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Context

Linear control problem

ẏ(t) = Ay(t) + Bu(t), y(0) = y0

� y(t) ∈ X , u(t) ∈ U Hilbert spaces, E := L2(0,T ;U)

� (A,D(A)) operator generating a C0 semigroup over X , denoted (St)t≥0

� B ∈ L(U,X )

Goal: given a constraint set U ⊂ E , investigate constrained approximate controllability :
for T > 0, y0, yf ∈ X , through U-valued controls.

for any ε > 0, find uε ∈ U such that ‖y(T )− yf ‖X ≤ ε.

Notations:

y(T ) = LTu + ST y0, LTu :=

∫ T

0
ST−tBu(t) dt,

With ỹT = yf − ST y0, above rewrites

for any ε > 0, find uε ∈ U such that LTu ∈ B(ỹT , ε).
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Getting to know support functions

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex.
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Standing assumption: U closed and convex.

No U-approximate controllability ⇐⇒ ∃ε > 0, LTU ∩ B(ỹT , ε) = ∅.

If latter holds, separate disjoint convex closed and convex open set

∃pf 6= 0, ∀u ∈ U , ∀y ∈ B(ỹT , ε), 〈u, L∗Tpf 〉E = 〈LTu, pf 〉X ≤ 〈y , pf 〉X .

Equivalently
sup
u∈U
〈u, L∗Tpf 〉E︸ ︷︷ ︸
σU (L∗

T
pf )

≤ inf
y∈B(ỹT ,ε)

〈y , pf 〉X .

Support function of a set U ⊂ E is defined by

∀p ∈ E , σU(p) := sup
v∈U
〈p, v〉.
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Getting to know support functions

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex.

Theorem
Approximate controllability from y0 to yf in time T > 0 under constraints U holds if and
only if

∀pf ∈ X , σU (L∗Tpf ) ≥ 〈ỹT , pf 〉X .

Note: unconstrained case U = E is covered; injectivity of L∗T is sufficient for the above to
hold for all y0, yf .
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Internal controllability of the heat equation

y(t, x): temperature at time t ≥ 0 and position x ∈ Ω.
∂ty −∆y = χωu

y(0, ·) = y0,

y|∂Ω = 0,
(1)

Cast into the form
ẏ(t) = Ay(t) + Bu(t), y(0) = y0

with state space X = L2(Ω), control space E = L2(0,T ; L2(Ω)).

For any ω ⊂ Ω (with positive measure),

� the heat equation (4) is approximately controllable

∀y0, yf ∈ X , ∀T > 0, ∀ε > 0, ∃u ∈ E tel que ‖y(T )− yf ‖X ≤ ε.

� the heat equation (4) is not exactly controllable

4 / 26



Internal controllability of the heat equation

y(t, x): temperature at time t ≥ 0 and position x ∈ Ω.
∂ty −∆y = χωu

y(0, ·) = y0,

y|∂Ω = 0,

Cast into the form
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Internal controllability of the heat equation: constructive approach

Dual equation, pf ∈ X 
∂tp + ∆p = 0
p(T , ·) = pf ,

p|∂Ω = 0,

Dual functional

J(pf ) =
1
2

∫ T

0

∫
ω

p2(t, x) dx dt − 〈ỹT , pf 〉X + ε‖pf ‖X

=
1
2
‖χωp‖2E − 〈ỹT , pf 〉X + ε‖pf ‖X

Key result: coercivity thanks to Holmgren’s uniqueness theorem:(
∀(t, x) ∈ (0,T )× ω, p(t, x) = 0

)
=⇒ pf = 0.

Functional admits a unique minimiser p?f , and the control

u? := χωp
?

steers y0 to the ball B(ỹT , ε) in the unconstrained case.

5 / 26



Internal controllability of the heat equation: constructive approach

Dual equation, pf ∈ X 
∂tp + ∆p = 0
p(T , ·) = pf ,

p|∂Ω = 0,

Dual functional

J(pf ) =
1
2

∫ T

0

∫
ω

p2(t, x) dx dt − 〈ỹT , pf 〉X + ε‖pf ‖X
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p2(t, x) dx dt − 〈ỹT , pf 〉X + ε‖pf ‖X

=
1
2
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Nonnegative controllability and obstructions in arbitrary time


∂ty −∆y = u

y(0, ·) = y0,

y|∂Ω = 0,
under constraints ∀t ∈ (0,T ), u(t) ∈ U( ⊂ L2(Ω)) (2)

with
U ⊂ {u ≥ 0}.

First obstruction: monotonicity

∀u ≥ 0, ∀t > 0, y(t) ≥ Sty0.

