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Multi-agents dynamics can be described by systems of ODEs
A = vilt, 2 (), .(), i€ {L,..., N},

where

o x=(r1,..,2n7) € (RN encodes the states of the agents,

o v; 0 [0,T] x (RHN x RY — R? are non-local velocity fields.

Breadcrumb trail example (Time-dependent cooperative dynamics)
1 N
vilt, @, 1i) = 57 30 aij(O)¢(|2i — wj]) () — i)
J=1

Central observation (pattern formation)
Simple microscopic interactions ~ rich macroscopic structures.]
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Multi-agent systems — Formation of global patterns

Example (Classical patterns arising in multi-agent systems)
© Consensus (everybody goes at the same place)

o Flocking (everybody goes in the same direction)

© Synchronisation (periodic motions arise in the system)

Macroscopic approximations (Main motivations)
o Interest for global patterns, i.e. that involve many agents,

< N is usually very large ~» numerical issues

Today: Consensus for micro and macro cooperative systems.
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We consider the cooperative dynamics

where
o ¢ € Lip(R4,R?%) encodes distance-based interactions,
o a;;(-) € L>®(R4, [0,1]) represent communication links.

Definition (Graph-Laplacian operators)
The graph-Laplacian Ly (¢, x) : (RY)YN — (RY)Y is defined by

N
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Multi-agent systems — General cooperative dynamics

We consider the cooperative dynamics

1
=% g i (®)p(|zi(t) — () ]) (2 () — xi(t)),

where
o ¢ € Lip(R4,R?%) encodes distance-based interactions,
o a;;(-) € L>®(R4, [0,1]) represent communication links.

Definition (Graph-Laplacian operators)
The graph-Laplacian Ly (¢, x) : (RY)YN — (RY)Y is defined by

N
Ly(t,z)y = (%i;(m(t)ds(!m ~ il - yi)) 1<i<N

< Semilinear reformulation of the dynamics

(t) = —Ly(t, z(t)z(t). (CS)



Multi-agent systems — Reformulation as graphons (1)

Idea: Study consensus for the mean-field approximation
Buyiv (£) + diva (9(2) % oy (B () = 0

[HagLiu'09, Carrillo,Fornasier,Rosados Toscani'10, Piccoli,Rossig Trélat'15].
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Multi-agent systems — Reformulation as graphons (1)

Idea: Study consensus for the mean-field approximation
Oppen () 4 divg (P () * v (E) e (8)) =0

[HagLiu'09, Carrillo,Fornasier,Rosados Toscani'10, Piccoli,Rossig Trélat'15].

Problem: Mean-field needs indistinguishability, i.e. «,;(t) = 1.

Definition (Graph limit)[LS'07,M’14]
Given a solution x(-) of (CS), define the piecewise constant maps

i€l xy(ti):= rp(t)1 [k—l

and
N
1,7 €1~ (Lx(t,i,j) = Z (1/\}[(75) 1 [k—l

and denote by I := [0, 1] the (continuum of) indices.
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Multi-agent systems — Reformulation as graphons (2)

RY A
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Graphon reformulation of (CS) ~~ infinite dimensional ODEs

Oy (L,4) =/Ia(t,i,j)<f>(|l‘(t,i)—x(t,j)l)(x(taj)—x(t,i))dj (GD)

for #1-almost every i € I.
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Consensus — Definition and main ideas
Definition (Asymptotic consensus formation)
A solution xz(-) of (CS) converges to consensus if

. Py 0]
Jm o (t) — 2% =0,

forall i € {1,..., N} and some 2 € R

Idea: Quantitative convergence results ~~ Lyapunov methods!

Definition (Candidate energy functionals)
We define the variance functional

N
1 _
V() = N ;—1 |z — 2)? (¢2-convergence),
and the diameter

D(x) := i,je%?%,N} |z — ] (£o-convergence),

— Decay prescribed by two intrinsic scalar quantities.




Consensus — Scrambling coefficient and diameter estimates
Definition (Scrambling coefficient)[Seneta'79]
The scrambling of a graph A, = (a/,;j)%.:l satisfying «,, = 1 is

N
1
n(Ay):= min —( > min{op,ap}+a;+ aji)

1<ij<N N
== k=1kAij
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Definition (Scrambling coefficient)[Seneta'79]
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— Positive if each (i, ) either interact or follow the same k.




