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Introduction

Introduction

A, B linear operators, y state, u parameter called the control, T > 0
final time.

Linear Control System{
y ′(t) = Ay(t) + Bu(t),

y(0) = y0.
(Syst-Cont)

c©M.M.

Goal: null controllability at time T

∀y0, find u such that the solution to (Syst-Cont) satisfies y(T ) = 0.

Equivalent reformulation : observability in final time{
z ′ = A∗z ,

z(0) = z0.
(Adj-Eq)

Null-Controllability à 0 for (Syst-Cont)
⇔ Observability for (Adj-Eq) :
∃C , ∀z0, ||z(T )||2 6 C

∫ T

0 ||B
∗z ||2dt.
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Introduction

Interlude: an uncertainty principle in harmonic analysis (1)

What is an uncertainty principle?

A mathematical principle that formalizes the fact it is impossible for a
non-zero function and its Fourier transform to be simultaneously
“concentrated” ’.

Here, “concentrated” will be understood in terms of support.

A trivial uncertainty principle

if f ∈ L2(R) is such that f and f̂ have compact support, then f ≡ 0.

Proof: if f has compact support included in [−a, a],
f̂ (ξ) =

∫ a

−a f (x)e−ixξdx . By usual theorems, f̂ can be extended as an
entire function. But f̂ is compactly supported, so f ≡ 0.

This can be quantified into an inequality (Amrein-Berthier’77 JFA).
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Introduction

Interlude: an uncertainty principle in harmonic analysis (2)

A spatial set S ⊂ Rd and a frequency set Σ ⊂ Rd is a strong a-pair if
there exists C > 0 such that for any f ∈ L2(Rd), we have∫

Rd

|f (x)|2dx 6 C

(∫
Rn\S
|f (x)|2dx +

∫
Rd\Σ

|f̂ (x)|2dx

)
.

From now on, Σ = B(0, r) for some r > 0. Then, we obtain∫
Rd

|f (x)|2dx 6 C (r)

∫
Rn\S
|f (x)|2dx , if supp(f̂ ) ⊂ B(0, r).

Uncertainty principle for band-limited functions. We call this a
Logvinenko-Sereda uncertainty principle (LSUP).

Characterization of the admissible sets S given in Paneah’61 DAN
(n = 1), then Logvinenko-Sereda’74 TFFGAP.



Intro PSWF Half-heat equation Conclusion

Introduction

Interlude: an uncertainty principle in harmonic analysis (3)

Characterization of the admissible sets S given in Paneah’61 DAN
(n = 1), then Logvinenko-Sereda’74 TFFGAP.

Definition

A thick set of Rd is a mesurable set ω such that there exists r > 0 and
γ > 0 such that, for any x ∈ Rd , we have

λ(ω ∩ (x + r [−1, 1]d)) > γλ(r [−1, 1]d).

We introduce |∇| given by: for h ∈ H1(Rd) and ξ ∈ Rd ,̂|∇|h(ξ) = ||ξ||ĥ(ξ).

Definition
A Poisson set is a measurable set Ω such that there exists t > 0 and
γ̃ > 0 such that for x ∈ Rd ,(

e−t|∇|1Ω

)
(x) > γ̃.
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Introduction

Interlude: an uncertainty principle in harmonic analysis (4)

The crucial point is

Proposition (Havin’Joricke’92)

A set ω is thick iff it is a Poisson set.

We then have:

Theorem (Logvininko-Sereda’74 TFFGAP)

The set S satisfies a Logvinenko-Sereda uncertainty principle if and only
if Rd \ S is a thick set.

We propose a proof here, with an important drawback does not give the
optimal behaviour of the constant in the LSUP, even in the simples cases.
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Introduction

Proof of the LSUP for d = 1 (1)

Fix any t > 0 and consider f such that supp(f̂ ) ⊂ (−c , c).

Step 1: if g = e icx f , then supp(ĝ) ⊂ (0, 2c) ⊂ R+. So g ∈ H2(C+).

Step 2: One (amongst many) Jensen inequality, for functions in the
Hardy class:

log
∣∣∣e−t|∇|g(x)

∣∣∣ 6 (e−t|∆| log |g |) (x), x + it ∈ C+.

Step 3: ∫
R
|f |2 =

∫
R
|g |2 = C

∫ 2c

0
|ĝ |2.

