Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000

Un résultat de non-contrôlabilité pour l'équation de la demi-chaleur sur la droite réelle. Application à l'équation de Grushin

Pierre Lissy

CEREMADE, Université Paris-Dauphine

Workshop ANR TRECOS, Marseille, Mercredi 1 juin 2022

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000
<u> </u>			

Summary

2 Definition and properties of the first PSWF

3 Non-controllability of the half-heat equation

Intro	PSWF	Half-heat equation	Conclusion
●0000000	000000	00000000	000000
Introduction			
Introduction			

A, B linear operators, y state, u parameter called the control, T > 0 final time.

Goal: null controllability at time T

 $\forall y^0$, find *u* such that the solution to (Syst-Cont) satisfies y(T) = 0.

Equivalent reformulation : observability in final time

Null-Controllability à 0 for (Syst-Cont) \Leftrightarrow Observability for (Adj-Eq) : $\exists C, \forall z_0, ||z(T)||^2 \leq C \int_0^T ||B^*z||^2 dt.$

Intro	PSWF	Half-heat equation	Conclusion
0000000			
Introduction			

Interlude: an uncertainty principle in harmonic analysis (1)

What is an uncertainty principle?

A mathematical principle that formalizes the fact it is impossible for a non-zero function and its Fourier transform to be simultaneously "concentrated".

Here, "concentrated" will be understood in terms of support.

A trivial uncertainty principle

if $f \in L^2(\mathbb{R})$ is such that f and \hat{f} have compact support, then $f \equiv 0$.

Proof: if f has compact support included in [-a, a], $\widehat{f}(\xi) = \int_{-a}^{a} f(x)e^{-ix\xi} dx$. By usual theorems, \widehat{f} can be extended as an entire function. But \widehat{f} is compactly supported, so $f \equiv 0$.

This can be quantified into an inequality (Amrein-Berthier'77 JFA).

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000
Introduction			
Interlude:	an uncertainty	principle in harmonic and	alysis (2)

A spatial set $S \subset \mathbb{R}^d$ and a frequency set $\Sigma \subset \mathbb{R}^d$ is a strong a-pair if there exists C > 0 such that for any $f \in L^2(\mathbb{R}^d)$, we have

$$\int_{\mathbb{R}^d} |f(x)|^2 dx \leqslant C\left(\int_{\mathbb{R}^n \setminus S} |f(x)|^2 dx + \int_{\mathbb{R}^d \setminus \Sigma} |\widehat{f}(x)|^2 dx\right)$$

From now on, $\Sigma = B(0, r)$ for some r > 0. Then, we obtain

$$\int_{\mathbb{R}^d} |f(x)|^2 dx \leqslant C(r) \int_{\mathbb{R}^n \setminus S} |f(x)|^2 dx, \text{ if } \operatorname{supp}(\widehat{f}) \subset B(0,r).$$

Uncertainty principle for band-limited functions. We call this a Logvinenko-Sereda uncertainty principle (LSUP).

Characterization of the admissible sets S given in Paneah'61 DAN (n = 1), then Logvinenko-Sereda'74 TFFGAP.

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000
Introduction			

Interlude: an uncertainty principle in harmonic analysis (3)

Characterization of the admissible sets S given in Paneah'61 DAN (n = 1), then Logvinenko-Sereda'74 TFFGAP.

Definition

A thick set of \mathbb{R}^d is a mesurable set ω such that there exists r > 0 and $\gamma > 0$ such that, for any $x \in \mathbb{R}^d$, we have

$$\lambda(\omega \cap (x + r[-1,1]^d)) \ge \gamma \lambda(r[-1,1]^d).$$

We introduce $|\nabla|$ given by: for $h \in H^1(\mathbb{R}^d)$ and $\xi \in \mathbb{R}^d$, $|\widehat{\nabla}|h(\xi) = ||\xi||\widehat{h}(\xi).$

Definition

A Poisson set is a measurable set Ω such that there exists t > 0 and $\tilde{\gamma} > 0$ such that for $x \in \mathbb{R}^d$,

 $\left(e^{-t|\nabla|}\mathbb{1}_{\Omega}\right)(x) \geqslant \tilde{\gamma}.$

Intro	PSWF	Half-heat equation	Conclusion
00000000	000000	00000000	000000
Introduction			
Interlude:	an uncertainty	principle in harmonic anal	vsis (4)

The crucial point is

Proposition (Havin'Joricke'92)

A set ω is thick iff it is a Poisson set.

