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Linear control problem
y(t) = Ay(t) + Bu(t), y(0) =0

o y(t) € X, u(t) € U Hilbert spaces, E := L*(0, T; U)
o (A, D(A)) operator generating a Co semigroup over X, denoted (S;):>0
o BeL(U,X)
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Goal: given a constraint set Y C E, investigate constrained approximate controllability :
for T >0, yo,yr € X, through U-valued controls.

for any € > 0, find u. € U such that ||y(T) — yr|lx <e.
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Linear control problem
y(t) = Ay(t) + Bu(t), y(0) =0

o y(t) € X, u(t) € U Hilbert spaces, E := L*(0, T; U)
o (A, D(A)) operator generating a Co semigroup over X, denoted (S;):>0
o BeL(U,X)

Goal: given a constraint set Y C E, investigate constrained approximate controllability :
for T >0, yo,yr € X, through U-valued controls.

for any € > 0, find u. € U such that ||y(T) — yr|lx <e.

Notations:

-
y(T)=Lru+ Styo, Lyu:= / St_+Bu(t) dt,
0
With yr = yr — STy, above rewrites
for any € > 0, find ue € U such that Lru € B(jt,¢).
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Getting to know support functions

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex. )
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Getting to know support functions

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex. )

No U-approximate controllability <= 3 >0, LU N B(yr,e)=0.

If latter holds, separate disjoint convex closed and convex open set

3pr #0, Yuc U, Vy € B(yr,¢), (u,LTpr)e = (Ltu,pr)x < {y,pr)x.

3/26



Getting to know support functions

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex. )

No U-approximate controllability <= 3 >0, LU N B(yr,e)=0.

If latter holds, separate disjoint convex closed and convex open set

3pr #0, Yuc U, Vy € B(yr,¢), (u,LTpr)e = (Ltu,pr)x < {y,pr)x.

Equivalently
sup (u, LTpr)e < inf  (y, pr)x.
uel ye€B(yT,2)
—_————
ou(LTpf)

Support function of a set U C E is defined by

Vp e E, ou(p):=sup(p,v).
veu
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Getting to know support functions

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex. J

Approximate controllability from yo to yr in time T > 0 under constraints U holds if and
only if

Vpr € X, ou(LTpr) > (97, Pr)x-

Note: unconstrained case U = E is covered; injectivity of L7 is sufficient for the above to
hold for all yo, yr.
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Internal controllability of the heat equation

y(t,x): temperature at time t > 0 and position x € .

Oy — Ay = xwu
y(Ov) = Yo, (1)
Yjoa =0,



Internal controllability of the heat equation

y(t,x): temperature at time t > 0 and position x € .
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y(0,°) = yo,
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Cast into the form
y(t) = Ay(t) + Bu(t), y(0) = yo
with state space X = L?(R), control space E = L?(0, T; L*(Q)).



Internal controllability of the heat equation

y(t,x): temperature at time t > 0 and position x € .

Oy — Ay = xwu
y(07 ) = Yo,
Yjoa =0,

Cast into the form
y(t) = Ay(t) + Bu(t), y(0) = yo
with state space X = L?(R), control space E = L?(0, T; L*(Q)).

For any w C Q (with positive measure),

© the heat equation (4) is approximately controllable
Vyo,yr € X,VT >0, Ve >0, Fu € E tel que ||y(T) — yl|x < e.

© the heat equation (4) is not exactly controllable




Internal controllability of the heat equation: constructive approach

Dual equation, pr € X
Otp+Ap=0
P( T, ) = pr,
plaa = 0,
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Internal controllability of the heat equation: constructive approach

Dual equation, pr € X
Otp+Ap=0
P( T, ) = pr,
plaa = 0,

Dual functional

17 .
J(pf)zi/o /pz(t,x) dx dt — (7, pr)x + €l prllx

1 .
= §||XwP||2E — (¥7, pr)x +ellprllx

Key result: coercivity thanks to Holmgren's uniqueness theorem:
(V(t,x) c(0,T) xw, pltx)= o) —  pr=0.
Functional admits a unique minimiser p7, and the control
* *
u = Xwp

steers yp to the ball E()?T,s) in the unconstrained case.



