Shape approximate controllability of the heat equation through Fenchel duality

Camille Pouchol, Emmanuel Trélat, Christophe Zhang

MAP5, Université Paris Cité

ANR TRECOS Workshop, Marseille, May 30, 2022

Context

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

- $\diamond y(t) \in X, u(t) \in U$ Hilbert spaces, $E := L^2(0, T; U)$
- \diamond (A, D(A)) operator generating a C₀ semigroup over X, denoted $(S_t)_{t>0}$
- $\diamond B \in L(U, X)$

Context

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

 $\diamond y(t) \in X, u(t) \in U$ Hilbert spaces, $E := L^2(0, T; U)$

 \diamond (A, D(A)) operator generating a C_0 semigroup over X, denoted $(S_t)_{t\geq 0}$

 $\diamond B \in L(U,X)$

Goal: given a constraint set $U \subset E$, investigate constrained approximate controllability : for T > 0, $y_0, y_f \in X$, through U-valued controls.

for any $\varepsilon > 0$, find $u_{\varepsilon} \in \mathcal{U}$ such that $||y(T) - y_f||_X \leq \varepsilon$.

Context

Linear control problem

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0$$

◊ y(t) ∈ X, u(t) ∈ U Hilbert spaces, $E := L^2(0, T; U)$ ◊ (A, D(A)) operator generating a C_0 semigroup over X, denoted $(S_t)_{t ≥ 0}$ ◊ B ∈ L(U, X)

Goal: given a constraint set $U \subset E$, investigate constrained approximate controllability : for T > 0, $y_0, y_f \in X$, through U-valued controls.

for any
$$\varepsilon > 0$$
, find $u_{\varepsilon} \in \mathcal{U}$ such that $\|y(T) - y_f\|_X \le \varepsilon$.

Notations:

$$y(T) = L_T u + S_T y_0, \quad L_T u := \int_0^T S_{T-t} Bu(t) dt,$$

With $\tilde{y}_T = y_f - S_T y_0$, above rewrites

for any $\varepsilon > 0$, find $u_{\varepsilon} \in \mathcal{U}$ such that $L_T u \in \overline{B}(\tilde{y}_T, \varepsilon)$.

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex.

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex.

No \mathcal{U} -approximate controllability $\iff \exists \varepsilon > 0, \quad L_T \mathcal{U} \cap B(\tilde{y}_T, \varepsilon) = \emptyset.$ If latter holds, separate disjoint convex closed and convex open set

 $\exists p_f \neq 0, \forall u \in \mathcal{U}, \forall y \in B(\tilde{y}_T, \varepsilon), \quad \langle u, L_T^* p_f \rangle_E = \langle L_T u, p_f \rangle_X \leq \langle y, p_f \rangle_X.$

Look for abstract dual necessary and sufficient conditions.

Standing assumption: U closed and convex.

No \mathcal{U} -approximate controllability $\iff \exists \varepsilon > 0, \quad L_T \mathcal{U} \cap B(\tilde{y}_T, \varepsilon) = \emptyset.$ If latter holds, separate disjoint convex closed and convex open set

 $\exists p_f \neq 0, \ \forall u \in \mathcal{U}, \ \forall y \in B(\tilde{y}_T, \varepsilon), \quad \langle u, L_T^* p_f \rangle_E = \langle L_T u, p_f \rangle_X \leq \langle y, p_f \rangle_X.$

Equivalently

$$\underbrace{\sup_{u \in \mathcal{U}} \langle u, L_T^* p_f \rangle_E}_{\sigma_{\mathcal{U}}(L_T^* p_f)} \leq \inf_{y \in B(\tilde{y}_T, \varepsilon)} \langle y, p_f \rangle_X.$$

Support function of a set $\mathcal{U} \subset E$ is defined by

$$\forall p \in E, \quad \sigma_U(p) := \sup_{v \in U} \langle p, v \rangle.$$

Look for abstract dual necessary and sufficient conditions.

Standing assumption: \mathcal{U} closed and convex.

Theorem

Approximate controllability from y_0 to y_f in time T > 0 under constraints U holds if and only if

$$\forall p_f \in X, \quad \sigma_{\mathcal{U}}(L_T^* p_f) \geq \langle \tilde{y}_T, p_f \rangle_X.$$

Note: unconstrained case U = E is covered; injectivity of L_T^* is sufficient for the above to hold for all y_0, y_f .

y(t, x): temperature at time $t \ge 0$ and position $x \in \Omega$.

$$\begin{cases} \partial_t y - \Delta y = \chi_{\omega} u \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases}$$
(1)

y(t, x): temperature at time $t \ge 0$ and position $x \in \Omega$.

$$\begin{cases} \partial_t y - \Delta y = \chi_{\omega} u \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases}$$

Cast into the form

$$\dot{y}(t) = Ay(t) + Bu(t), \ y(0) = y_0$$

with state space $X = L^2(\Omega)$, control space $E = L^2(0, T; L^2(\Omega))$.

y(t, x): temperature at time $t \ge 0$ and position $x \in \Omega$.

$$\begin{cases} \partial_t y - \Delta y = \chi_{\omega} \iota \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases}$$

Cast into the form

$$\dot{y}(t) = Ay(t) + Bu(t), \ y(0) = y_0$$

with state space $X = L^2(\Omega)$, control space $E = L^2(0, T; L^2(\Omega))$.