Consensus — Scrambling coefficient and diameter estimates
Definition (Scrambling coefficient)[Seneta'79]
The scrambling of a graph A = ((L,,;J')gjzl satisfying a,; = 1 is

1

N
77(A\) = 1§IzI,l]i'2N N ( Z | ‘min {CL,jk,, (l:,‘k} + aij + aj;
k=1k#i,j

N—

— Positive if each (i, ) either interact or follow the same k.
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Consensus — Scrambling coefficient and diameter estimates
Definition (Scrambling coefficient)[Seneta'79]
The scrambling of a graph A = ((I"’?J')gjﬂ satisfying a,; = 1 is

N
. 1 .
n(Ay):= min — ( E min {(L,‘k, aﬂ.} +a;j + aji)

1<ij<N N .
k=1,k#i,j

— Positive if each (i, ) either interact or follow the same k.

% 14 I

Theorem (Quantltatlve diameter decay) [Motsch&Tadmor 14]
For each 20 € (R%)", there exists ¢y > 0 such that

Da(t) < D) exp (— oo tn(Ax(S))dS)-




Consensus — Fiedler number and variance estimates
Definition (Algebraic connectivity of a graph)[Fiedler'73, Mohar'91]
The Fiedler number of a symmetric graph Ay = (a,,), is

L
Mo(Ay) = inf ENTTIN
2ECK |ZL'|N

)

M=

N
where (Lyx); = % 1(17;j({L'Z' —zj), (z,y)N = %,21@2‘7%) and
J i=

En = {ac € (Rd)N st.o] == :UN}

is the consensus manifold.




Consensus — Fiedler number and variance estimates
Definition (Algebraic connectivity of a graph)[Fiedler'73, Mohar'91]
The Fiedler number of a symmetric graph A = (”’ij)i]L is

L
Ao(An) = inf M;
me%ﬁ |CL'|N
1 N 1 N
where (Lyx); = ; aij(ri —x5), (xZ,Y)N =% ; (;,y;) and
En = {a: c (Rd)N st == xN}

is the consensus manifold.

Theorem (Quantitative variance decay)[MotscheTadmor'14]
Suppose that A (t) = ((ljj(t))%zl is symmetric for a.e. t € R.
Then for each 0 € (RY)Y, there exists ¢ > such that

V() < Ve (oo | t a4 (9)ds ).




Consensus — Idea of the proof in the symmetric case

dY(x(t) = & é (2i(t), 2i(t) — z)
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V) = & 5 (0, 1(0) — )
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Consensus — Idea of the proof in the symmetric case

%V(a:(t)) = % ié:v:l <«Tz z’ — §3>

iL Ly(tH)z =0
N
= & 5 ((Ex O - 2), () - 2)
: |l Def. of (-, ")n

= —(Ln(t)(z(t) — z), (2(t) — z))
1l Def. of Ap(An(t))
< (A (t)|z(t) — 2[}
1l Def. of V(x(t))
==X (An()V(x(t))




Consensus — Idea of the proof in the symmetric case

= —(Ly(t)(x(t) — ), (z(t) — )
J Def. of XAa(An(t))
< (A @)|z(t) — 2%
J Def. of V(z(t))
= =X (An(1)V(x(t))

< Gronwall lemma and we're done!




Consensus — About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar'91]
A symmetric graph A, = (aij)fyj:l is strongly connected, i.e.

forall 4,5 thereexists i =Fky,....,kyn =7 st. ayy, , >0
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Theorem (Characterisation of graph connectivity)[Mohar'91]

A symmetric graph A, = (“7’]’)%’:1 is strongly connected, i.e.

forall i,j there exists ¢ =ky,...,kp =7 st. apy,., >0

if and only if \y(A ) > 0.

Question: What happens when A is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu'05]

A graph A, is a disjoint union of str. connected components
(“DUSCC") if and only if there exists (vy,...,vn) € (R} s.t.

N
Lyv=0 and %Zmzl
i=1

where v := (vi,...,v1,...,0N,...,on) € (RY)N.
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Theorem (Characterisation of graph connectivity)[Mohar'91]

A symmetric graph A, = (u,;j)fvjzl is strongly connected, i.e.

forall i,j there exists ¢ =ky,...,kp =7 st. apy,., >0

if and only if \y(A ) > 0.