So ∫
R
|f |2 6 Ce4tc

∫ 2c

0
|e−t|ξ|ĝ(ξ)|2dξ.
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Introduction

Proof of the LSUP for d = 1 (2)

Step 4: Integrate exp(|step 2|2), use Plancherel and step 3:∫
R
|f |2 6 Ce4tc

∫
R
exp

(
e−t|∆| log

(
|g |2

))
.

Step 5: The theorem on two constants of Gorin’85: If µ is a probability
measure on R and Ω is a measurable set such that µ(x + Ω) > γ̃, x ∈ R,
then, if h ∈ L1(R) with h > 0,∫

R
exp (µ ∗ log(h)) 6 2

(∫
Ω

h

)γ̃ (∫
R
h

)1−γ̃

.

Step 6: Apply step 5 with µ = t
π(x2+t2) , Ω = R \ S , h = |g |2, and

remark that µ ∗ log(h) = e−t|∇| log(h). So by step 4,∫
R
|f |2 6 2Ce4tc

(∫
Ω

|f |2
)γ̃ (∫

R
|f |2
)1−γ̃

.
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Heuristic of the next part

Link between the half-heat equation and the LSUP.
Let us go back to the observability inequality

∃C , ∀z0, ||z(T )||2 6 C

∫ T

0
||B∗z ||2dt.

Non-observability related to “concentration” of solutions outside of
the control region ω, if B = B∗ = 1ω.

This it suggests that a way to find counter-example to the controllability
for the half-heat equation: take initial conditions that “saturate” the
uncertainty principle outside the control domain to disprove observability,
hoping that they stay quite “well-concentrated” over time. Here we
restrict to n = 1.

Here, we will rediscover a result by A. Koenig (PhD thesis) on the
half-heat equation, giving a constructive (and easier) proof and also
being applicable to the Grushin equation.
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Definition and properties of the first PSWF

Definition

Let c > 0. We introduce

Fc : ϕ ∈ L2 (−1, 1) 7→
∫ 1

−1
ϕ (ξ) e icxξdξ ∈ L2 (−1, 1) .

Fc is a compact on L2(−1, 1). λc is its largest eigenvalue, and ψc “the”
first eigenvector of Fc . ψc is the first PSWF with parameter c. It verifies

λcψc (x) =

∫ 1

−1
e icxξψc (ξ) dξ.

ψc ∈ L2(R) and is c-band-limited, so it is an entire function of
exponential type c . Moreover, for any x + it ∈ C,

ψc (x + it) =
1
λc

∫ 1

−1
e ic(x+it)ξψc (ξ) dξ. (PSWF-C)
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Definition and properties of the first PSWF

The shape of the PSWF
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Definition and properties of the first PSWF

Additional properties (1)

ψc , real, even on R, no roots on (−1, 1).
ψc , even, hermitian on C.
Normalization of ψc in L2 (R)−norm and assume ψc > 0 in (−1, 1).

We can prove ∫
R\[−1,1]

ψc (x)2 dx = 1− µc , µc =
c

2π
λ2
c

with a nice asymptotic behaviour (Fuchs’64, JMAA):

1− µc ∼ 4
√
πc

1
2 e−2c as c →∞. (Asy-Mu)
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Definition and properties of the first PSWF

Additional properties (2)

Any other function f which is c-band-limited and has L2(R)-norm
equal to 1 is such that∫

R\[−1,1]

f (x)2dx > 1− µc .

ψc : the c-band-limited function which concentrates the most on
[−1, 1].
1− µc : best constant for the LSUP on c- band-limited functions,
with S = R \ [−1, 1].
Another estimation (Fuchs’64 JMAA):

|ψc (1) | ∼ 2π
1
4 c

3
4 e−c as c →∞. (Val-1)
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Definition and properties of the first PSWF

The dual nature of the PSWF

The “lucky accident” of Slepian

Let

Lc : ϕ 7→
(
x 7→ −

(
1− x2)ϕ′′ (x) + 2xϕ (x) + c2x2ϕ (x)

)
.

Fc and Lc commute. Hence, ψc eigenvector of Lc , with associated
eigenvalue χc > 0 (that is ∼ c as c →∞).

By analyticity, ∀z ∈ C,

− (1− z)2
ψ′′c (z) + 2zψ′c (z) + c2z2ψc (z) = χcψc (z) . (EDO-C)

Absolutely crucial for our proof.
PSWF: introduced in the pionner works of Slepian-Landau-Pollak in the
60’ies. Then many developments, extensions, applications. See also the
book by Osipov-Rokhlin-Xiao’13.
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Non-controllability of the half-heat equation

The half-heat equation

Let T > 0, ω open subset of R whose exterior contains an interval.