For any $\omega \subset \Omega$ (with positive measure),

 \diamond the heat equation (4) is approximately controllable

 $\forall y_0, y_f \in X, \forall T > 0, \ \forall \varepsilon > 0, \quad \exists u \in E \text{ tel que } \|y(T) - y_f\|_X \leq \varepsilon.$

the heat equation (4) is not exactly controllable

Internal controllability of the heat equation: constructive approach

Dual equation, $p_f \in X$

$$egin{aligned} \partial_t p + \Delta p &= 0 \ p(T, \cdot) &= p_f, \ p_{\mid \partial \Omega} &= 0, \end{aligned}$$

Internal controllability of the heat equation: constructive approach

Dual equation, $p_f \in X$

$$\left\{ egin{aligned} \partial_t p + \Delta p &= 0 \ p(T, \cdot) &= p_f, \ p_{\mid \partial \Omega} &= 0, \end{aligned}
ight.$$

Dual functional

$$\begin{split} J(p_f) &= \frac{1}{2} \int_0^T \int_\omega p^2(t,x) \, dx \, dt - \langle \tilde{y}_T, p_f \rangle_X + \varepsilon \| p_f \|_X \\ &= \frac{1}{2} \| \chi_\omega p \|_E^2 - \langle \tilde{y}_T, p_f \rangle_X + \varepsilon \| p_f \|_X \end{split}$$

Internal controllability of the heat equation: constructive approach

Dual equation, $p_f \in X$

$$\left\{ egin{aligned} \partial_t p + \Delta p &= 0 \ p(T, \cdot) &= p_f, \ p_{\mid \partial \Omega} &= 0, \end{aligned}
ight.$$

Dual functional

$$\begin{split} J(p_f) &= \frac{1}{2} \int_0^T \int_\omega p^2(t,x) \, dx \, dt - \langle \tilde{y}_T, p_f \rangle_X + \varepsilon \| p_f \|_X \\ &= \frac{1}{2} \| \chi_\omega p \|_E^2 - \langle \tilde{y}_T, p_f \rangle_X + \varepsilon \| p_f \|_X \end{split}$$

Key result: coercivity thanks to Holmgren's uniqueness theorem:

$$\Big(orall (t,x)\in (0,T) imes \omega, \quad p(t,x)=0\Big) \quad \Longrightarrow \quad p_f=0.$$

Functional admits a unique minimiser p_f^{\star} , and the control

$$u^* := \chi_\omega p^*$$

steers y_0 to the ball $\overline{B}(\tilde{y}_T, \varepsilon)$ in the unconstrained case.

Nonnegative controllability and obstructions in arbitrary time

$$\begin{cases} \partial_t y - \Delta y = u \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases} \quad \text{under constraints } \forall t \in (0, T), \ u(t) \in \mathcal{U}(\subset L^2(\Omega)) \quad (2) \end{cases}$$

with

$$\mathcal{U} \subset \{u \geq 0\}.$$

Nonnegative controllability and obstructions in arbitrary time

$$\begin{cases} \partial_t y - \Delta y = u \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases} \quad \text{under constraints } \forall t \in (0, T), \ u(t) \in \mathcal{U}(\subset L^2(\Omega)) \end{cases}$$

$$\mathcal{U} \subset \{u \geq 0\}.$$

First obstruction: monotonicity

with

$$\forall u \geq 0, \quad \forall t > 0, \quad y(t) \geq S_t y_0.$$

Nonnegative controllability and obstructions in arbitrary time

$$\begin{cases} \partial_t y - \Delta y = u \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases} \quad \text{under constraints } \forall t \in (0, T), \ u(t) \in \mathcal{U}(\subset L^2(\Omega)) \end{cases}$$

$$\mathcal{U} \subset \{u \ge 0\}.$$

First obstruction: monotonicity

$$\forall u \geq 0, \quad \forall t > 0, \quad y(t) \geq S_t y_0.$$

Relevant notion of approximate controllability in the nonnegative setting:

Definition

with

For $U \subset \{u \ge 0\}$, the system (2) is said to be *nonnegatively approximatively controllable* under the constraints U in time T if

$$\forall \varepsilon > 0, \forall y_f \geq S_T y_0, \quad \exists u \in \mathcal{U}, \ \|y(T) - y_f\|_X \leq \varepsilon.$$

$$\begin{cases} \partial_t y - \Delta y = \chi_{\omega} u \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases} \quad \text{under constraints } \forall t \in (0, T), \ u(t) \in \mathcal{U} \tag{2}$$

with

 $\mathcal{U} = \{u \ge 0\}.$

$$\begin{cases} \partial_t y - \Delta y = \chi_{\omega} \iota \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases}$$

under constraints $orall t \in (0, T), \,\, u(t) \in \mathcal{U}$

with

$$\mathcal{U} = \{u \ge 0\}.$$

Theorem (P.-Trélat-Zhang)

If there exists a subdomain $\omega_0 \subset (\Omega \setminus \omega)$, then the system (2) is not nonnegatively approximately controllable in small time T.

Note: see also Pighin-Zuazua '18.

Nonnegative controllability and obstructions in small time (2)

Idea of proof (inspired by Pighin-Zuazua '18)

Dual equation, $p_f \in X$

$$\begin{aligned} \partial_t p + \Delta p &= 0 \\ p(T, \cdot) &= p_f, \\ p_{|\partial\Omega} &= 0, \end{aligned} \tag{2}$$

$$\frac{d}{dt}\langle y(t), p(t)\rangle_X = \langle p(t), u(t)\rangle_X.$$

Nonnegative controllability and obstructions in small time (2)

Idea of proof (inspired by Pighin-Zuazua '18)

Dual equation, $p_f \in X$

$$\left\{ egin{aligned} \partial_t p + \Delta p &= 0 \ p(T,\cdot) &= p_f, \ p_{\mid \partial \Omega} &= 0, \end{aligned}
ight.$$

$$\frac{d}{dt}\langle y(t), p(t)\rangle_X = \langle p(t), u(t)\rangle_X.$$

Case
$$y_0 = 0 \implies y_f \ge S_T y_0 = 0, y_f \ne 0.$$

 $\langle y(T), p_f \rangle_X = \int_0^T \langle p(t), u(t) \rangle_X dt$

Nonnegative controllability and obstructions in small time (2)

Idea of proof (inspired by Pighin-Zuazua '18)

