This hackathon is destined to anyone who is interested in implementations of statistics and learning on nonlinear manifolds. The goal is to gather future and current contributors of the open-source library Geomstats for a few days of collaborative coding.
Geomstats is an open-source Python package for computations and statistics on nonlinear manifolds, such as hyperspheres, hyperbolic spaces, Lie groups of transformations, among others. As such, the package supports research within the fast growing field of Geometric (Deep) Learning.
In this context, Geomstats provides code to fulfill four objectives:
The source code is freely available on GitHub. Geomstats has already found numerous applications, for example in the biomedical fields for machine learning applied to biological shape analysis. Typical usecases can be found within the notebooks folder.
To participate in the hackathon, please contact us at team@geomstats.org before September 16.
Hackathon will be held at IHP in room 201 at the second floor. The schedule for each day is:
9:00: Start of the day
10:30: Coffee break
12:30 - 13h30: Lunch break
16:30: Coffee break
17:00 - 17:30: Stand-up (open to remote participants)
17:30: End of the day
For remote participation, check the #2022-hackathon-ihp channel on Slack.