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Plasmas

• State of the matter, similar to gas, except that the particles are
electrically charged.

• Can be found in very hot environments like the sun

• Studied for nuclear fusion

• In this work: 1D plasma with periodic boundary conditions.
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N -Body Model

Follows the position and velocity of all N ' 1010 particles
as functions of the time t.

x1

v1

x2

v2

x3

v3

For all i in {1, ..., N},

x′i(t) = vi(t) transport at velocity vi

v′i(t) =
N∑
j=1

Fj→i(t) electrical interactions and collisions

Not suited to numerical simulation since it results in billions of coupled
ODEs.
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Kinetic Model
Describes the statistical distribution of the particles in the phase space.

x and v become variables of the unknown f(x, v, t).

x

v

(x1, v1)

(x2, v2)

(x3, v3)

Distribution of particles in the phase space
(x, v) 7→ f(x, v, t)

x

v

Vlasov equation:

(V ) ∂tf + v ∂xf︸ ︷︷ ︸
Transport

− E ∂vf︸ ︷︷ ︸
Electrical

= 1
ε
(M(f)− f)︸ ︷︷ ︸

Collisions

A single PDE (+ Poisson equation on E), but still expensive to solve
numerically in 3D because it requires the discretization of the 6D phase

space.
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Fluid Model

Gets rid of the variable v by considering 3 statistical indicators instead of
the whole distribution of velocities f(x, . , t) for all x:

• The total number of particles (density)

ρ(x, t) =
∫
f(x, v, t) dv

• The mean velocity

u(x, t) = 1
ρ(x, t)

∫
vf(x, v, t) dv

• The variance (temperature)

T (x, t) = 1
ρ(x, t)

∫ (
v − u(x, t)

)2
f(x, v, t) dv
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Fluid Model

From the Vlasov equation can be derived the following system of
equations on ρ, u and T :

∂tρ+ ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + ρT ) = −Eρ

∂tw + ∂x(wu+ ρuT + q) = −Eρu,

where w = 1
2 (ρu2 + ρT ) is the kinetic energy, and q the heat flux.

Reducing the whole distribution to its first three moments comes with a
price: the above system is not closed, and requires the moment of order 3

q(x, t) = 1
2

∫ (
v − u(x, t)

)3
f(x, v, t) dv.
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Classical Approach

In general, q(x, t) cannot be expressed as a function of ρ, u and T .

Classical approach: find a relevant approximation on the underlying
distribution f , that allows to compute q from ρ, u and T .



New Closure for the
Vlasov-Poisson

Equations
using Machine

Learning

Léo Bois

Plasma Simulation
Different models
Closure

Network Closure
Data Generation
Network Architecture
Data Processing

Results
Neural network
Fluid model

Conclusion

Extra

Collisions

(V ) ∂tf + v ∂xf − E ∂vf = 1
ε
(M(f)− f)︸ ︷︷ ︸
BGK operator

BGK collision operator (Bhatnagar, Gross and Krook):
• Knudsen number ε: mean free path between two collisions (fixed)
• Maxwellian M(f): state of equilibrium
• When 1

ε
goes up, f goes towards M(f).

Maxwellian M(f):

M(f)(x, v, t) = ρ(x, t)√
2πT (x, t)

e
− (v−u(x,t))2

2T (x,t)

• Same density ρ, mean velocity u and temperature T as f
• Gaussian profile in velocity (characterized by ρ, u and T )
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Euler Closure

(V ) ∂tf + v ∂xf − E ∂vf = 1
ε
(M(f)− f)

When the Knudsen number ε tends to 0, then the solution f satisfies

f(x, v, t) = M(f)(x, v, t) +O(ε)

Thus, when ε << 1, the heat flux q of f can be approximated by the
heat flux q̂ of M(f):

q̂(x, t) = 0.
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Other Closures

In a similar way, the second order approximation

f(x, v, t) = M(f)(x, v, t) + gε+O(ε2)

leads to the Navier-Stokes closure:

q̂(x, t) = 3
2ερ(x, t)T (x, t)∂xT (x, t).

NB: Other approximations can lead to non-local closures (e.g
Hammett-Perkins closure).



New Closure for the
Vlasov-Poisson

Equations
using Machine

Learning

Léo Bois

Plasma Simulation
Different models
Closure

Network Closure
Data Generation
Network Architecture
Data Processing

Results
Neural network
Fluid model

Conclusion

Extra

Learned Closure

What if there is no known approximation both relevant and allowing to
compute q from the ρ, u and T?

Example: Knudsen number ε ' 0.1 or above
• Navier-Stokes closure lacks accuracy
• Yet a good approximation of the heat flux might exist.

Idea: Training a neural network to be used as closure.

ε, ρ, u, T N.N q̂

Points of interest:
• Data generation
• Network architecture
• Data processing
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Training Scheme

Off-line phase

Kinetic
Model

data

ρ, u, T ; q

Simulation Neural
Network

Training

On-line phase

Neural
Network

Fluid
Model

Prediction Simulation
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Data generation

The data is generated from the kinetic model.It takes a Knudsen number ε, an initial condition f0,
and 20 times t1, ..., t20.

These quantities are generated randomly. In particular, ε ∈ [0.01, 1].The model outputs the distributions f1, ..., f20
at times t1, ..., t20 respectively.