Dual equation, $p_f \in X$

$$\left\{ egin{aligned} \partial_t p + \Delta p &= 0 \ p(T,\cdot) &= p_f, \ p_{\mid \partial \Omega} &= 0, \end{aligned}
ight.$$

$$\frac{d}{dt}\langle y(t), p(t)\rangle_X = \langle p(t), u(t)\rangle_X.$$

Case
$$y_0 = 0 \implies y_f \ge S_T y_0 = 0, \ y_f \ne 0.$$

 $\langle y(T), p_f \rangle_X = \int_0^T \langle p(t), u(t) \rangle_X dt.$

Choose y_f such that $\operatorname{supp}(y_f) \subset \subset \omega_0$, then build p_f such that (i) $p_f < 0$ over $\operatorname{supp}(y_f)$, (ii) $p \ge 0$ over $(0, T^*) \times (\Omega \setminus \omega_0)$, where p solves (2).

$$\implies \qquad \langle y_f, p_f \rangle_X < 0 \quad \text{and} \quad \forall T < T^\star, \ \int_0^T \langle p(t), u(t) \rangle_X \ dt \geq 0.$$

Constraints:

$$\begin{cases} \partial_t y - \Delta y = \chi_{\omega(t)} u \\ y(0, \cdot) = y_0, \\ y_{|\partial\Omega} = 0, \end{cases}$$

with

$$orall t\in (0,T), \quad |\omega(t)|\leq m_L, \qquad m_L=L|\Omega|, \quad L\in (0,1).$$

Constraints:

$$\begin{cases} \partial_t y - \Delta y = \mathcal{M}(t)\chi_{\omega(t)} \\ y(0,\cdot) = y_0, \\ y_{\mid \partial\Omega} = 0, \end{cases}$$

with

$$orall t \in (0, T), \quad |\omega(t)| \leq m_L, \qquad m_L = L|\Omega|, \quad L \in (0, 1).$$

$$\mathcal{U}^L_{ ext{shape}} := \{ M\chi_\omega, \quad \omega \subset \Omega, \quad |\omega| \leq m_L, \ M > 0 \}.$$

Constraints:

$$\begin{cases} \partial_t y - \Delta y = \mathcal{M}(t)\chi_{\omega(t)} \\ y(0,\cdot) = y_0, \\ y_{\mid \partial\Omega} = 0, \end{cases}$$

with

$$orall t\in(0,T), \quad |\omega(t)|\leq m_L, \qquad m_L=L|\Omega|, \quad L\in(0,1)$$

$$\mathcal{U}^L_{ ext{shape}} := \{ M\chi_\omega, \quad \omega \subset \Omega, \quad |\omega| \leq m_L, \ M > 0 \}.$$

Theorem (P.-Trélat-Zhang)

For all $L \in (0,1)$, T > 0, the heat equation is nonnegatively approximately controllable under the constraints \mathcal{U}_{shape}^{L} , in time T.

Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang ('13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

- ◊ dual functional directly introduced
- $\diamond~$ most often, differentiable objective functions

Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang ('13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

- dual functional directly introduced
- $\diamond~$ most often, differentiable objective functions

Without constraints, convex analytic point of view (Lions '88): find $u \in E$ such that $||y(T) - y_f||_X \le \varepsilon$ is equivalent to proving, for a given $F : E \to \mathbb{R} \cup \{+\infty\}$, that

$$\pi := \inf_{u \in E, \ \|y(T) - y_f\|_X \le \varepsilon} F(u) < +\infty.$$

Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang ('13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

- dual functional directly introduced
- $\diamond\,$ most often, differentiable objective functions

Without constraints, convex analytic point of view (Lions '88): find $u \in E$ such that $||y(T) - y_f||_X \le \varepsilon$ is equivalent to proving, for a given $F : E \to \mathbb{R} \cup \{+\infty\}$, that

$$\pi := \inf_{u \in E, \ \|y(T) - y_f\|_X \le \varepsilon} F(u) < +\infty.$$

Rewriting

$$\inf_{u\in E, \|y(T)-y_f\|_X\leq \varepsilon}F(u)=\inf_{u\in E}F(u)+G(L_T u).$$

where

$$G(L_T u) = \begin{cases} 0 & \text{if } \|y(T) - y_f\|_X \leq \varepsilon \\ +\infty & \text{else} \end{cases}$$

i.e. $G = \delta_{\overline{B}(\tilde{y}_T,\varepsilon)}$.

Dual approach to constrained controllability: similar ideas found in works by Kunisch-Wang ('13), Berrahmoune ('14 and '19), Ervedoza ('20), Biccari-Zuazua ('22) with

- $\diamond~$ dual functional directly introduced
- $\diamond\,$ most often, differentiable objective functions

Without constraints, convex analytic point of view (Lions '88): find $u \in E$ such that $||y(T) - y_f||_X \le \varepsilon$ is equivalent to proving, for a given $F : E \to \mathbb{R} \cup \{+\infty\}$, that

$$\pi := \inf_{u \in E, \|y(T) - y_f\|_X \le \varepsilon} F(u) < +\infty.$$

Rewriting

$$\inf_{u\in E, \|y(T)-y_f\|_X\leq \varepsilon} F(u) = \inf_{u\in E} F(u) + G(L_T u).$$

where

$$G(L_T u) = \begin{cases} 0 & \text{if } \|y(T) - y_f\|_X \leq \varepsilon \\ +\infty & \text{else} \end{cases}$$

i.e. $G = \delta_{\overline{B}(\tilde{y}_T,\varepsilon)}$.