We then have:

Theorem (Logvininko-Sereda'74 TFFGAP)

The set S satisfies a Logvinenko-Sereda uncertainty principle if and only if $\mathbb{R}^d \setminus S$ is a thick set.

We propose a proof here, with an important drawback does not give the optimal behaviour of the constant in the LSUP, even in the simples cases.

Intro	PSWF	Half-heat equation	Conclusion
00000000	000000	00000000	000000
Introduction			
Proof of the	e LSUP for $d = \frac{1}{2}$	1 (1)	

Fix any t > 0 and consider f such that $supp(\widehat{f}) \subset (-c, c)$.

Step 1: if $g = e^{icx} f$, then $\operatorname{supp}(\widehat{g}) \subset (0, 2c) \subset \mathbb{R}^+$. So $g \in \mathcal{H}^2(\mathbb{C}^+)$.

Fix any t > 0 and consider f such that $supp(\widehat{f}) \subset (-c, c)$.

Step 1: if $g = e^{icx}f$, then $\operatorname{supp}(\widehat{g}) \subset (0, 2c) \subset \mathbb{R}^+$. So $g \in \mathcal{H}^2(\mathbb{C}^+)$. **Step 2:** One (amongst many) Jensen inequality, for functions in the Hardy class:

$$\log \left| e^{-t|\nabla|} g(x) \right| \leq \left(e^{-t|\Delta|} \log |g| \right)(x), \, x + it \in \mathbb{C}^+.$$

Intro	PSWF	Half-heat equation	Conclusion
00000000	000000	00000000	000000
Introduction			
Proof of the	I SUP for $d = 1$	1 (1)	

Fix any t > 0 and consider f such that $supp(\widehat{f}) \subset (-c, c)$.

Step 1: if $g = e^{icx} f$, then $supp(\hat{g}) \subset (0, 2c) \subset \mathbb{R}^+$. So $g \in \mathcal{H}^2(\mathbb{C}^+)$. **Step 2:** One (amongst many) Jensen inequality, for functions in the Hardy class:

$$\log \left| e^{-t|\nabla|} g(x) \right| \leqslant \left(e^{-t|\Delta|} \log |g| \right)(x), \, x + it \in \mathbb{C}^+.$$

Step 3:

$$\int_{\mathbb{R}} |f|^2 = \int_{\mathbb{R}} |g|^2 = C \int_0^{2c} |\widehat{g}|^2.$$

So

$$\int_{\mathbb{R}} |f|^2 \leqslant C e^{4tc} \int_0^{2c} |e^{-t|\xi|} \widehat{g}(\xi)|^2 d\xi$$

Intro	PSWF	Half-heat equation	Conclusion
00000000	000000	00000000	000000
Introduction			
Proof of the	E LSUP for $d = 1$	1 (2)	

Step 4: Integrate $\exp(|\text{step } 2|^2)$, use Plancherel and step 3:

$$\int_{\mathbb{R}} |f|^2 \leqslant C e^{4tc} \int_{\mathbb{R}} \exp\left(e^{-t|\Delta|} \log\left(|g|^2\right)\right).$$

Intro	PSWF	Half-heat equation	Conclusion
00000000	000000	00000000	000000
Introduction			
Proof of the	\sim I SUP for $d = 1$	1 (2)	

Step 4: Integrate $\exp(|\text{step } 2|^2)$, use Plancherel and step 3:

$$\int_{\mathbb{R}} |f|^2 \leqslant C e^{4tc} \int_{\mathbb{R}} \exp\left(e^{-t|\Delta|} \log\left(|g|^2\right)\right).$$