Question: What happens when A is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu'05]
A graph A, is a disjoint union of str. connected components
(“DUSCC") if and only if there exists (vy,...,vn) € (R} s.t.

N
Lyv=0 and %Zmzl
i=1
where v := (vi,...,v1,...,0N,...,on) € (RY)N.

Remark: Ly (1,...,1) =0if Ay is symmetric ~» always DUSCC!




Consensus — About algebraic and graph connectivity (2)
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Definition (Generalised algebraic connectivity for graphs)[wu'05]
The algebraic connectivity of a DUSCC graph A is

L'U
Mo(A) = inf ENTEN
TECK |;1;|N

where LY := diag(v)Ly is the renormalised graph-Laplacian.
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Definition (Generalised algebraic connectivity for graphs)[wu'05]
The algebraic connectivity of a DUSCC graph A is

L'U
Ao(Ay) = inf <N$—2$>N
TECK |;[;|N

where LY := diag(v)Ly is the renormalised graph-Laplacian.

Question: Link with graph connectivity and variance estimates 7

J
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Definition (Generalised algebraic connectivity for graphs)[wu'05]
The algebraic connectivity of a DUSCC graph A is

L'U
Ao(Ay) = inf <N$—2$>N
TECK |;13|N

where LY := diag(v)Ly is the renormalised graph-Laplacian.

Question: Link with graph connectivity and variance estimates 7

Theorem (Characterisation of graph connectivity)[Wu'05]
A DUSCC graph A is str. connected if and only if A\a(A ) > O.J
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Graphon dynamics — Adjacency and graph-Laplacian

We consider the graphon dynamics
) = [ o(t.i. 00010 (1.0) = (D)) = (0,01

where «(t) € L>(I x 1,0, 1]) represents the communications.
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Graphon dynamics — Adjacency and graph-Laplacian

We consider the graphon dynamics
) = [ o(t.i. 00010 (1.0) = (D)) = (0,01
where «(t) € L>(I x 1,0, 1]) represents the communications.

Definition (Adjacency, degree and graph-Laplacian operators)
We define the adjacency operator by

At x)yri €l /I(J(t,i,jW(’l‘(i) — 2PN (G)ds,
as well as the graph-Laplacian L(t, ) : L?(I,R?) — L?(I,R%)

Lt 1)y i€ T /I ot i, )6((0) — ()W) — v())dj.

— Semilinear reformulation of the dynamics

(t) = —LL(t, =(£))z(2). (GD)



Graphon dynamics — Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS'22]
We define the scrambling coefficient of a graphon A by

n(A) := inf /mln{a i,k),a(y, k)}dk,

1,7€1
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Graphon dynamics — Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS'22]
We define the scrambling coefficient of a graphon A by

n(A) := inf /mln{a i,k),a(y, k)}dk,

1,7€1

as well as the diameter of a map = € L>=(I,R%)

D(x) = f}g}'”"(i) = z(j)l-

Theorem (Quantitative diameter decay)[BPDS'22]
For each 20 € L>°(I,R%), there exists ¢o > 0 such that

D(:(0) < D exp (e [ tn(A(s))ds).




Graphon dynamics — Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS'22]
We define the scrambling coefficient of a graphon A by

n(A) = inf /mll’l{(l i,k),a(y, k)}dk,

1,7€1

as well as the diameter of a map = € L>=(I,R%)

D(x) == sup |z(i) — z(j)|-

NI

Theorem (Quantitative diameter decay)[BPDS'22]
For each 20 € L>°(I,R%), there exists ¢o > 0 such that

D(:(0) < D exp (e [ tn(A(s))ds).

Two technical novelties
< No stochastic normalisation trick ~~ Geometric argument.

o t+ D(x(t)) not diff. ~ approx. with Scorza-Dragoni.



Graphon dynamics — Strong connectivity for graphons

Definition (Graphon connectivity)[Boudin,Salvarinie Trélat'21]
A graphon A is strongly connected if the following holds.
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Definition (Graphon connectivity)[Boudin,Salvarinie Trélat'21]
A graphon A is strongly connected if the following holds.

