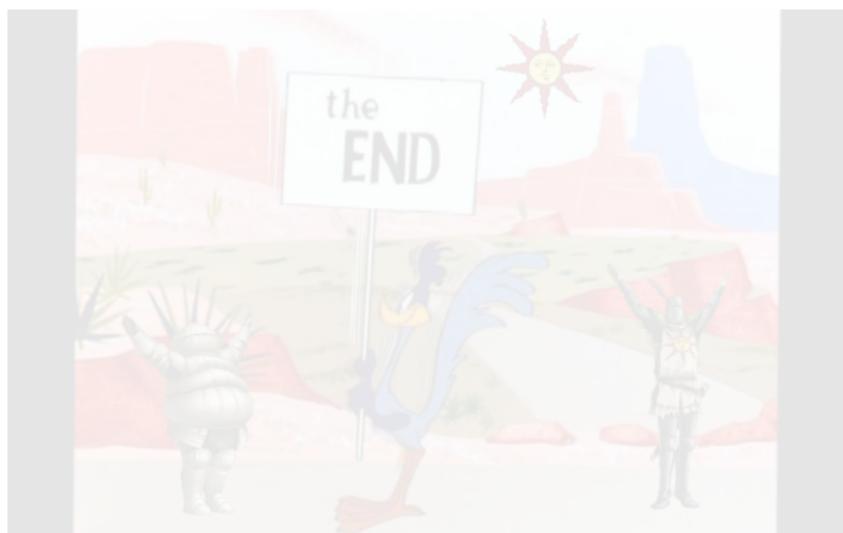


Thank you for your attention !

Conclusion – *That's all friends!*

Wrap-up (Summary of presentation)

1. Convergence to **consensus** in **micro** and **macro** dynamics.
2. Generalisation of the **scrambling** and **Fiedler** numbers.
3. Some interesting **open problems** to investigate!



Thank you for your attention !

Conclusion – *That's all friends!*

Wrap-up (Summary of presentation)

1. Convergence to **consensus** in **micro** and **macro** dynamics.
2. Generalisation of the **scrambling** and **Fiedler** numbers.
3. Some interesting **open problems** to investigate!

Thank you for your attention !