Step 5: The theorem on two constants of Gorin'85: If μ is a probability measure on \mathbb{R} and Ω is a measurable set such that $\mu(x + \Omega) \ge \tilde{\gamma}, x \in \mathbb{R}$, then, if $h \in L^1(\mathbb{R})$ with $h \ge 0$,

$$\int_{\mathbb{R}} \exp\left(\mu * \log(h)\right) \leqslant 2 \left(\int_{\Omega} h\right)^{\tilde{\gamma}} \left(\int_{\mathbb{R}} h\right)^{1-\tilde{\gamma}}$$

Intro	PSWF	Half-heat equation	Conclusion
00000000	000000	00000000	000000
Introduction			
Proof of the	\sim I SUP for $d = 1$	1 (2)	

Step 4: Integrate $\exp(|\text{step } 2|^2)$, use Plancherel and step 3:

$$\int_{\mathbb{R}} |f|^2 \leqslant C e^{4tc} \int_{\mathbb{R}} \exp\left(e^{-t|\Delta|} \log\left(|g|^2\right)\right).$$

Step 5: The theorem on two constants of Gorin'85: If μ is a probability measure on \mathbb{R} and Ω is a measurable set such that $\mu(x + \Omega) \ge \tilde{\gamma}, x \in \mathbb{R}$, then, if $h \in L^1(\mathbb{R})$ with $h \ge 0$,

$$\int_{\mathbb{R}} \exp\left(\mu * \log(h)\right) \leqslant 2 \left(\int_{\Omega} h\right)^{\tilde{\gamma}} \left(\int_{\mathbb{R}} h\right)^{1-\tilde{\gamma}}$$

Step 6: Apply step 5 with $\mu = \frac{t}{\pi(x^2+t^2)}$, $\Omega = \mathbb{R} \setminus S$, $h = |g|^2$, and remark that $\mu * \log(h) = e^{-t|\nabla|} \log(h)$. So by step 4,

$$\int_{\mathbb{R}} |f|^2 \leqslant 2C e^{4tc} \left(\int_{\Omega} |f|^2 \right)^{\tilde{\gamma}} \left(\int_{\mathbb{R}} |f|^2 \right)^{1-\tilde{\gamma}}$$

- Link between the half-heat equation and the LSUP.
- Let us go back to the observability inequality

$$\exists C, \forall z_0, ||z(T)||^2 \leq C \int_0^T ||B^*z||^2 dt.$$

Non-observability related to "concentration" of solutions outside of the control region ω , if $B = B^* = 1_\omega$.

This it suggests that a way to find counter-example to the controllability for the half-heat equation: take initial conditions that "saturate" the uncertainty principle outside the control domain to disprove observability, hoping that they stay quite "well-concentrated" over time. Here we restrict to n = 1.

Here, we will rediscover a result by A. Koenig (PhD thesis) on the half-heat equation, giving a constructive (and easier) proof and also being applicable to the Grushin equation.

Intro	PSWF	Half-heat equation	Conclusion
	000000		
Definition and propertie	s of the first PSWF		
Summarv			

Introduction

2 Definition and properties of the first PSWF

Intro	PSWF	Half-heat equation	Conclusion
00000000	00000	00000000	000000
Definition and properties	of the first PSWF		
Definition			

Let c > 0. We introduce

$$F_{c}: \varphi \in L^{2}\left(-1,1
ight) \mapsto \int_{-1}^{1} \varphi\left(\xi\right) e^{icx\xi} d\xi \in L^{2}\left(-1,1
ight).$$

 F_c is a compact on $L^2(-1, 1)$. λ_c is its largest eigenvalue, and ψ_c "the" first eigenvector of F_c . ψ_c is the first PSWF with parameter c. It verifies

$$\lambda_{c}\psi_{c}\left(x\right)=\int_{-1}^{1}e^{icx\xi}\psi_{c}\left(\xi\right)d\xi.$$

 $\psi_c \in L^2(\mathbb{R})$ and is *c*-band-limited, so it is an entire function of exponential type *c*. Moreover, for any $x + it \in \mathbb{C}$,

$$\psi_c(x+it) = \frac{1}{\lambda_c} \int_{-1}^{1} e^{ic(x+it)\xi} \psi_c(\xi) d\xi.$$
 (PSWF-C)

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000
Definition and properties of the first	PSWF		
The shape of the	PSWF		