(i) (Connectivity) For #1-almost every i,j € I, there exists
i=ki,...,km =j such that k;11 € supp(a(ky,-)).
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Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is strongly connected if the following holds.
(i) (Connectivity) For #1-almost every i,j € I, there exists
i=ki,...,km =j such that k;11 € supp(a(ky,-)).

(ii) (Degree lower-bound) infic; [} a(i,5)dj > 6 > 0.
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Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is if the following holds.
(i) (Connectivity) For #Z!-almost every i,j € I, there exists
i =ki,...,km = j such that k1 € supp(a(ky,-)).

(i) (Degree lower-bound) inficr [; a(i,j)dj > 6 > 0.
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Graphon dynamics — Strong connectivity for graphons

Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is if the following holds.
) (Connectivity) For #1-almost every i, j € I, there exists
i =ki,...,km = j such that k1 € supp(a(ky,-)).

(i) (Degree lower-bound) inficr [; a(i,j)dj > 6 > 0.

\I

Theorem (Canonical kernel of IL*)[Boudin,Salvarinie Trélat'21]

If A is strongly connected, there exists a unique v € L*(I,R%) s.t

L*s=0  and Jrv(i)di = 1.
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Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is if the following holds.
) (Connectivity) For #1-almost every i, j € I, there exists
i =ki,...,km = j such that k1 € supp(a(ky,-)).

(i) (Degree lower-bound) inficr [; a(i,j)dj > 6 > 0.

\I

Theorem (Canonical kernel of IL*)[Boudin,Salvarinie Trélat'21]

If A is strongly connected, there exists a unique v € L*(I,R%) s.t

L*s=0  and Jrv(i)di = 1.




Graphon dynamics — Algebraic and graphon connectivity

Definition (Generalised algebraic connectivity)
We define the algebraic connectivity of a DCUSCC graphon A by

<]L’v xT, x>L2(I)
r€Et ||J7”%2(1)
where
o € :={x € L*(1,RY) constant} is the consensus manifold,

o L, := M, L the renormalised graph-Laplacian.




Graphon dynamics — Algebraic and graphon connectivity

Definition (Generalised algebraic connectivity)
We define the algebraic connectivity of a DCUSCC graphon A by

<]Lv xT, I‘>L2(I)
S
where
o € :={x € L*(1,RY) constant} is the consensus manifold,

o L, := M, L the renormalised graph-Laplacian.

Theorem (On algebraic and graphon connectivity)[BPDS'22]
For a graphon A, the following connectivity characterisations hold.

o If A is symmetric, strong connectedness < A\y(A) > 0.
o If A is DCUSCC, strong connectedness < A\y(.4) > 0.




Graphon dynamics — Algebraic and graphon connectivity

Definition (Generalised algebraic connectivity)
We define the algebraic connectivity of a DCUSCC graphon A by
(Ly 2, 2) 2(p
Tl el
where
o € :={x € L*(1,RY) constant} is the consensus manifold,
o L, := M, L the renormalised graph-Laplacian.

Theorem (On algebraic and graphon connectivity)[BPDS'22]
For a graphon A, the following connectivity characterisations hold.

o If A is symmetric, strong connectedness < A\y(A) > 0.
o If A is DCUSCC, strong connectedness < A\y(.4) > 0.

Open problem: Is A DCUSCC whenever v € Ker(L*) exists ?



Graphon dynamics — Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]
Suppose that A(t) is symmetric for a.e. ¢t € R.
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Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]
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Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]
Suppose that A(t) is symmetric for a.e. ¢ € R;. Then for each
29 € L®(I,RY) and every T > 0, there exist ¢g, a7, > 0 s.t.

V(x(t) < ar V(%) exp ( — ¢0Yr /Ot Ag(%fserT A(a)da)ds).
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Graphon dynamics — Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]
Suppose that A(t) is symmetric for a.e. ¢ € R;. Then for each
29 € L®(I,RY) and every T > 0, there exist ¢g, a7, > 0 s.t.

V((t)) < a-V(20) exp ( — b0 /O t A2(; [ A(o—)da)ds).

s s+ 3 s+ s+T

Time averaging

=5 J; i 12G) = 2(5)Pdjdi I/
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Graphon dynamics — Variance decay and connectivity (1)

Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]
Suppose that A(t) is symmetric for a.e. ¢ € R;. Then for each
29 € L®(I,RY) and every T > 0, there exist ¢g, a7, > 0 s.t.