Relevant notion of approximate controllability in the nonnegative setting:

Definition
For U ⊂ {u ≥ 0}, the system (2) is said to be nonnegatively approximatively controllable
under the constraints U in time T if

∀ε > 0, ∀yf ≥ ST y0, ∃u ∈ U , ‖y(T )− yf ‖X ≤ ε.
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Nonnegative controllability and obstructions in small time (1)


∂ty −∆y = χωu

y(0, ·) = y0,

y|∂Ω = 0,
under constraints ∀t ∈ (0,T ), u(t) ∈ U (2)

with
U = {u ≥ 0}.

Theorem (P.-Trélat-Zhang)

If there exists a subdomain ω0 ⊂ (Ω \ ω), then the system (2) is not nonnegatively
approximately controllable in small time T .

Note: see also Pighin-Zuazua ’18.
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Nonnegative controllability and obstructions in small time (2)

Idea of proof (inspired by Pighin-Zuazua ’18)

Dual equation, pf ∈ X 
∂tp + ∆p = 0
p(T , ·) = pf ,

p|∂Ω = 0,
(2)

d

dt
〈y(t), p(t)〉X = 〈p(t), u(t)〉X .

Case y0 = 0 =⇒ yf ≥ ST y0 = 0, yf 6= 0.

〈y(T ), pf 〉X =

∫ T

0
〈p(t), u(t)〉X dt.

Choose yf such that supp(yf ) ⊂⊂ ω0, then build pf such that
(i) pf < 0 over supp(yf ),
(ii) p ≥ 0 over (0,T ?)× (Ω \ ω0), where p solves (2).

=⇒ 〈yf , pf 〉X < 0 and ∀T < T ?,

∫ T

0
〈p(t), u(t)〉X dt ≥ 0.
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Control by shapes

Constraints: 
∂ty −∆y = χω(t)u

y(0, ·) = y0,

y|∂Ω = 0,

with
∀t ∈ (0,T ), |ω(t)| ≤ mL, mL = L|Ω|, L ∈ (0, 1).

Theorem (P.-Trélat-Zhang)

For all L ∈ (0, 1), T > 0, the heat equation is nonnegatively approximately controllable
under the constraints UL

shape, in time T .
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(Approximate) controllability through optimal control

Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang
(’13), Berrahmoune (’14 and ’19), Ervedoza (’20), Biccari-Zuazua (’22) with
� dual functional directly introduced
� most often, differentiable objective functions

Without constraints, convex analytic point of view (Lions ’88): find u ∈ E such that
‖y(T )− yf ‖X ≤ ε is equivalent to proving, for a given F : E → R ∪ {+∞}, that

π := inf
u∈E , ‖y(T )−yf ‖X≤ε

F (u) < +∞.

Rewriting
inf

u∈E , ‖y(T )−yf ‖X≤ε
F (u) = inf

u∈E
F (u) + G(LTu).

where

G(LTu) =

{
0 if ‖y(T )− yf ‖X ≤ ε
+∞ else

i.e. G = δB(ỹT ,ε).

Idea: if π < +∞, choose F that imposes the constraints
� directly? i.e. F (u) < +∞ =⇒ u ∈ U
� subtly? i.e. u optimal =⇒ u ∈ U .
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H → [−∞,+∞].

Fenchel conjugate
f ∗(y) := sup

x∈H
〈y , x〉 − f (x), y ∈ H.

Γ0(H) := {f : H → ]−∞,+∞], proper, convex, lower semicontinuous} .

Fenchel-Moreau theorem: if f ∈ Γ0(H), then

� f ∗ ∈ Γ0(H),

� f ∗∗ = f .
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� f ∗ ∈ Γ0(H),

� f ∗∗ = f .
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Convex analysis in a nutshell: subdifferential

H Hilbert space, f : H → [−∞,+∞].

Subdifferential at x ∈ H

∂f (x) = {p ∈ H, ∀y ∈ X , f (y) ≥ f (x) + 〈p, y − x〉H}.

Example: f (x) = |x |,

∂f (x) =

{
{sgn(x)} if x 6= 0,
[−1, 1] if x = 0

.

First order optimality condition for convex f

x minimises f over H ⇐⇒ 0 ∈ ∂f (x).

Link with Fenchel conjugate: for f ∈ Γ0(H)

p ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(p).
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Fenchel-Rockafellar theorem

F ∈ Γ0(E), G ∈ Γ0(X ), LT ∈ L(E ,X ).

Primal problem
π = inf

u∈E
F (u) + G(LTu)

admits the dual problem

d = − inf
pf ∈X

F ∗(L∗Tpf ) + G∗(−pf )

Weak duality
π ≥ d .
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admits the dual problem

d = − inf
pf ∈X

F ∗(L∗Tpf ) + G∗(−pf )

Weak duality
π ≥ d .

Fenchel-Rockafellar theorem: under one weak hypothesis for F , G , LT i.e.

∃u ∈ E , F (u) < +∞ and LTu ∈ B(ỹT , ε).