The half-heat equation{
∂ty (t, x) + |∇|y (t, x) = 1ωv(t, x) in (0,T )× R,

y (0, x) = y0 (x) .
(Half-H)

We have well-posedness in L2.

Theorem (Lissy’20)

System (Half-H) is not null-controllable: for any T > 0, there exists at
least one initial condition y0 ∈ L2(R) such that there exists no
u ∈ L2((0,T )× R) such that the solution y of (Half-H) verifies
y(T ) = 0.
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Non-controllability of the half-heat equation

Reduction to observability

By duality, we study{
∂tu (t, x) + |∇|u (t, x) = 0 in (0,T )× R,

u (0, x) = u0 (x) ∈ L2 (R) .
(Half-H-Adj)

In order to prove our Theorem, it is sufficient to exhibit a family of initial
conditions u0(c) depending on some parameter c > 0, look at the
solution uc to (Half-H-Adj) and make to quotient

Q(c) =

∫ T

0 ||uc (t, ·) ||2L2(R\[−ε,ε])dt

||uc (T , ·) ||2L2(R)

.

Goal

Q(c)→ 0 as c →∞.
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Non-controllability of the half-heat equation

Some basic facts and reductions

Let t > 0. If u0 (x) = ψc (x) e icx , then the solution u is

u (t, x) = e ic(x+it)ψc (x + it) , t ∈ R+, x ∈ R. (u-Half)

Proof : direct computation by Fourier transform, or remark that on
the Hardy class H2(C+), (Half-H-Adj) is just the Cauchy-Riemann
relation.
Non-controllability on ω̃ ⊃ ω ⇒ non-controllability on ω.
Here, B (x0, ε) ⊂ R \ ω for some ε > 0 and x0 ∈ R.

After translation and dilatation arguments, we reduce to the following
Goal: non-observability on R \ [−ε, ε].
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Non-controllability of the half-heat equation

A very general estimate on complex second order ODEs

Proposition

Let a < b. Consider w , u, β, γ : [a, b]→ C of class C 1, verifying:
∀t ∈ [a, b], (

w ′(t)
u′(t)

)
=

(
0 β(t)
γ(t) 0

)(
w(t)
u(t)

)
.

Assume β and γ do not vanish. Introduce

R(t) =
|β(t)|
|γ(t)|

and Q(t) = |w(t)|2 + R(t)|w ′(t)|2.

Then, for any a 6 t0 6 t1 6 b, we have√
Q(t0)

R(t0)
1
4

6

√
Q(t1)

R(t1)
1
4

exp

∫ t1

t0

√(
R ′(s)

4R(s)

)2

+
|β(s)γ(s)|+ Re (β(s)γ(s))

2
ds

 .
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Non-controllability of the half-heat equation

An important corollary for the PSWF in the upper half plane

Proposition

There exists C > 1 such that for any x > 2, t > 0 and c > 0 large
enough (independently of x or t), we have

|ψc(x + it)| 6 Cect
ψc(1)

cλc
√
x2 + t2

exp
(

Cct

x2 + t2

)
.

Proof : For x + it ∈ C, with x > 2 and t > 0, we introduce

φc(x + it) = ψc(x + it)
√

(x + it)2 − 1.

Then by (EDO-C), φc verifies

φ′′c (x + it) +

(
c2(x + it)2 − χc

(x + it)2 − 1
+

1

((x + it)2 − 1)2

)
φc(x + it) = 0.

Then apply the previous proposition to w(x) = φc(x + it) and
u(x) = φ′c(x + it) and make direct computations.
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Non-controllability of the half-heat equation

A L2 estimate and choice of the initial condition

Corollary

There exists C > 1 such that for any c > 0 large enough and any t > 0,
we have (∫

R\[−
√
c,
√
c]

|ψc(x + it)|2dx

)
e−2ct 6 C

(1− µc)√
c + t

.

If u is a solution of (Half-H-Adj), u(α·, α·) is still a solution.
Hence, we choose as an initial condition

u0 (x) = e i
c3/2
ε xψc

(√
c

ε
x

)
.
The corresponding solution of (Half-H-Adj) is

u (t, x) = e i
c3/2
ε (x+it)ψc

(√
c

ε
(x + it)

)
.
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Non-controllability of the half-heat equation

Estimations on u

Proposition

There exists C (ε) > 0, depending only on ε, such that for any t > 0 and
any c large enough (independently on t, but possibly depending on ε),

||uc,ε (t, ·) ||2L2(R\[−ε,ε]) 6 C (ε)
(1− µc)

c(1 + t)
. (Maj-Num)

This is just an immediate consequence of the previous result.