Idea: if $\pi < +\infty$, choose *F* that imposes the constraints \diamond directly? i.e. $F(u) < +\infty \implies u \in \mathcal{U}$ \diamond subtly? i.e. *u* optimal $\implies u \in \mathcal{U}$.

$$f^*(y) := \sup_{x \in H} \langle y, x \rangle - f(x), \quad y \in H.$$

$$f^*(y) := \sup_{x \in H} \langle y, x \rangle - f(x), \quad y \in H.$$

$$\frac{1}{2}|x|^2 \quad \longleftrightarrow \quad \frac{1}{2}|x|^2$$

$$f^*(y) := \sup_{x \in H} \langle y, x \rangle - f(x), \quad y \in H.$$

$$rac{1}{p}|x|^p \quad \longleftrightarrow \quad rac{1}{q}|x|^q \qquad 1$$

$$f^*(y) := \sup_{x \in H} \langle y, x \rangle - f(x), \quad y \in H.$$

$$|x| \longleftrightarrow \delta_{[-1,1]}$$

$$f^*(y) := \sup_{x \in H} \langle y, x \rangle - f(x), \quad y \in H.$$

$$\|x\|_H \quad \longleftrightarrow \quad \delta_{\overline{B}(0,1)}.$$

Convex analysis in a nutshell: Fenchel conjugate

H Hilbert space, $f: H \to [-\infty, +\infty]$.

Fenchel conjugate

$$f^*(y) := \sup_{x \in H} \langle y, x \rangle - f(x), \quad y \in H.$$

Notation for non-empty convex closed set C

$$\delta_{\mathcal{C}} = \begin{cases} 0 & \text{over } \mathsf{C} \\ +\infty & \text{outside of } \mathsf{C} \end{cases} \quad \longleftrightarrow \quad \sigma_{\mathcal{C}} := (\delta_{\mathcal{C}})^*.$$

i.e.

$$\sigma_{\mathcal{C}}(\mathbf{y}) = \sup_{\mathbf{x}\in\mathcal{H}} \langle \mathbf{y},\mathbf{x}\rangle - \delta_{\mathcal{C}}(\mathbf{x}) = \sup_{\mathbf{x}\in\mathcal{C}} \langle \mathbf{y},\mathbf{x}\rangle.$$

Fenchel conjugate

$$f^*(y) := \sup_{x \in H} \langle y, x \rangle - f(x), \quad y \in H.$$

 $\Gamma_0(H) := \{f : H \to]-\infty, +\infty], \text{ proper, convex, lower semicontinuous} \}.$

Fenchel-Moreau theorem: if $f \in \Gamma_0(H)$, then

◊ $f^* ∈ Γ_0(H)$,

$$\diamond f^{**} = f$$
Convex analysis in a nutshell: subdifferential

H Hilbert space, $f: H \to [-\infty, +\infty]$.

Subdifferential at $x \in H$

$$\partial f(x) = \{ p \in H, \quad \forall y \in X, \ f(y) \ge f(x) + \langle p, y - x \rangle_H \}.$$

Example: f(x) = |x|,

$$\partial f(x) = \begin{cases} \{\operatorname{sgn}(x)\} & \text{if } x \neq 0, \\ [-1,1] & \text{if } x = 0 \end{cases}$$

Convex analysis in a nutshell: subdifferential

H Hilbert space, $f: H \to [-\infty, +\infty]$.

Subdifferential at $x \in H$

$$\partial f(x) = \{ p \in H, \quad \forall y \in X, \ f(y) \ge f(x) + \langle p, y - x \rangle_H \}.$$

Example: f(x) = |x|,

$$\partial f(x) = egin{cases} \{\mathrm{sgn}(x)\} & ext{if } x
eq 0, \ [-1,1] & ext{if } x = 0 \end{cases}.$$

First order optimality condition for convex f

x minimises f over
$$H \iff 0 \in \partial f(x)$$
.

Convex analysis in a nutshell: subdifferential

H Hilbert space, $f : H \to [-\infty, +\infty]$.

Subdifferential at $x \in H$

$$\partial f(x) = \{ p \in H, \quad \forall y \in X, \ f(y) \ge f(x) + \langle p, y - x \rangle_H \}.$$

Example: f(x) = |x|,

$$\partial f(x) = egin{cases} \{\mathrm{sgn}(x)\} & ext{if } x
eq 0, \ [-1,1] & ext{if } x = 0 \end{cases}.$$

First order optimality condition for convex f

x minimises f over
$$H \iff 0 \in \partial f(x)$$
.

Link with Fenchel conjugate: for $f \in \Gamma_0(H)$

$$p \in \partial f(x) \quad \iff \quad x \in \partial f^*(p).$$

$$F \in \Gamma_0(E)$$
, $G \in \Gamma_0(X)$, $L_T \in L(E, X)$.

$$\pi = \inf_{u \in E} F(u) + G(L_T u)$$

$$F \in \Gamma_0(E), \ G \in \Gamma_0(X), \ L_T \in L(E, X).$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u)$$

admits the dual problem

$$d = -\inf_{p_f \in X} F^*(L_T^* p_f) + G^*(-p_f)$$

Weak duality

 $\pi \geq d$.

$$F \in \Gamma_0(E), \ G \in \Gamma_0(X), \ L_T \in L(E, X).$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u)$$

admits the dual problem

$$d = -\inf_{p_f \in X} F^*(L_T^* p_f) + G^*(-p_f)$$

Weak duality

 $\pi \geq d$.

Fenchel-Rockafellar theorem: under one weak hypothesis for F, G, L_T i.e.

$$\exists u \in E, \quad F(u) < +\infty \text{ and } L_T u \in B(\tilde{y}_T, \varepsilon).$$

- \diamond strong duality holds $\pi = d$,
- ◊ d is attained if finite;

$$F \in \Gamma_0(E), \ G \in \Gamma_0(X), \ L_T \in L(E, X).$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u)$$

admits the dual problem

$$d = -\inf_{p_f \in X} F^*(L_T^* p_f) + G^*(-p_f)$$

Weak duality

 $\pi \geq d$.

Fenchel-Rockafellar theorem: under one weak hypothesis for F^* , G^* , L_T^* , i.e.