Nonnegative controllability and obstructions in arbitrary time

8t_y — A_y =u
y(0,:) = yo, under constraints V't € (0, T), u(t) € U( C L*(Q)) 2)
Yioa =0,

with
U cC {u>0}

6/ 26



Nonnegative controllability and obstructions in arbitrary time

8t_y — A_y =u
y(0,:) = yo, under constraints V't € (0, T), u(t) € U( C L*(Q))
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with
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Nonnegative controllability and obstructions in arbitrary time

8t_)/ — Ay =u
y(0,:) = yo, under constraints V't € (0, T), u(t) € U( C L*(Q))
Yjoa =0,
with
U C {u >0}
First obstruction: monotonicity
Yu>0, Vt>0, y(t)> Syo. J

Relevant notion of approximate controllability in the nonnegative setting:

Definition

For U C {u > 0}, the system (2) is said to be nonnegatively approximatively controllable
under the constraints U in time T if

Ve > 0,VYyr > Styo, Juel, |ly(T)—yrllx <e.
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Nonnegative controllability and obstructions in small time (1)

Oty — Ay = xuu
y(0,:) = yo, under constraints Vt € (0, T), u(t) € U (2)
Yjea = 0,

with
U ={u >0}



Nonnegative controllability and obstructions in small time (1)

Oy — Ay = xuu
y(0,-) = yo, under constraints Vt € (0, T), u(t) € U
yioa =0,
with
U ={u>0}.

Theorem (P.-Trélat-Zhang)

If there exists a subdomain wo C (2 \ w), then the system (2) is not nonnegatively
approximately controllable in small time T.

Note: see also Pighin-Zuazua '18.



Nonnegative controllability and obstructions in small time (2)
Idea of proof (inspired by Pighin-Zuazua '18)

Dual equation, pr € X
ohp+Ap=0

p( T7 ) = pr, (2)
plaa = 0,

(0, pO)x = (p(e), u(E)x.
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Nonnegative controllability and obstructions in small time (2)

Idea of proof (inspired by Pighin-Zuazua '18)

Dual equation, pr € X
Otp+Ap=0
p(T,-) = pr,
plaa = 0,

(0, pO)x = (p(e), u(E)x.

Case o =0 = yr>Sty =0, yr #0.

W(T),prix = /0 T(p(t), u(t))x dt.
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Nonnegative controllability and obstructions in small time (2)

Idea of proof (inspired by Pighin-Zuazua '18)

Dual equation, pr € X
Otp+Ap=0
p(T,-) = pr,
plaa = 0,

(0, pO)x = (p(e), u(E)x.
Case yo=0 = yr>Sry0=0, yr #0.
(y(T), pr)x = / (p(£), u(t))x dt.

Choose yr such that supp(yr) CC wo, then build pr such that

(i) pr < 0 over supp(yr),
(i) p>0over (0, T*) x (2\ wo), where p solves (2).

i
—  np)x<0 and VT < T / (p(t), u(t))x dt > 0.
0]
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Control by shapes

Constraints:
Oy — Ay = XU
¥(0,-) = yo,
Yo = 0,
with
Ve (0, T), |w(t) < mp, my = L|Q|, Le(0,1).
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Control by shapes

Constraints:
Oy — Ay = M(t)xw()
}/(07 ) = Yo,
Yioa =0,

with
vte (0, T), |w(t)] < my, my = L|Qf, Le(0,1).

Ushape = {Mxw, wCQ, |w|<mi, M>0}
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Control by shapes

Constraints:
Oy — By = M(t)xu
}/(07 ) = Yo,
Yioa =0,
with
vVt e (0, T), |w(t) < my, m.=L[Q|, Le(0,1).

Ushape = {Mxw, wCQ, |w|<mi, M>0}

Theorem (P.-Trélat-Zhang)

For all L € (0,1), T > 0O, the heat equation is nonnegatively approximately controllable
under the constraints Z/{sLhape, in time T.
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(Approximate) controllability through optimal control

Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang
("13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

o dual functional directly introduced

o most often, differentiable objective functions
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Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang
("13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

o dual functional directly introduced

o most often, differentiable objective functions

Without constraints, convex analytic point of view (Lions '88): find u € E such that
lly(T) — yrllx < e is equivalent to proving, for a given F : E — RU {+o0}, that

™= inf F(u) < 4o0.
u€E, [ly(T)—yflix<e
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("13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

o dual functional directly introduced

o most often, differentiable objective functions

Without constraints, convex analytic point of view (Lions '88): find u € E such that
lly(T) — yrllx < e is equivalent to proving, for a given F : E — RU {+o0}, that