(a) The first PSWF (c = 1)

Intro	PSWF	Half-heat equation	Conclusion
	000000		
Definition and properties	s of the first PSWF		
Additional	properties (1)		

- ψ_c , real, even on \mathbb{R} , no roots on (-1,1).
- ψ_c , even, hermitian on \mathbb{C} .
- Normalization of ψ_c in $L^2(\mathbb{R})$ –norm and assume $\psi_c > 0$ in (-1, 1). We can prove

$$\int_{\mathbb{R}\setminus[-1,1]}\psi_{c}\left(x\right)^{2}dx=1-\mu_{c},\ \mu_{c}=\frac{c}{2\pi}\lambda_{c}^{2}$$

with a nice asymptotic behaviour (Fuchs'64, JMAA):

$$1-\mu_c\sim 4\sqrt{\pi}c^{1\over 2}e^{-2c}~{\rm as}~c
ightarrow\infty.$$
 (Asy-Mu)

• Any other function f which is c-band-limited and has $L^2(\mathbb{R})$ -norm equal to 1 is such that

$$\int_{\mathbb{R}\setminus [-1,1]} f(x)^2 dx \ge 1-\mu_c.$$

- ψ_c : the *c*-band-limited function which concentrates the most on [-1, 1].
- $1 \mu_c$: best constant for the LSUP on *c* band-limited functions, with $S = \mathbb{R} \setminus [-1, 1]$.
- Another estimation (Fuchs'64 JMAA):

$$|\psi_c(1)| \sim 2\pi^{\frac{1}{4}} c^{\frac{3}{4}} e^{-c}$$
 as $c \to \infty$. (Val-1)

Intro	PSWF	Half-heat equation	Cone
	000000		
Definition and properties	of the first PSWF		

usion

The dual nature of the PSWF

The "lucky accident" of Slepian

Let

$$L_{c}: \varphi \mapsto \left(x \mapsto -\left(1-x^{2}
ight) \varphi'' \left(x
ight) + 2x \varphi \left(x
ight) + c^{2} x^{2} \varphi \left(x
ight)
ight).$$

 F_c and L_c commute. Hence, ψ_c eigenvector of L_c , with associated eigenvalue $\chi_c > 0$ (that is $\sim c$ as $c \to \infty$).

By analyticity, $\forall z \in \mathbb{C}$,

$$-(1-z)^{2}\psi_{c}''(z)+2z\psi_{c}'(z)+c^{2}z^{2}\psi_{c}(z)=\chi_{c}\psi_{c}(z). \quad (\mathsf{EDO-C})$$

Absolutely crucial for our proof.

PSWF: introduced in the pionner works of Slepian-Landau-Pollak in the 60'ies. Then many developments, extensions, applications. See also the book by Osipov-Rokhlin-Xiao'13.

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	•0000000	000000
Non-controllability of th	e half-heat equation		
Summary			

Introduction

3 Non-controllability of the half-heat equation

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000
Non-controllability of th	e half-heat equation		
The half-he	eat equation		

Let T>0, ω open subset of $\mathbb R$ whose exterior contains an interval.

The half-heat equation

$$\begin{aligned} \partial_t y\left(t,x\right) + |\nabla| y\left(t,x\right) &= \mathbf{1}_{\omega} v(t,x) \text{ in } (0,T) \times \mathbb{R}, \\ y\left(0,x\right) &= y^0\left(x\right). \end{aligned}$$
 (Half-H)

We have well-posedness in L^2 .

Theorem (Lissy'20)

System (Half-H) is not null-controllable: for any T > 0, there exists at least one initial condition $y^0 \in L^2(\mathbb{R})$ such that there exists no $u \in L^2((0, T) \times \mathbb{R})$ such that the solution y of (Half-H) verifies y(T) = 0.