 $\exists p_f \in X, F^* \text{ is continuous at } L^*_T p_f.$

- \diamond strong duality holds $\pi = d$,
- $\diamond \pi$ is attained *if finite*;

$$F \in \Gamma_0(E), \ G \in \Gamma_0(X), \ L_T \in L(E,X)$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u)$$

admits the dual problem

$$d = -\inf_{p_f \in X} F^*(L_T^*p_f) + G^*(-p_f)$$

$$F \in \Gamma_0(E), \ G \in \Gamma_0(X), \ L_T \in L(E,X)$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u)$$

admits the dual problem

$$d = -\inf_{p_f \in X} F^*(L_T^*p_f) + G^*(-p_f)$$

Equivalence between

- $\diamond u^{\star}$ is primal optimal, p_f^{\star} is dual optimal and strong duality $\pi = d$ holds,
- \diamond $(u^{\star}, -p_{f}^{\star})$ is a saddle point of the Lagrangian, i.e.,

$$(u,q) \in E \times X \longmapsto \langle q, L_T u \rangle_X + F(u) - G^*(q).$$

$$F \in \Gamma_0(E), \ G \in \Gamma_0(X), \ L_T \in L(E,X)$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u)$$

admits the dual problem

$$d = -\inf_{p_f \in X} F^*(L_T^*p_f) + G^*(-p_f)$$

Equivalence between

- $\diamond u^*$ est primal optimal, p_f^* est dual optimal and strong duality $\pi = d$ holds,
- $(u^{\star}, -p_{f}^{\star})$ is a saddle point of the Lagrangian

 $u^{\star} \in \partial F^{\star}(L_T^* p_f^{\star})$ and $p_f^{\star} \in -\partial G(L_T u^{\star})$

Back to controllability

Controlled equation

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0.$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u), \quad G = \delta_{\overline{B}(\tilde{y}_T,\varepsilon)} \in \Gamma_0(X)$$

Back to controllability

Controlled equation

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0.$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u), \quad G = \delta_{\overline{B}(\tilde{y}_T,\varepsilon)} \in \Gamma_0(X)$$

Dual problem (Lions '88)

$$-d = \inf_{p_f \in X} F^*(L_T^* p_f) + G^*(-p_f) = \inf_{p_f \in X} \underbrace{F^*(L_T^* p_f) - \langle \tilde{y}_T, p_f \rangle + \varepsilon \| p_f \|_X}_{J(p_f)}$$

Back to controllability

Controlled equation

$$\dot{y}(t) = Ay(t) + Bu(t), \quad y(0) = y_0.$$

$$\pi = \inf_{u \in E} F(u) + G(L_T u), \quad G = \delta_{\overline{B}(\tilde{y}_T,\varepsilon)} \in \Gamma_0(X)$$

Dual problem (Lions '88)

$$-d = \inf_{p_f \in X} F^*(L_T^* p_f) + G^*(-p_f) = \inf_{p_f \in X} \underbrace{F^*(L_T^* p_f) - \langle \tilde{y}_T, p_f \rangle + \varepsilon \|p_f\|_X}_{J(p_f)}$$

Heat equation:

Adjoint $L_T^* \in L(X, E)$ given by $\forall p_f \in X, \quad L_T^* p_f(t) = B^* p(t)$ $\begin{cases} \partial_t p + \Delta p = 0\\ p(T, \cdot) = p_f, \\ p_{|\partial\Omega} = 0, \end{cases}$

Unconstrained approximate controllability: $||B = \chi_{\omega}|| + ||F = \frac{1}{2}|| \cdot ||F|$.

Reasonable $F \in \Gamma_0(E)$: there must exist $p_f \in X$ such that F^* is continuous at $L^*_T p_f$. Then strong duality $\pi = d$ holds... which may be $\pi = d = +\infty$.

- \diamond show that $d < +\infty$: coercivity of the dual functional *J*,
- \diamond then, if $(F(u) < +\infty \implies u \in \mathcal{U})$, we are done

Reasonable $F \in \Gamma_0(E)$: there must exist $p_f \in X$ such that F^* is continuous at $L_T^* p_f$. Then strong duality $\pi = d$ holds... which may be $\pi = d = +\infty$.

- \diamond show that $d < +\infty$: coercivity of the dual functional *J*,
- $\diamond\,$ otherwise, look at optimal controls and hope for

$$(u^{\star} \in \partial F^{\star}(L_{T}^{\star}p_{f}^{\star}), p_{f}^{\star} \text{ dual optimal}) \implies u^{\star} \in \mathcal{U}.$$

Reasonable $F \in \Gamma_0(E)$: there must exist $p_f \in X$ such that F^* is continuous at $L_T^* p_f$. Then strong duality $\pi = d$ holds... which may be $\pi = d = +\infty$.

- \diamond show that $d < +\infty$: coercivity of the dual functional *J*,
- $\diamond\,$ otherwise, look at optimal controls and hope for

$$(u^{\star} \in \partial F^{\star}(L_{T}^{\star}p_{f}^{\star}), p_{f}^{\star} \text{ dual optimal}) \implies u^{\star} \in \mathcal{U}.$$

Tension between

- $\diamond\,$ directly imposing constraints through a term of the form $\delta_{\mathcal{U}}$
- \diamond the coercivity requirement for the dual functional J (as well as the sufficient condition for strong duality)

Conic nonconvex constraints

$$\mathcal{U}_{\mathsf{shape}}^L := \{ M\chi_{\omega}, \quad \omega \subset \Omega, \quad |\omega| \le m_L, \ M > 0 \} = \bigcup_{M > 0} (M \, \mathcal{U}_L),$$

with

$$\mathcal{U}_L := \{\chi_\omega, \quad \omega \subset \Omega, \quad |\omega| \leq m_L\}.$$