= inf F(u) < 4o0.
u€E, [[y(T)—yrlix<e
Rewriting
inf F(u) = inf F(u) + G(Ltu).
u€E, |y(T)=yrllx<e (u) ueE () + G(Lru)
where
0 if T)— <
G(Lra) = { i ly(T) = yellx < e
+oo else
le. G =0p(5,q)
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(Approximate) controllability through optimal control

Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang
("13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

o dual functional directly introduced

o most often, differentiable objective functions

Without constraints, convex analytic point of view (Lions '88): find u € E such that
lly(T) — yrllx < e is equivalent to proving, for a given F : E — RU {+o0}, that

= inf F(u) < 4o0.
u€E, [[y(T)—yrlix<e
Rewriting
inf F(u) = inf F(u) + G(Ltu).
u€E, |y(T)=yrllx<e (u) ueE () + G(Lru)
where
0 if T)— <
G(Lra) = { i ly(T) = yellx < e
+oo else
le. G =0p(5,q)

Idea: if m < 400, choose F that imposes the constraints
o directly? ie. F(u) <400 = uell
o subtly? i.e. uoptimal — uell.
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H — [—00, +00].

Fenchel conjugate
Fr(y) :=sup (y,x) = f(x), y€H. J
xXE
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H — [—00, +00].

F(y)i=sup (v, ) = F(x), ¥ € H.

Fenchel conjugate
xeH

A e i
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H — [—00, +00].

F(y)i=sup (v, ) = F(x), ¥ € H.

Fenchel conjugate
e J

1 1 *
;|x|” — 6|x\q l1<p<+oo, g=p
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H — [—00, +00].

Fenchel conjugate
f(y) = S (%) = Fedl 7 & J
Xe

Ix| = 1
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H — [—00, +00].

Fenchel conjugate
f(y) = S (%) = Fedl 7 & J
Xe

Ixlln = F50,)-
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H — [—o00, +00].

F(y) == sup (y,x) — F(x), y€H.

Fenchel conjugate
xeH J

Notation for non-empty convex closed set C

0 over C
6c = — = (dc)".
¢ {—l—oo outside of C oc (9c)

oc(y) = sup (y,x) — dc(x) = sup (y, x).
xeH xeC
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Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, f : H — [—o00, +09].

Fenchel conjugate
fry) = sup (y,x) —f(x), yeH. J

Mo(H) :={f : H—]—o00,+o0], proper, convex, lower semicontinuous} .

Fenchel-Moreau theorem: if f € ['o(H), then
o f* e lo(H),
o f** =f.
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Convex analysis in a nutshell: subdifferential

H Hilbert space, f : H — [—00, +0o9].
Subdifferential at x € H

of(x)={peH, VyeX f(y)=f(x)+(py —x)u}
Example: f(x) = |x],

_ [{sen(0} i x#0,
6f(x)_{[—m] ifx=0"
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First order optimality condition for convex f

X minimises f over H <= 0 € 9f(x).
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Convex analysis in a nutshell: subdifferential

H Hilbert space, f : H — [—00, +0o9].
Subdifferential at x € H

of(x)={peH, VyeX f(y)=f(x)+(py —x)u}
Example: f(x) = |x],

_ [{sen(0} i x#0,
6f(x)_{[—m] ifx=0"

First order optimality condition for convex f

X minimises f over H <= 0 € 9f(x).

Link with Fenchel conjugate: for f € [o(H)

pedf(x) <= xeaf(p).
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Fenchel-Rockafellar theorem

F eTo(E), G € To(X), LT € L(E, X).

Primal problem
= |2£_ F(u)+ G(Ltu)
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Fenchel-Rockafellar theorem

F eTo(E), G € To(X), LT € L(E, X).

Primal problem
= 522 F(u)+ G(Ltu)
admits the dual problem

d=— ian F*(LTpf) + G*(—pr)

PrE

Weak duality
T >d.

13 / 26



Fenchel-Rockafellar theorem

F eTo(E), G eTlo(X), LT € L(E, X).
Primal problem

= 15212_ F(u)+ G(Ltu)
admits the dual problem

d =~ inf F*(Lypr)+ G"(~pr)

23S

Weak duality
T>d.