Finally ρ, u, T and q are computed and stored in the dataset,
along with ε.

randomized

generation
u0

ρ0

T0

f0

ε

. . .

t1 t20

kinetic

model
...

f1

f20

u

ρ
ε

T
q

u

ρ
ε

T
q

dataset

Two datasets with 500× 20 = 10 000 entries are generated this way:
one for training, and one for testing.
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Architecture

• Non-local closure: whole functions in, whole function out
• Functions as signals or 1D images: convolutional network
• Multiscale analysis: V-Net like architecture
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V-Net architecture

input X

5
12

(w
in
d
ow

si
ze
)

4

5
1
2

2 (depth)

25
6

4

12
8

8

3
le
v
el
s

25
6

4

5
12

2

output Y

51
2

1

Convolution

Softplus

Down-sampling

Up-sampling

Summation

Weighted mean

Small shortcut

Big shortcut
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Hyper-parameters

Hyper-parameter Value

length of the input 512
number of levels (`) 5
depth (d) 4
size of the kernels (p) 11
activation function softplus

Total parameters: 161 937
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Training Scheme

Off-line phase

Kinetic
Model

data

ρ, u, T ; q

Simulation Neural
Network

Training

On-line phase

Neural
Network

Fluid
Model

Prediction Simulation
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Smoothing

• Smoothing of the output is used to ensure stability.
• It uses a convolution with a gaussian kernel of std σ.
• The higher the standard deviation, the less accurate the prediction, but

the more stable the numerical scheme.

0 π
2

π 3π
2

2π

−0.02

0

0.02

0.04

x

q(
x

)

w/o smoothing
w/smoothing
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Smoothing

Based on the following results, we chose σ ' 0.06.

• Accuracy of the predictions on the test dataset depending on σ:

0 0.02 0.04 0.06 0.08 0.10

0.1

0.2

σ

L
2
re
la
tiv

e
er
ro
r

• Proportion of simulations reaching final time depending on σ:

0 0.02 0.04 0.06 0.08 0.10

0.5

1

σ

St
ab
ili
ty
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Resampling

Resampling is used to adapt to different resolutions is space.

Relative error at final time depending on the number of cells
• Option 1: without resampling
• Option 2: with resampling
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Examples from the test dataset
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Influence of ε
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Network
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As expected the accuracy of the Navier-Stokes approximations greatly
depends on ε. But it does not seem to be the case for the neural network

predictions.
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The models

We compare the electric energy E(t) =
∫
E(x, t)2 dx

of the following models:

Kinetic

Fluid+Kinetic: q̂ = q

Fluid+Network: q̂ = Cθ(ε, ρ, u, T )

Navier-Stokes: q̂ = − 3
2ερT∂xT
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Examples (1/2)
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Influence of ε
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The error of the "Fluid+Network" model seems to increase in a similar
way than that of the "Fluid+Kinetic" model.
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Conclusion

Our work:
Proof of concept for a

data driven closure in 1D

Generalization
abilities

Guarantee of
stability

Wider ε range

Models with
more moments

2D / 3D
(Data generation,
efficiency, ...)
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Numerical methods
Vlasov-Poisson

1 Electric field:

E = −∂xφ, ∂xxφ = ρ−
∫ L

0
ρ dx

Finite difference method.
2 Transport:

∂tf + v∂xf − E∂vf = 0

Discretization in velocity:

fn+1 − fn

∆t + Λ∂xfn + EB(fn) = 0

Finite volume method with upwind flux.
3 Collision operator:

∂tf = 1
ε

(M(f)− f)

Implicit scheme.
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Numerical methods
Euler

1 Electric field:

E = −∂xφ, ∂xxφ = ρ−
∫ L

0
ρ dx

Finite difference method.
2 Fluid equations:

∂tU + ∂xF(U) = −EH(U),

U = (ρ, ρu, w), F(U) = (ρu, ρu2 + p, wu+ pu+ q), H(U) = (0, ρ, ρu)
Finite volume method with local Lax-Friedrichs numerical flux and
explicit scheme in time.

Un+1
i −Un

i

∆t +
F(U)n

i+ 1
2
− F(U)n

i− 1
2

∆x = −Eni H(U)ni
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Numerical methods
Navier-Stokes

1 Electric field:

E = −∂xφ, ∂xxφ = ρ−
∫ L

0
ρ dx

Finite difference method.
2 First two fluid equations: same as Euler
3 Third fluid equation:

∂tw + ∂x(wu+ pu)− 3
2ε∂x(p∂xT ) = −Eρu

with w = 1
2ρu

2 + 1
2ρT

Finite difference approximation for ∂x(p∂xT ) and implicit scheme in time.
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Time efficiency

Mean time for simulations up to t = 8 with Nx = 512 and Nv = 101:

Kinetic 70 sec

Fluid+Kinetic 78 sec

Fluid+Network 74 sec

Navier-Stokes 3 sec

Complexity in different dimensions:

V-Net 1D O(2`d2pNx)

V-Net 2D O(`d2p2N2
x)

V-Net 3D O(d2p3N3
x)

Kinetic mD O(Nm
v N

m
x )
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Hyper-parameters
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