Conic nonconvex constraints

$$\mathcal{U}^L_{ ext{shape}} := \{M\chi_\omega, \quad \omega \subset \Omega, \quad |\omega| \le m_L, \ M > 0\} = \bigcup_{M > 0} (M\mathcal{U}_L),$$

with

$$\mathcal{U}_L := \{\chi_\omega, \quad \omega \subset \Omega, \quad |\omega| \leq m_L\}.$$

Relaxation of constraints

$$\overline{\mathcal{U}_L}:=\left\{u\in L^2(\Omega),\; 0\leq u\leq 1,\; \int_\Omega u\leq m_L
ight\}.$$

With extremality

$$\operatorname{ext}(\overline{\mathcal{U}_L}) = \mathcal{U}_L$$

Choosing the cost

$$J(p_f) = F^*(L_T^* p_f) - \langle \tilde{y}_T, p_f \rangle + \varepsilon ||p_f||_X \dots \text{ how to enforce coercivity}?$$

$$F^*(p) \sim ||p||^2 \quad \text{homogeneity of degree 2,}$$

$$F^*(p) := \frac{1}{2} \int_0^T \left(f^*(p(t)) \right)^2 dt, \quad f^* \text{ homogeneous of degree 1.}$$

Then

$$u^* \in \partial F^*(p) \quad \iff \quad \forall t \in (0,T), \ u^*(t) \in M(t) \ \partial f^*(p(t)), \ M(t) = f^*(p(t)).$$

Choosing the cost

$$\begin{split} J(p_f) &= F^*(L_T^*p_f) - \langle \tilde{y}_T, p_f \rangle + \varepsilon \| p_f \|_{X...} \text{ how to enforce coercivity?} \\ F^*(p) &\sim \| p \|^2 \quad \text{homogeneity of degree 2,} \\ F^*(p) &:= \frac{1}{2} \int_0^T \left(f^*(p(t)) \right)^2 dt, \quad f^* \text{ homogeneous of degree 1.} \end{split}$$

Then

$$u^* \in \partial F^*(p) \quad \iff \quad \forall t \in (0, T), \ u^*(t) \in M(t) \ \partial f^*(p(t)), \ M(t) = f^*(p(t)).$$

One wants

$$\forall p \in X, \quad \partial f^*(p) \subset \mathcal{U}_L = \operatorname{ext}(\overline{\mathcal{U}_L}).$$

How can one (hope to) catch extremal points?

Choosing the cost

$$\begin{split} J(p_f) &= F^*(L_T^*p_f) - \langle \tilde{y}_T, p_f \rangle + \varepsilon \| p_f \|_{X}... \text{ how to enforce coercivity?} \\ &\quad F^*(p) \sim \| p \|^2 \quad \text{homogeneity of degree 2,} \\ &\quad F^*(p) := \frac{1}{2} \int_0^T \left(f^*(p(t)) \right)^2 dt, \quad f^* \text{ homogeneous of degree 1.} \end{split}$$

Then

$$u^* \in \partial F^*(p) \quad \iff \quad \forall t \in (0, T), \ u^*(t) \in M(t) \ \partial f^*(p(t)), \ M(t) = f^*(p(t)).$$

One wants

$$\forall p \in X, \quad \partial f^*(p) \subset \mathcal{U}_L = \operatorname{ext}(\overline{\mathcal{U}_L}).$$

How can one (hope to) catch extremal points?

By maximising linear functions:

$$\partial f^*(p) = \underset{v \in \overline{\mathcal{U}_L}}{\operatorname{arg\,max}} \langle p, v \rangle,$$

amounts to

$$f^{\star} = \sigma_{\overline{\mathcal{U}}_L} = \delta_{\overline{\mathcal{U}}_L}^{\star}, \quad \text{i.e.,} \quad f^{\star}(p) = \sup_{v \in \overline{\mathcal{U}}_l} \langle p, v \rangle_X.$$

Bathtub principle

Optimisation problem

$$p \in L^{2}(\Omega) \text{ fixed }, \quad \sup_{v \in \overline{\mathcal{U}_{L}}} \langle p, v \rangle_{X} = \sup_{v \in \overline{\mathcal{U}_{L}}} \int_{\Omega} p(x)v(x) \, dx$$
$$\overline{\mathcal{U}_{L}} = \left\{ v \in L^{2}(\Omega), \ 0 \leq v \leq 1, \ \int_{\Omega} v \leq m_{L} \right\}.$$

Bathtub principle

Optimisation problem

$$p \in L^{2}(\Omega) \text{ fixed }, \quad \sup_{v \in \overline{\mathcal{U}_{L}}} \langle p, v \rangle_{X} = \sup_{v \in \overline{\mathcal{U}_{L}}} \int_{\Omega} p(x)v(x) dx$$

 $\overline{\mathcal{U}_{L}} = \left\{ v \in L^{2}(\Omega), \ 0 \leq v \leq 1, \ \int_{\Omega} v \leq m_{L} \right\}.$

Figure: Let us take a bath.

Bathtub principle

Optimisation problem

$$p \in L^{2}(\Omega) \text{ fixed }, \quad \sup_{v \in \overline{\mathcal{U}_{L}}} \langle p, v \rangle_{X} = \sup_{v \in \overline{\mathcal{U}_{L}}} \int_{\Omega} p(x)v(x) \, dx.$$
$$\overline{\mathcal{U}_{L}} = \left\{ v \in L^{2}(\Omega), \ 0 \leq v \leq 1, \ \int_{\Omega} v \leq m_{L} \right\}.$$

Figure: Let us take a second bath.

Optimisation problem

$$p \in L^{2}(\Omega) ext{ fixed }, \quad \sup_{v \in \overline{\mathcal{U}_{L}}} \langle p, v \rangle_{X} = \sup_{v \in \overline{\mathcal{U}_{L}}} \int_{\Omega} p(x)v(x) \, dx.$$

 $\overline{\mathcal{U}_{L}} = \left\{ v \in L^{2}(\Omega), \ 0 \leq v \leq 1, \ \int_{\Omega} v \leq m_{L}
ight\}.$

Theorem (Bathtub principle)

Let $p \in L^2(\Omega)$ have 0-measure level sets, $r(p) := \max(0, \Phi_p^{-1}(m_L))$, où Φ_p^{-1} pseudo-inverse of $r \mapsto \Phi_p(r) := |\{p > r\}|$.