Proposition

There exist K (T , ε) > 0 and C (T , ε) > 0 (depending only on T and ε)
such that for any c > K (T , ε), we have∫

R
|u (T , x) |2dx > C (T , ε)

|ψc (1) |2

c
3
2

. (Min-Den)

Proof : Plancherel, localize the integral around an adequate point, and
direct computations involving the ODE.
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Non-controllability of the half-heat equation

End of the proof

By the previous estimations (Maj-Num) and (Min-Den),

Q(c , ε) 6 C ′ (T , ε)

√
c (1− µc)

|ψc (1) |2
,

for C ′(T , ε) depending only on T and ε. Hence, using (Asy-Mu)
together with (Val-1), we deduce that for c > K (T , ε) and some
constant C ′′(T , ε) depending only on T and ε,

Q(c , ε) 6 2
√
cC ′ (T , ε)

4
√
πc

1
2 e−2cT

4π
1
2 c

3
2 e−2c

6
C ′′ (T , ε)√

c
.

This ends the proof of the non-observability result by making c go to ∞.



Intro PSWF Half-heat equation Conclusion

The Grushin equation and conclusion

Summary

1 Introduction

2 Definition and properties of the first PSWF

3 Non-controllability of the half-heat equation

4 The Grushin equation and conclusion



Intro PSWF Half-heat equation Conclusion

The Grushin equation and conclusion

The Grushin equation

Control domain ω = R× (R \ [−ε, ε]). f 0 and g in L2.

The Grushin equation{
∂t f − ∂2

xx f − x2∂2
yy f = g1ω,

f (0, ·) = f 0 (·) .
(Grushin)

c©M.M.

Theorem

System (Grushin) is not null-controllable for no time T > 0.

First studied Beauchard-Cannarsa-Guglielmi’13 JEMS. Then studied by
many authors (Allonsius, Boyer, Dardé, Duprez, Ervedoza, Koenig, Miller,
Morancey,...). Koenig’17 CRAS: (on (−1, 1)× (0, 1), non-controllability
from outside of horizontal strips. Novelty here : y ∈ R.
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The Grushin equation and conclusion

Duality

We consider the adjoint equation{
∂tv (t, x , y)− ∂2

xxv(t, x , y)− x2∂2
yyv(t, x , y) = 0 in (0,T )× R2,

v (0, x , y) = v0 (x , y) ∈ L2 (R2) .
(Gru-Adj)

If we consider the Fourier transform in the second variable,{
∂t v̂ (t, x , ξ)− ∂2

xx v̂(t, x , ξ) + x2|ξ|2v(t, x , y) = 0 in (0,T )× Ω,

v̂ (0, x , ξ) = v̂0 (x , ξ) ∈ L2 (Ω) .

The elliptic operator −∂2
xx + x2|ξ|2 is exactly the harmonic oscillator.

The first eigenvector is x 7→ e−
|ξ|x2
2 .
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The Grushin equation and conclusion

The initial condition

We consider

v̂0 (x , ξ) =
2π
cλc

e−
x2|ξ|
2 ψc

(
ξ − c

c

)
1[−c,c] (ξ − c) .

Then, the solution of (Gru-Adj) can be expressed thanks to the solution
of (Half-H-Adj):

v (t, x , y) = u

(
t +

x2

2
, y

)
.

We introduce the quotient

Q ′ =

∫ T

0

∫
R

∫
(R\[−ε,ε])

|v (t, x , y) |2dydxdt∫
R

∫
R |v (T , ·) |2dydx

and show totally similarly that it goes to 0 as c → +∞, at rate 1/
√
c .
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The Grushin equation and conclusion

Conclusion

Short-term extensions
Multi-D for the half-heat equation: outside of a ball of Rn, use of
prolate with radial symmetry? Work “in progress”.
For Grushin, study the case (−1, 1)× R ( T× R should be OK).
Characterization of the initial condition that cannot be brought to 0?

Long-term goals

Hope that it gives a general method to prove non-controllability in weak
diffusivity case: consider functions that saturate some uncertainty
principle. Generalizations in other geometries : how to get rid of the
Fourier transform ?



Intro PSWF Half-heat equation Conclusion

The Grushin equation and conclusion
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