Fenchel-Rockafellar theorem: under one weak hypothesis for F, G, Lt i.e.
Jue E, F(u)<+oo and Lru € B(yr,¢).

o strong duality holds 7 = d,
o d is attained if finite;
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Fenchel-Rockafellar theorem

F €To(E), G €lo(X), LT € L(E, X).
Primal problem

= 1521::_ F(u)+ G(Ltu)
admits the dual problem

d=— ian F*(LTpf) + G*(—pr)

23S

Weak duality
T>d.

*

Fenchel-Rockafellar theorem: under one weak hypothesis for F*, G*, L7, i.e.
dpr € X, F~ is continuous at LT ps.

o strong duality holds © = d,

o 7 is attained if finite;
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Saddle-point view

F eTo(E), G eTo(X), LT € L(E, X)

Primal problem
™= '22 F(u)+ G(L7u)

admits the dual problem

d=—inf F*(LTpr) + G*(—pr)
preX



Saddle-point view

F eTo(E), G eTlo(X), LT € L(E,X)

Primal problem
= |2fE F(u)+ G(Ltu)

admits the dual problem

= — inf F*(L3 (-
d=—inf F*(LTpr) + G"(~pr)

Equivalence between
o u* is primal optimal, p; is dual optimal and strong duality @ = d holds,

o (u*, —p;r) is a saddle point of the Lagrangian, i.e.,

(u,q) € Ex X+ (q,Lru)x + F(u) — G*(q).




Saddle-point view

F eTo(E), G eTlo(X), LT € L(E,X)

Primal problem
= |2fE F(u)+ G(Ltu)

admits the dual problem

= — inf F*(L5 (-
d=— inf (L7pe) + G (—pr)

Equivalence between

o u* est primal optimal, p; est dual optimal and strong duality = = d holds,

o (u*,—pf) is a saddle point of the Lagrangian

u* € OF*(LTpf) and p;f € —0G(Lru*)




Back to controllability

Controlled equation
7(6) = Av(6) + Bu(t), ¥(0) = yo. ]

€ Mo(X)

V7€)

™= ulg]; F(u) + G(Ltu), G =g



Back to controllability

Controlled equation
7(6) = Av(6) + Bu(t), ¥(0) = yo. ]

€ Mo(X)

J75€)

™= |21; F(u) + G(Ltu), G =g
Dual problem (Lions '88)

—d = inf F*(Lypr) + G (—pr) = inf F*(Lypr) — G, pr) + <lprls
J(pr)




Back to controllability

Controlled equation
7(6) = Av(6) + Bu(t), ¥(0) = yo. ]

= Ing F(U) =+ G(LTU), G = (5§( ) c ro(X)

Ve
Dual problem (Lions '88)

—d = inf F*(LYpf) + G*(—pr) = inf F*(LTpr) — (1, pr) + llprllx
preX preX
J(pr)

Heat equation:
Adjoint LT € L(X, E) given by Vpr € X, LTpe(t) = B p(t)
op+Ap=0

P( T, ) = pf,
plaa = 0,

Unconstrained approximate controllability: "B = x.," + F = || - ||



Methodology

Reasonable F € To(E): there must exist pr € X such that F* is continuous at L7 pr.
Then strong duality @ = d holds... which may be 7 = d = +o00.

o show that d < +oo: coercivity of the dual functional J,
o then, if (F(u) < +oc0 = u € U), we are done
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o otherwise, look at optimal controls and hope for

(v* € OF*(LTp7), pf dual optimal) = u*€e€lU.

16 / 26



Methodology

Reasonable F € To(E): there must exist pr € X such that F* is continuous at L7 ps.
Then strong duality 7 = d holds... which may be 7 = d = +00.

o show that d < +oo: coercivity of the dual functional J,

o otherwise, look at optimal controls and hope for

(v* € OF*(LTp7), pf dual optimal) = u*€e€lU.

Tension between
o directly imposing constraints through a term of the form &y

o the coercivity requirement for the dual functional J (as well as the sufficient condition
for strong duality)

16 / 26



Constraints associated to shapes

Conic nonconvex constraints

L{sLhape ={Mxw, wCQ, |w|<m,M>0}= U (MUy),
M>0

with
U = {Xw, wCQ, |w<m}



Constraints associated to shapes

Conic nonconvex constraints

L{sLhape ={Mxw, wCQ, |w|<m,M>0}= U (MUy),

with

Relaxation of constraints

U -

With extremality

M>0

U ={xw, wCQ, |wl<m}.