- \diamond maximum equals $\int_{\{p>r(p)\}} p$
- \diamond and is uniquely attained by $\chi_{\{p>r(p)\}}$.

Chosen function $f^*(p) = \sup_{v \in \overline{\mathcal{U}_l}} \langle p, v \rangle_X, \ p \in L^2(\Omega),$

$$F^*(p) := rac{1}{2} \int_0^T \left(f^*(p(t))
ight)^2 dt, \quad p \in E$$

Chosen function $f^*(p) = \sup_{v \in \overline{\mathcal{U}_L}} \langle p, v \rangle_X, \ p \in L^2(\Omega)$,

$$F^*(p) := rac{1}{2} \int_0^T \left(f^*(p(t))
ight)^2 dt, \quad p \in E$$

Crucial property:

$$F^*(L^*_T p_f) = 0 \implies p_f \leq 0.$$

Chosen function $f^*(p) = \sup_{v \in \overline{U_L}} \langle p, v \rangle_X, \ p \in L^2(\Omega)$,

$$F^*(p) := rac{1}{2} \int_0^T \left(f^*(p(t)) \right)^2 dt, \quad p \in E$$

Crucial property:

$$F^*(L^*_T p_f) = 0 \implies p_f \leq 0.$$

One checks that $F^* \in \Gamma_0(E)$, and that it corresponds to the cost

$$F(u) = \delta_{\{u \ge 0\}} + \frac{1}{2} \int_0^T \max\left(\|u(t)\|_{\infty}, \frac{\|u(t)\|_1}{m_L} \right)^2 dt, \quad u \in E.$$

Chosen function $f^*(p) = \sup_{v \in \overline{\mathcal{U}_L}} \langle p, v \rangle_X, \ p \in L^2(\Omega)$,

$$F^*(p) := rac{1}{2} \int_0^T \left(f^*(p(t)) \right)^2 dt, \quad p \in E$$

Crucial property:

$$F^*(L^*_T p_f) = 0 \implies p_f \leq 0.$$

One checks that $F^* \in \Gamma_0(E)$, and that it corresponds to the cost

$$F(u) = \delta_{\{u \ge 0\}} + \frac{1}{2} \int_0^T \max\left(\|u(t)\|_{\infty}, \frac{\|u(t)\|_1}{m_L} \right)^2 dt, \quad u \in E.$$

We are left with studying

- \diamond the coercivity of the dual functional J
- ♦ the optimality condition $u^* \in \partial F^*(L_T^* p_f^*)$

Coercivity

Try and show that

$$\liminf_{p_f\|_X\to\infty}\frac{J(p_f)}{\|p_f\|_X}>0.$$

By homogeneity, with $q_f = \frac{p_f}{\|p_f\|}$,

$$\frac{J(p_f)}{\|p_f\|_X} = \|p_f\|_X F^*(L_T^*q_f) - \langle \tilde{y}_T, q_f \rangle_X + \varepsilon.$$

Coercivity

Try and show that

$$\liminf_{\|p_f\|_X\to\infty}\frac{J(p_f)}{\|p_f\|_X}>0.$$

By homogeneity, with $q_f = \frac{p_f}{\|p_f\|}$,

$$\frac{J(p_f)}{\|p_f\|_X} = \|p_f\|_X F^*(L_T^*q_f) - \langle \tilde{y}_T, q_f \rangle_X + \varepsilon.$$

After taking a sequence (p_f^n) and extracting subsequences $q_f^n \rightharpoonup q_f$, worst case is

$$\liminf_{n\to\infty} F^*(L^*_T q^n_f) = 0 \quad \iff \quad F^*(L^*_T q_f) = 0 \quad \Longrightarrow \quad q_f \leq 0$$

Thanks to $\tilde{y}_T = y_f - S_T y_0 \ge 0$

$$\liminf_{n\to\infty}\frac{J(\boldsymbol{p}_{f}^{n})}{\|\boldsymbol{p}_{f}^{n}\|_{X}}\geq-\langle\tilde{y}_{T},\boldsymbol{q}_{f}\rangle_{X}+\varepsilon\geq\varepsilon>0$$

Facts

 \diamond Strong duality $\pi = d < +\infty$ and existence of primal and dual optimal variables.

Optimality condition

Facts

♦ Strong duality $\pi = d < +\infty$ and existence of primal and dual optimal variables. ♦ u^* optimal control, there exists p_f^* dual optimal such that

$$u^{\star} \in \partial F^{\star}(L^{\star}_{T}p^{\star}_{f}) \quad \Longleftrightarrow \quad orall t \in (0,T), \; u^{\star}(t) \in M^{\star}(t) rg\max_{v \in \overline{\mathcal{U}_{L}}} \langle p(t), v
angle$$

with $M^{\star}(t) = \int_{\{p^{\star}(t) > r(p^{\star}(t))\}} p(t)$, and p^{\star} solves

$$\begin{cases} \partial_t p^* + \Delta p^* = 0\\ p^*(T, \cdot) = p_f^*,\\ p_{|\partial\Omega}^* = 0, \end{cases}$$

Optimality condition

Facts

♦ Strong duality $\pi = d < +\infty$ and existence of primal and dual optimal variables. ♦ u^* optimal control, there exists p_f^* dual optimal such that

$$u^{\star} \in \partial F^{\star}(L^{\star}_{T}p^{\star}_{f}) \quad \Longleftrightarrow \quad orall t \in (0,T), \; u^{\star}(t) \in M^{\star}(t) rg\max_{v \in \overline{\mathcal{U}_{L}}} \langle p(t), v
angle$$

with $M^{\star}(t) = \int_{\{p^{\star}(t) > r(p^{\star}(t))\}} p(t)$, and p^{\star} solves

$$\left\{ egin{aligned} &\partial_t p^\star + \Delta p^\star = 0 \ &p^\star(T,\cdot) = p_f^\star, \ &p_{|\partial\Omega}^\star = 0, \end{aligned}
ight.$$

Only interesting case $y_f \notin \overline{B}(S_T y_0, \varepsilon)$: any dual optimal variable satisfies $p_f^* \neq 0$.