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000
Non-controllability of th	e half-heat equation		
Reduction	to observability		

By duality, we study

$$\begin{cases} \partial_t u(t,x) + |\nabla| u(t,x) = 0 \text{ in } (0,T) \times \mathbb{R}, \\ u(0,x) = u^0(x) \in L^2(\mathbb{R}). \end{cases}$$
(Half-H-Adj)

In order to prove our Theorem, it is sufficient to exhibit a family of initial conditions $u^0(c)$ depending on some parameter c > 0, look at the solution u_c to (Half-H-Adj) and make to quotient

$$Q(c) = \frac{\int_0^T ||u_c(t,\cdot)||^2_{L^2(\mathbb{R}\setminus[-\varepsilon,\varepsilon])} dt}{||u_c(T,\cdot)||^2_{L^2(\mathbb{R})}}.$$

Goal

Q(c)
ightarrow 0 as $c
ightarrow \infty$.

 Intro
 PSWF
 Half-heat equation
 Conclusion

 00000000
 000000
 000000
 000000

 Non-controllability of the half-heat equation
 000000
 000000

Some basic facts and reductions

• Let $t \ge 0$. If $u^0(x) = \psi_c(x) e^{icx}$, then the solution u is

$$u(t,x) = e^{ic(x+it)}\psi_c(x+it), \ t \in \mathbb{R}^+, \ x \in \mathbb{R}. \tag{u-Half}$$

Proof : direct computation by Fourier transform, or remark that on the Hardy class $H^2(\mathbb{C}^+)$, (Half-H-Adj) is just the Cauchy-Riemann relation.

- Non-controllability on $\tilde{\omega} \supset \omega \Rightarrow$ non-controllability on ω .
- Here, $B(x_0, \varepsilon) \subset \mathbb{R} \setminus \overline{\omega}$ for some $\varepsilon > 0$ and $x_0 \in \mathbb{R}$.

After translation and dilatation arguments, we reduce to the following Goal: non-observability on $\mathbb{R} \setminus [-\varepsilon, \varepsilon]$.

Intro 00000000 **PSWF**

Half-heat equation

Conclusion

Non-controllability of the half-heat equation

A very general estimate on complex second order ODEs

Proposition

Let a < b. Consider $w, u, \beta, \gamma : [a, b] \to \mathbb{C}$ of class C^1 , verifying: $\forall t \in [a, b],$ $\begin{pmatrix} w'(t) \\ u'(t) \end{pmatrix} = \begin{pmatrix} 0 & \beta(t) \\ \gamma(t) & 0 \end{pmatrix} \begin{pmatrix} w(t) \\ u(t) \end{pmatrix}.$

Assume β and γ do not vanish. Introduce

$$R(t) = rac{|eta(t)|}{|\gamma(t)|}$$
 and $Q(t) = |w(t)|^2 + R(t)|w'(t)|^2.$

Then, for any $a\leqslant t_0\leqslant t_1\leqslant b,$ we have

$$\frac{\sqrt{Q(t_0)}}{R(t_0)^{\frac{1}{4}}} \leqslant \frac{\sqrt{Q(t_1)}}{R(t_1)^{\frac{1}{4}}} \exp\left(\int_{t_0}^{t_1} \sqrt{\left(\frac{R'(s)}{4R(s)}\right)^2 + \frac{|\beta(s)\gamma(s)| + Re(\beta(s)\gamma(s))}{2}}ds\right)$$

Intro PSWF 00000000 00000 Non-controllability of the half-heat equation Half-heat equation

Conclusion

An important corollary for the PSWF in the upper half plane

Proposition

There exists $C \ge 1$ such that for any $x \ge 2$, $t \ge 0$ and c > 0 large enough (independently of x or t), we have

$$|\psi_c(x+it)| \leq Ce^{ct} \frac{\psi_c(1)}{c\lambda_c\sqrt{x^2+t^2}} \exp\left(\frac{Cct}{x^2+t^2}\right).$$

Proof : For $x + it \in \mathbb{C}$, with $x \ge 2$ and $t \ge 0$, we introduce

$$\phi_c(x+it) = \psi_c(x+it)\sqrt{(x+it)^2-1}.$$

Then by (EDO-C), ϕ_c verifies

$$\phi_c''(x+it) + \left(\frac{c^2(x+it)^2 - \chi_c}{(x+it)^2 - 1} + \frac{1}{\left((x+it)^2 - 1\right)^2}\right)\phi_c(x+it) = 0.$$

Then apply the previous proposition to $w(x) = \phi_c(x + it)$ and $u(x) = \phi'_c(x + it)$ and make direct computations.