Vo) < @ emp (= e [ (1 Alo)do)ds).

s s+ 3 s+ s+T

Time averaging

OO
=50 file 7)[2djdi I/I] A2 (/77 Ao)dr) >0
O—0

Idea: Exponential consensus with mere average connectivity.



Graphon dynamics — Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon A is said to be balanced if L*1 = 0, namely

/I ali, j)dj = /I a(j,i)dj.

— Equality between the in-degree and out-degree at each node.
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Graphon dynamics — Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon A is said to be balanced if L*1 = 0, namely

/I ali, j)dj = /I a(j,i)dj.

— Equality between the in-degree and out-degree at each node.

Theorem (Variance decay for balanced graphons)[BPDS22]

Suppose that /(t) is balanced for .#1-almost every t € [0,7] and
that ¢(-) = 1. Then for each 2% € L>(I,RY), it holds that

V) <veOen (- [ t alCA(s)ds )

Open problem: Average condition like in the symmetric case ?
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Issue: If A(t) is DCUSCC ~~ V(-) not Lyapunov anymore!
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Definition (Weighted variance)
If a graphon A is DCUSCC, we define the weighted variance by

V(o) = /1 /I w(i)o ()| () — #(7)2djdi.




Graphon dynamics — Variance decay and connectivity (3)

Issue: If A(t) is DCUSCC -~ V(-) not Lyapunov anymore!

Definition (Weighted variance)
If a graphon A is DCUSCC, we define the weighted variance by

1 N . ) .
= 5/1/11)(@)11(])\:1;(1) — x(5)Pdjdi.

Theorem (Variance decay for DCUSCC dwelling graphons)[BPDS’22]
Suppose that /A(t) is DCUSCC for #!-a.e. t € R, with

v<oti) <L for ZLrae iel,

and that ¢(-) = 1. Moreover, suppose that ¢ — A(t) is piece.
const. with dwell-time 7. Then for each 2° € L>°(I,R%), it holds

V@) < 1V( eXp(—y / Ma(A(s))ds — 2 log (4 )t)




Graphon dynamics — Variance decay and connectivity (3)

Issue: If A(t) is DCUSCC -~ V(-) not Lyapunov anymore!

Definition (Weighted variance)
If a graphon A is DCUSCC, we define the weighted variance by

1 N . ) .
= 5/1/11)(@)11(])\:1;(1) — x(5)Pdjdi.

Theorem (Variance decay for DCUSCC dwelling graphons)[BPDS’22]
Suppose that /A(t) is DCUSCC for #!-a.e. t € R, with

v<oti) <L for ZLrae iel,

and that ¢(-) = 1. Moreover, suppose that ¢ — A(t) is piece.
const. with dwell-time 7. Then for each 2° € L>°(I,R%), it holds

V@) < 1V( eXp(—y / Ma(A(s))ds — 2 log (4 )t)

Open problem: Could we derive an estimate without dwell-times ?



Graphon dynamics — Link between L?- and L>°-consensus

Observation: Under the sufficient condition for L2-consensus

1 t+71 1 47
/\2(— A(s)ds) >u oor L / Na(A(s))ds > p
t

T Jt T

we numerically observed L°°-consensus ~~ true in general ?




Graphon dynamics — Link between L?- and L*>°-consensus

Observation: Under the sufficient condition for L2-consensus

AQ(l t+TA(s)ds> >u oo /t T e (A(s)ds > g

T Jt T
we numerically observed L°°-consensus ~~ true in general ?

Theorem (Equivalence between L2- and L°°-consensus)[BPDS'22]
Suppose that there exist constants (7, ) € R x (0,1] s.t.

1 t+1
—/ /u(s,i,j)djds >
T Jt I

for Z'-almost every i € I. Then

() — 2%l 2(ny ol 0

for some 2> € R? if and only if

H’I(t) — .’L’OOHLoo(I) t—:)oo 0.
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Conclusion — That's all friends!
Wrap-up (Summary of presentation)

1. Convergence to consensus in micro and dynamics.
2. Generalisation of the and Fiedler numbers.

3. Some interesting open problems to investigate!

Thank you for your attention !
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