 $t \in (0, T)$ fixed: solution $p^*(t)$ of (2) is (real) analytic, hence has level sets of measure 0... Unless it is constant, then it equals 0 by the boundary conditions, and then $p_f^* = 0$ by the maximum principle ..., which cannot be.

Conclusion with the bathtub principle: any optimal control is a shape

 $u^{\star}(t) = M^{\star}(t) \chi_{\{p^{\star}(t) > r(p^{\star}(t))\}}.$

Uniqueness for dual optimal variables.

Proof in two steps, very general (i)

```
\{L_T u^*, u^* \text{ optimal.}\}\
```

is reduced to a singleton y^*

Uniqueness for dual optimal variables.

Proof in two steps, very general (i)

 $\{L_T u^*, u^* \text{ optimal.}\}$

is reduced to a singleton y^*

(ii) Second optimality condition

$$p_{T}^{\star} \in -\partial G(L_{T}u^{\star}) = -\partial \delta_{\overline{B}(\tilde{y}_{T},\varepsilon)}(L_{T}u^{\star}) = -\partial \delta_{\overline{B}(\tilde{y}_{T},\varepsilon)}(y^{\star}).$$

reduces the search for p_T^* to a half-line. Remark: implies uniqueness for optimal controls.
Series of refinements (2)

Amplitude independent of time t

Slight change of cost, $f^*(p) = \sup_{v \in \overline{\mathcal{U}_L}} \langle p, v \rangle_X, \ p \in L^2(\Omega)$,

$$F^*(p):=rac{1}{2}\int_0^T \left(f^*(p(t))
ight)^2 dt, \quad p\in E$$

Key property

$$F^*(L^*_T p_f) = 0 \implies p_f \leq 0.$$

One checks that $F^* \in \Gamma_0(E)$, and that it corresponds to the cost

$$F(u) = \delta_{\{u \ge 0\}} + \frac{1}{2} \int_0^T \max\left(\|u(t)\|_{\infty}, \frac{\|u(t)\|_1}{m_L} \right)^2 dt, \quad u \in E.$$

Series of refinements (2)

Amplitude independent of time t

Slight change of cost, $f^*(p) = \sup_{v \in \overline{\mathcal{U}_L}} \langle p, v \rangle_X, \ p \in L^2(\Omega)$,

$$F^*(p) = rac{1}{2} \Big(\int_0^T f^*(p(t) \, dt \Big)^2, \quad p \in E$$

Key property

$$F^*(L_T^*p_f)=0 \implies p_f \leq 0.$$

One checks that $F^* \in \Gamma_0(E)$, and that it corresponds to the cost

$$F(u) = \delta_{\{u \ge 0\}} + \frac{1}{2} \sup_{t \in (0,T)} \max\left(\|u(t)\|_{\infty}, \frac{\|u(t)\|_{1}}{m_{L}} \right)^{2}, \quad u \in E.$$

Series of refinements (2)

Amplitude independent of time t

Slight change of cost, $f^*(p) = \sup_{v \in \overline{\mathcal{U}_L}} \langle p, v \rangle_X, \ p \in L^2(\Omega)$,

$$F^*(p) = rac{1}{2} \Big(\int_0^T f^*(p(t) \, dt \Big)^2, \quad p \in E$$

Key property

$$F^*(L_T^*p_f)=0 \implies p_f \leq 0.$$

One checks that $F^* \in \Gamma_0(E)$, and that it corresponds to the cost

$$F(u) = \delta_{\{u \ge 0\}} + \frac{1}{2} \sup_{t \in (0,T)} \max\left(\|u(t)\|_{\infty}, \frac{\|u(t)\|_{1}}{m_{L}} \right)^{2}, \quad u \in E.$$

Same proof strategy applies

$$u^{\star}(t) = M^{\star} \chi_{\{p^{\star}(t) > r(p^{\star}(t))\}}, \quad M = \int_{0}^{T} \int_{\{p^{\star}(t) > r(p^{\star}(t))\}} p(t) dt$$

Amplitude as a function of T and obstructions

Study of the amplitude $T \mapsto M^{\star}(T)$, y_0 , y_f , ε , L all fixed. $\lambda_1 > 0$, first eigenvalue of the Dirichlet Laplacian operator.

Amplitude as a function of T and obstructions

Study of the amplitude $T \mapsto M^{\star}(T)$, y_0 , y_f , ε , L all fixed. $\lambda_1 > 0$, first eigenvalue of the Dirichlet Laplacian operator.

$$M^{\star}(T) \geq \lambda_1 \frac{\|\tilde{y}_T\|_X - \varepsilon}{\sqrt{m_L}(1 - e^{-\lambda_1 T})}$$

Leads to

$$\lim_{T o 0} M^\star(T) = +\infty$$
 at least as $rac{1}{T},$

and

$$\liminf_{T\to+\infty}M^{\star}(T)\geq\lambda_{1}\frac{\|y_{f}\|_{X}-\varepsilon}{\sqrt{m_{L}}}>0$$

yields new obstructions if one constrains the amplitude from above

- ◊ in small time,
- ◊ in arbitrary time.

- ♦ In the case of the heat equation
 - Dirichlet or Neumann boundary control,
 - numerically computing optimal controls
- ♦ Generalisation in terms of
 - the control system
 - general convex constraints
 - non-convex constraints and extremality after relaxation