Intro

PSWF

Half-heat equation

Conclusion

Non-controllability of the half-heat equation

A L^2 estimate and choice of the initial condition

Corollary

.

There exists $C \ge 1$ such that for any c > 0 large enough and any $t \ge 0$, we have

$$\left(\int_{\mathbb{R}\setminus [-\sqrt{c},\sqrt{c}]} |\psi_c(x+it)|^2 dx\right) e^{-2ct} \leqslant C \frac{(1-\mu_c)}{\sqrt{c}+t}$$

- If u is a solution of (Half-H-Adj), $u(\alpha \cdot, \alpha \cdot)$ is still a solution.
- Hence, we choose as an initial condition

$$u^{0}(x) = e^{i\frac{e^{3/2}}{\varepsilon}x}\psi_{c}\left(\frac{\sqrt{c}}{\varepsilon}x\right)$$

• The corresponding solution of (Half-H-Adj) is

$$u(t,x) = e^{i\frac{e^{3/2}}{\varepsilon}(x+it)}\psi_c\left(\frac{\sqrt{c}}{\varepsilon}(x+it)\right)$$

Intro	PSWF	Half-heat equation	Conclusion
		000000000	
Non-controllability of the	half-heat equation		
Ectimations			

Proposition

There exists $C(\varepsilon) > 0$, depending only on ε , such that for any $t \ge 0$ and any c large enough (independently on t, but possibly depending on ε),

$$||u_{c,\varepsilon}(t,\cdot)||^{2}_{L^{2}(\mathbb{R}\setminus[-\varepsilon,\varepsilon])} \leqslant C(\varepsilon)\frac{(1-\mu_{c})}{c(1+t)}.$$
 (Maj-Num)

This is just an immediate consequence of the previous result.

Proposition

There exist $K(T,\varepsilon) > 0$ and $C(T,\varepsilon) > 0$ (depending only on T and ε) such that for any $c \ge K(T,\varepsilon)$, we have

$$\int_{\mathbb{R}} |u(T,x)|^2 dx \ge C(T,\varepsilon) \frac{|\psi_c(1)|^2}{c^{\frac{3}{2}}}.$$
 (Min-Den)

Proof : Plancherel, localize the integral around an adequate point, and direct computations involving the ODE.

By the previous estimations (Maj-Num) and (Min-Den),

$$Q(c,\varepsilon) \leqslant C'(T,\varepsilon) \, rac{\sqrt{c} \left(1-\mu_c
ight)}{|\psi_c\left(1
ight)|^2},$$

for $C'(T,\varepsilon)$ depending only on T and ε . Hence, using (Asy-Mu) together with (Val-1), we deduce that for $c \ge K(T,\varepsilon)$ and some constant $C''(T,\varepsilon)$ depending only on T and ε ,

$$Q(c,\varepsilon) \leq 2\sqrt{c}C'(T,\varepsilon) \frac{4\sqrt{\pi}c^{\frac{1}{2}}e^{-2c}T}{4\pi^{\frac{1}{2}}c^{\frac{3}{2}}e^{-2c}} \leq \frac{C''(T,\varepsilon)}{\sqrt{c}}$$

This ends the proof of the non-observability result by making c go to ∞ .

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	•00000
The Grushin equation ar	nd conclusion		
Summary			

Introduction

Definition and properties of the first PSWF

Intro	PSWF	Half-heat equation	Conclusion
			00000
The Grushin equation ar	nd conclusion		
The Grushi	n equation		

Control domain $\omega = \mathbb{R} \times (\mathbb{R} \setminus [-\varepsilon, \varepsilon])$. f^0 and g in L^2 .

The Grushin equation

$$\begin{cases} \partial_t f - \partial_{xx}^2 f - \frac{\mathbf{x}^2}{\mathbf{y}_y} f = \frac{g \mathbf{1}_{\omega}}{g \mathbf{1}_{\omega}}, \\ f(0, \cdot) = f^0(\cdot). \end{cases}$$
(Grushin)

Theorem

System (Grushin) is not null-controllable for no time T > 0.