� strong duality holds π = d ,

� d is attained if finite;
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Saddle-point view

F ∈ Γ0(E), G ∈ Γ0(X ), LT ∈ L(E ,X )

Primal problem
π = inf

u∈E
F (u) + G(LTu)

admits the dual problem

d = − inf
pf ∈X

F ∗(L∗Tpf ) + G∗(−pf )
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F ∈ Γ0(E), G ∈ Γ0(X ), LT ∈ L(E ,X )

Primal problem
π = inf

u∈E
F (u) + G(LTu)

admits the dual problem

d = − inf
pf ∈X

F ∗(L∗Tpf ) + G∗(−pf )

Equivalence between

� u? is primal optimal, p?f is dual optimal and strong duality π = d holds,

� (u?,−p?f ) is a saddle point of the Lagrangian, i.e.,

(u, q) ∈ E × X 7−→ 〈q, LTu〉X + F (u)− G∗(q).
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?)
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Back to controllability

Controlled equation
ẏ(t) = Ay(t) + Bu(t), y(0) = y0.

π = inf
u∈E

F (u) + G(LTu), G = δB(ỹT ,ε) ∈ Γ0(X )

Dual problem (Lions ’88)

−d = inf
pf ∈X

F ∗(L∗Tpf ) + G∗(−pf ) = inf
pf ∈X

F ∗(L∗Tpf )− 〈ỹT , pf 〉+ ε‖pf ‖X︸ ︷︷ ︸
J(pf )

Heat equation:

Adjoint L∗T ∈ L(X ,E) given by ∀pf ∈ X , L∗Tpf (t) = B∗p(t)
∂tp + ∆p = 0
p(T , ·) = pf ,

p|∂Ω = 0,

Unconstrained approximate controllability: "B = χω" + F = 1
2‖ · ‖

2
E .
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Methodology

Reasonable F ∈ Γ0(E): there must exist pf ∈ X such that F ∗ is continuous at L∗Tpf .
Then strong duality π = d holds... which may be π = d = +∞.

� show that d < +∞: coercivity of the dual functional J,

� then, if (F (u) < +∞ =⇒ u ∈ U), we are done

Tension between

� directly imposing constraints through a term of the form δU

� the coercivity requirement for the dual functional J (as well as the sufficient condition
for strong duality)
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Constraints associated to shapes

Conic nonconvex constraints

UL
shape := {Mχω, ω ⊂ Ω, |ω| ≤ mL, M > 0} =

⋃
M>0

(M UL),

with
UL := {χω, ω ⊂ Ω, |ω| ≤ mL}.

Relaxation of constraints

UL :=

{
u ∈ L2(Ω), 0 ≤ u ≤ 1,

∫
Ω

u ≤ mL

}
.

With extremality

ext(UL) = UL
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Choosing the cost

J(pf ) = F ∗(L∗Tpf )− 〈ỹT , pf 〉+ ε‖pf ‖X ... how to enforce coercivity?

F ∗(p) ∼ ‖p‖2 homogeneity of degree 2,

F ∗(p) :=
1
2

∫ T

0

(
f ∗(p(t))

)2
dt, f ∗ homogeneous of degree 1.

Then

u? ∈ ∂F ∗(p) ⇐⇒ ∀t ∈ (0,T ), u?(t) ∈ M(t) ∂f ∗(p(t)), M(t) = f ∗(p(t)).

One wants
∀p ∈ X , ∂f ∗(p) ⊂ UL = ext(UL).

How can one (hope to) catch extremal points?

By maximising linear functions:

∂f ∗(p) = argmax
v∈UL

〈p, v〉,

amounts to
f ? = σUL = δ∗UL , i.e., f ∗(p) = sup

v∈UL
〈p, v〉X .

18 / 26



Choosing the cost
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Bathtub principle

Optimisation problem

p ∈ L2(Ω) fixed , sup
v∈UL
〈p, v〉X = sup

v∈UL

∫
Ω

p(x)v(x) dx .

UL =

{
v ∈ L2(Ω), 0 ≤ v ≤ 1,

∫
Ω

v ≤ mL

}
.
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Figure: Let us take a bath.
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Ω
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Figure: Let us take a second bath.

19 / 26



Bathtub principle

Optimisation problem

p ∈ L2(Ω) fixed , sup
v∈UL
〈p, v〉X = sup

v∈UL

∫
Ω

p(x)v(x) dx .

UL =

{
v ∈ L2(Ω), 0 ≤ v ≤ 1,

∫
Ω

v ≤ mL

}
.