Choosing the cost

J(pr) = F*(LTpr) — (y7, pr) + €|l prllx... how to enforce coercivity?

F*(p) ~ |Ipl> homogeneity of degree 2,

F*(p) := %/T (f*(p(t)))2 dt, f" homogeneous of degree 1.
Then
u* €OF(p) <= Vte(0,T), u*(t) € M(t)df (p(t)), M(t) = " (p(t)).
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Choosing the cost

J(pr) = F*(Lypr) — (y7, pr) + €|l prllx... how to enforce coercivity?

F*(p) ~ |Ipl> homogeneity of degree 2,

F*(p) := %/T (f*(p(t)))2 dt, f" homogeneous of degree 1.
Then
u* €OF(p) <= Vte(0,T), u*(t) € M(t)df (p(t)), M(t) = " (p(t)).

One wants o
Vpe X, Of(p) C UL =ext(Uy).

How can one (hope to) catch extremal points?

By maximising linear functions:

of"(p) = argmax(p, v),

vel;

amounts to
f* = oy =0y, e, f7(p)=sup(p,v)x. J
veU;

18 / 26



Bathtub principle

Optimisation problem

p € L*(Q) fixed , sup(p,v)x = sup [ p(x)v(x)dx.
veu, veu, JQ

LTL:{veLZ(Q),OSVSI,/VSmL}.
Q
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Bathtub principle

Optimisation problem

p e L*(Q) fixed, sup(p,v)x = sup [ p(x)v(x)dx.
veu, veu, JQ

Z/TL:{veLZ(Q),OSVSL/VSmL}.
Q

Figure: Let us take a bath.
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Bathtub principle

Optimisation problem

p € L*(Q) fixed , sup(p,v)x = sup [ p(x)v(x)dx.
vel; vel; J Q

Z,TL:{veLz(Q),Ogvgl,/vgmL}.
Q

A\

; < my, < my

Figure: Let us take a second bath.
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Bathtub principle

Optimisation problem

pe LZ(Q) fixed , sup(p,v)x = sup [ p(x)v(x)dx.
veu; veu; JQ

E:{VELZ(Q%OSvSl,/ngL}.
Q

Theorem (Bathtub principle)

Let p € L*(Q) have 0-measure level sets, r(p) := max(0, ®, *(m.)), ou ®,*
pseudo-inverse of r — ®,(r) ;= |{p > r}|.

© maximum equals f{p>r(p)} P

o and is uniquely attained by X (> r(p)}-
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Chosen function f*(p) = sup, <77 (P, v)x, p € 12(Q),
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Chosen function f*(p) = sup, <77 (P, v)x, p € 12(Q),

F*(p) := %/OT (f*(P(t)))zdt, peE

Crucial property:
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Chosen function f*(p) = sup, <77 (P, v)x, p € 12(Q),

Crucial property:
F*(L¥pr) =0 = pr<0.

One checks that F* € I'g(E), and that it corresponds to the cost

_ 17 lu(e)lsy2
Fw) = oy +5 [ max (o) ) e ue
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Chosen function f*(p) = sup, <77 (P, v)x, p € 12(Q),

Crucial property:
F*(L¥pr) =0 = pr<0.

One checks that F* € I'g(E), and that it corresponds to the cost

_ 17 lu(e)lsy2
Fw) = oy +5 [ max (o) ) e ue

We are left with studying
o the coercivity of the dual functional J

o the optimality condition u* € OF*(L¥pf)

20 / 26



Try and show that
liminf J(pr)

> 0.
llprllx—co || prllx

By homogeneity, with gr = ﬁ,

J(pr)
llprllx

= llprllxF*(Lrar) = (F7. ar)x + &
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Try and show that
liminf J(pr)

> 0.
lleellx—oo [|prllx

By homogeneity, with gr = ﬁ,

J(pr)
llpellx

= |lprlIxF*(L7ar) — (¥, ar) x + €.