First studied Beauchard-Cannarsa-Guglielmi'13 JEMS. Then studied by many authors (Allonsius, Boyer, Dardé, Duprez, Ervedoza, Koenig, Miller, Morancey,...). Koenig'17 CRAS: (on $(-1,1) \times (0,1)$, non-controllability from outside of horizontal strips. Novelty here : $y \in \mathbb{R}$.

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	00000
The Grushin equation and c	onclusion		
Duality			

We consider the adjoint equation

$$\begin{cases} \partial_t v\left(t, x, y\right) - \partial_{xx}^2 v(t, x, y) - x^2 \partial_{yy}^2 v(t, x, y) = 0 \text{ in } (0, T) \times \mathbb{R}^2, \\ v\left(0, x, y\right) = v^0\left(x, y\right) \in L^2\left(\mathbb{R}^2\right). \\ (\text{Gru-Adj}) \end{cases}$$

If we consider the Fourier transform in the second variable,

$$\begin{cases} \partial_t \widehat{v}(t, x, \xi) - \partial_{xx}^2 \widehat{v}(t, x, \xi) + x^2 |\xi|^2 v(t, x, y) = 0 \text{ in } (0, T) \times \Omega, \\ \\ \widehat{v}(0, x, \xi) = \widehat{v^0}(x, \xi) \in L^2(\Omega). \end{cases}$$

The elliptic operator $-\partial_{xx}^2 + x^2 |\xi|^2$ is exactly the harmonic oscillator. The first eigenvector is $x \mapsto e^{-\frac{|\xi|x^2}{2}}$.

Intro	PSWF	Half-heat equation	Conclusion
0000000	000000	00000000	000000
The Grushin equation a	nd conclusion		
The initial	condition		

We consider

$$\widehat{\nu^{0}}(x,\xi) = \frac{2\pi}{c\lambda_{c}}e^{-\frac{x^{2}|\xi|}{2}}\psi_{c}\left(\frac{\xi-c}{c}\right)\mathbf{1}_{[-c,c]}(\xi-c).$$

Then, the solution of (Gru-Adj) can be expressed thanks to the solution of (Half-H-Adj):

$$v(t,x,y)=u\left(t+\frac{x^2}{2},y\right).$$

We introduce the quotient

$$Q' = \frac{\int_0^T \int_{\mathbb{R}} \int_{(\mathbb{R} \setminus [-\varepsilon,\varepsilon])} |v(t,x,y)|^2 dy dx dt}{\int_{\mathbb{R}} \int_{\mathbb{R}} |v(\mathcal{T},\cdot)|^2 dy dx}$$

and show totally similarly that it goes to 0 as $c \to +\infty$, at rate $1/\sqrt{c}$.

Intro	PSWF	Half-heat equation	Conclusion
			000000
The Grushin equation and c	onclusion		
Conclusion			

Short-term extensions

OLCIUSI

- Multi-D for the half-heat equation: outside of a ball of ℝⁿ, use of prolate with radial symmetry? Work "in progress".
- For Grushin, study the case $(-1,1) \times \mathbb{R}$ ($\mathbb{T} \times \mathbb{R}$ should be OK).
- Characterization of the initial condition that cannot be brought to 0?

Long-term goals

Hope that it gives a general method to prove non-controllability in weak diffusivity case: consider functions that saturate some uncertainty principle. Generalizations in other geometries : how to get rid of the Fourier transform ?

Intro	PSWF	Half-heat equation	Conclusion
			00000
The Grushin equation an	d conclusion		
Reference			

Reference

Pierre Lissy, A non-controllability result for the half-heat equation on the whole line based on the prolate spheroidal wave functions and its application to the Grushin equation, en révision, disponible sur HAL.

Intro	PSWF	Half-heat equation	Conclusion
			00000
The Grushin equation an	d conclusion		
Reference			

Reference

Pierre Lissy, A non-controllability result for the half-heat equation on the whole line based on the prolate spheroidal wave functions and its application to the Grushin equation, en révision, disponible sur HAL.

Merci pour votre attention!