Theorem (Bathtub principle)

Let p ∈ L2(Ω) have 0-measure level sets, r(p) := max(0,Φ−1
p (mL)), où Φ−1

p

pseudo-inverse of r 7→ Φp(r) := |{p > r}|.
� maximum equals

∫
{p>r(p)} p

� and is uniquely attained by χ{p>r(p)}.
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Summary

Chosen function f ∗(p) = supv∈UL〈p, v〉X , p ∈ L2(Ω),

F ∗(p) :=
1
2

∫ T

0

(
f ∗(p(t))

)2
dt, p ∈ E

Crucial property:
F ∗(L∗Tpf ) = 0 =⇒ pf ≤ 0.

One checks that F ∗ ∈ Γ0(E), and that it corresponds to the cost

F (u) = δ{u≥0} +
1
2

∫ T

0
max

(
‖u(t)‖∞,

‖u(t)‖1
mL

)2
dt, u ∈ E .

We are left with studying

� the coercivity of the dual functional J

� the optimality condition u? ∈ ∂F ∗(L∗Tp?f )
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Coercivity

Try and show that

lim inf
‖pf ‖X→∞

J(pf )

‖pf ‖X
> 0.

By homogeneity, with qf = pf
‖pf ‖

,

J(pf )

‖pf ‖X
= ‖pf ‖XF ∗(L∗Tqf )− 〈ỹT , qf 〉X + ε.

After taking a sequence (pn
f ) and extracting subsequences qn

f ⇀ qf , worst case is

lim inf
n→∞

F ∗(L∗Tq
n
f ) = 0 ⇐⇒ F ∗(L∗Tqf ) = 0 =⇒ qf ≤ 0

Thanks to ỹT = yf − ST y0 ≥ 0

lim inf
n→∞

J(pn
f )

‖pn
f ‖X
≥ −〈ỹT , qf 〉X + ε ≥ ε > 0.
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Optimality condition

Facts
� Strong duality π = d < +∞ and existence of primal and dual optimal variables.

� u? optimal control, there exists p?f dual optimal such that

u? ∈ ∂F ∗(L∗Tp?f ) ⇐⇒ ∀t ∈ (0,T ), u?(t) ∈ M?(t) argmax
v∈UL

〈p(t), v〉

with M?(t) =
∫
{p?(t)>r(p?(t))} p(t), and p? solves

∂tp
? + ∆p? = 0

p?(T , ·) = p?f ,

p?|∂Ω = 0,
(2)

Only interesting case yf /∈ B(ST y0, ε): any dual optimal variable satisfies p?f 6= 0.

t ∈ (0,T ) fixed: solution p?(t) of (2) is (real) analytic, hence has level sets of measure 0...
Unless it is constant, then it equals 0 by the boundary conditions, and then p?f = 0 by the
maximum principle ..., which cannot be.

Conclusion with the bathtub principle: any optimal control is a shape

u?(t) = M?(t)χ{p?(t)>r(p?(t))}.
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Series of refinements (1)

Uniqueness for dual optimal variables.

Proof in two steps, very general

(i)
{LTu

?, u? optimal.}

is reduced to a singleton y?

(ii) Second optimality condition

p?T ∈ −∂G(LTu
?) = −∂δB(ỹT ,ε)(LTu

?) = −∂δB(ỹT ,ε)(y
?).

reduces the search for p?T to a half-line.

Remark: implies uniqueness for optimal controls.
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Series of refinements (2)

Amplitude independent of time t

Slight change of cost, f ∗(p) = supv∈UL〈p, v〉X , p ∈ L2(Ω),

F ∗(p) :=
1
2

∫ T

0

(
f ∗(p(t))

)2
dt, p ∈ E

Key property
F ∗(L∗Tpf ) = 0 =⇒ pf ≤ 0.

One checks that F ∗ ∈ Γ0(E), and that it corresponds to the cost

F (u) = δ{u≥0} +
1
2

∫ T

0
max

(
‖u(t)‖∞,

‖u(t)‖1
mL

)2
dt, u ∈ E .

Same proof strategy applies

u?(t) = M? χ{p?(t)>r(p?(t))}, M =

∫ T

0

∫
{p?(t)>r(p?(t))}

p(t) dt
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Series of refinements (2)
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Series of refinements (3)

Amplitude as a function of T and obstructions

Study of the amplitude T 7→ M?(T ), y0, yf , ε, L all fixed. λ1 > 0, first eigenvalue of the
Dirichlet Laplacian operator.

M?(T ) ≥ λ1
‖ỹT‖X − ε√

mL(1− e−λ1T )
.

Leads to
lim
T→0

M?(T ) = +∞ at least as
1
T
,

and
lim inf
T→+∞

M?(T ) ≥ λ1
‖yf ‖X − ε√

mL
> 0

yields new obstructions if one constrains the amplitude from above

� in small time,

� in arbitrary time.
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Perspectives

� In the case of the heat equation

• Dirichlet or Neumann boundary control,
• numerically computing optimal controls

� Generalisation in terms of

• the control system
• general convex constraints
• non-convex constraints and extremality after relaxation
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