After taking a sequence (pf) and extracting subsequences gf — ¢, worst case is
liminf F*(LTq¢f) =0 <= F"(L7qr)=0 = ¢qr<0
n— oo

Thanks to 7 = yr — Sty > 0

liminf J(npf) > —{
n=oo || pf|x

y1,qf)x +e>¢€>0.
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Optimality condition

Facts
o Strong duality m = d < +00 and existence of primal and dual optimal variables.
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Optimality condition

Facts
o Strong duality m = d < +00 and existence of primal and dual optimal variables.
o u* optimal control, there exists p; dual optimal such that

u* € OF (LTpf) <= Vte(0,T), u*(t) € M*(t)argmax(p(t), v)
vel,

with M*(t) = f{p*( y P(t), and p* solves

t)>r(p*(t)
orp* + Ap* =0
p*(T,) = pf,
Pjaa = 0,
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Optimality condition

Facts
o Strong duality # = d < +00 and existence of primal and dual optimal variables.
o u* optimal control, there exists p; dual optimal such that
u* € OF (LTpf) <= Vte(0,T), u*(t) € M*(t)argmax(p(t), v)
vel,
. * _ *
with M*(t) = f{p"(t)>r(p"(t))} p(t), and p* solves
op*+Ap =0
p*(T,) =pf,
P\*ag =0,
Only interesting case yr ¢ B(Styo,¢): any dual optimal variable satisfies p; # 0.
t € (0, T) fixed: solution p*(t) of (2) is (real) analytic, hence has level sets of measure 0...

Unless it is constant, then it equals O by the boundary conditions, and then p; = 0 by the
maximum principle ..., which cannot be.

Conclusion with the bathtub principle: any optimal control is a shape
u” () = M*(£) X{p* (6> r(p* (1))} J
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Series of refinements (1)

Uniqueness for dual optimal variables. J

Proof in two steps, very general

(i)

{Lru™, u* optimal.}

is reduced to a singleton y*
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Series of refinements (1)

Uniqueness for dual optimal variables. J

Proof in two steps, very general
(i)
{Lru™, u* optimal.}
is reduced to a singleton y*
(i) Second optimality condition
pr € —0G(Lru") = —85§(yT,g)(LT“*) = _35§(yr,s)(}’*)-
reduces the search for p7 to a half-line.

Remark: implies uniqueness for optimal controls.
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Series of refinements (2)

Amplitude independent of time t J

Slight change of cost, f*(p) = sup, 7 (P, V)x, P € L2(Q),

=3 [ (Few) e peE

Key property
F*(Lypr)=0 = pr<O.
One checks that F* € I'g(E), and that it corresponds to the cost

_ 17 u(t)llLy?
F(u)—5{u20}+§/0 ma (), 1000 o, e .
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Series of refinements (2)

Amplitude independent of time t J

Slight change of cost, f*(p) = sup, (P, V)x, P € L2(Q),

/f dt,pEE

F*(Lypr)=0 = pr<0.

Key property

One checks that F* € I'g(E), and that it corresponds to the cost

1 t 2
F(u) =dgu>0y + = sup max (Hu(t)l\oo,inu( )”1) , ueeE.
2 te(0,1) my
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Series of refinements (2)

Amplitude independent of time t J

Slight change of cost, f*(p) = sup, (P, V)x, P € L2(Q),

/f dt,pEE

F*(Lypr)=0 = pr<0.

Key property

One checks that F* € I'g(E), and that it corresponds to the cost
1 t 2
F(u) = Sguso) + > sup max(Hu(t)Hoo,M) , uckE.
2 te(o,T) my
Same proof strategy applies

-
u*(t) = M X (o (0)>r(p* (e} ’V’:// p(t) dt
o Jipr(e)>rpr (o)}
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Series of refinements (3)

Amplitude as a function of T and obstructions J

Study of the amplitude T +— M*(T), yo, yr, ¢, L all fixed. A1 > 0, first eigenvalue of the
Dirichlet Laplacian operator.
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Series of refinements (3)

Amplitude as a function of T and obstructions J

Study of the amplitude T +— M*(T), yo, yr, ¢, L all fixed. A1 > 0, first eigenvalue of the
Dirichlet Laplacian operator.

x [yrllx —«
M(T)> \———"————.
( ) >\ M(l _ efAlT)

Leads to
1

lim M*(T) = t least as —
Jim (T) =+o0 at least as =
and

. —€
liminf M*(T) > Alm >0
T—+oc0 /M
yields new obstructions if one constrains the amplitude from above
o in small time,

o in arbitrary time.

25 / 26



o In the case of the heat equation
e Dirichlet or Neumann boundary control,
e numerically computing optimal controls
o Generalisation in terms of

e the control system
e general convex constraints
e non-convex constraints and extremality after relaxation
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