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E -STLC in finite dimension

{
dx
dt = f (x , u), t ∈ (0,T )
x(0) = x0,

where, at time t,
I x(t) ∈ Rn: state of this system,
I u(t) ∈ R: control.

Definition (STLC)
The system is STLC if

∀T > 0, ∀ε > 0, ∃δ > 0, ∀ |x0|+ |xf | < δ,

∃u ∈ L∞(0,T ) with ‖u‖L∞(0,T ) < ε s. t. x(T ; u, x0) = xf .
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where, at time t,
I x(t) ∈ Rn: state of this system,
I u(t) ∈ R: control.

Definition (E -STLC)
Let (ET , ‖ · ‖ET ) be a family of normed vector spaces of real functions
defined on [0,T ] (ex: ET = L∞(0,T ),H1(0,T )). The system is
E-STLC if

∀T > 0, ∀ε > 0, ∃δ > 0, ∀ |x0|+ |xf | < δ,
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Sufficient conditions of STLC in finite dimension

Consider a control-affine system ẋ = f0(x) + uf1(x).
Three sufficient conditions of L∞-STLC:

I If S1 := Span ([f0, [f0, [f0, . . . , [f0, f1]]]](0); k ∈ N) = Rn; [Linear
test]

I If S2k ⊂ S2k−1 := {W (0); W bracket with 2k − 1 times f1} for
all k ∈ N∗; [Hermes, Sussmann]

I If there exists θ ∈ [0, 1] such that every bracket involving f0 an
odd number l of times and f1 an even number k of times is a
linear combination of brackets involving ki times f1 and li times f0
with ki + θli < 2 + θl. [Sussmann S(θ) condition]
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Susmann’s example 
ẋ1 = u,
ẋ2 = x1,
ẋ3 = x3

1 + x2
2 .

This is a control-affine system of the form

ẋ = f0(x) + uf1(x)

with the vector fields

f0(x) = (0, x1, x3
1 + x2

2 )tr and f1(x) = (1, 0, 0).

Question
E -STLC for which E ? (At least E = L∞ by Sussmann’s S(θ)
condition.)



Sussmann’s example: Quadratic wins over cubic


ẋ1 = u,
ẋ2 = x1,
ẋ3 = x3

1 + x2
2 .


x1 = u1,
x2 = u2,

x3(T ) =
∫ T

0 u1(t)3dt +
∫ T

0 u2(t)2dt.

I The quadratic term wins when ‖u′‖L∞(0,T ) → 0:∫ T

0
u1(t)3dt = −

∫ T

0
u2(t)2u(t)u1(t)dt =

∫ T

0
u2(t)2u′(t)dt

Then, when (T , ‖u′‖L∞(0,T ))→ 0,

x3(T ) >
(
1− ‖u′‖L∞(0,T )

) ∫ T

0
u2(t)2dt > 0

 No W 1,∞-STLC because the quadratic term entails a drift



Sussmann’s example: Quadratic wins over cubic
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Sussmann’s example: Cubic wins over quadratic

I The cubic term wins for controls of the form:

uλ(t) = λ
3
4φ′′

( t
λ

)
, λ→ 0.

Size of the controls:

‖uλ‖H1(0,T ) ≈ λ
1
4 � 1 but ‖u′λ‖L∞(0,T ) ≈ λ−

1
4 � 1.

Computation of the solution

x3(T ) =
∫ T

0
u1(t)3dt +

∫ T

0
u2(t)2dt

= λ
11
2

∫ 1

0
φ′(θ)3dθ + λ6

∫ 1

0
φ(θ)2dθ

= a + o(a).

 H1-STLC because the cubic term absorbs the drift for controls
small in less regular spaces



Sussmann’s example

Controllability of the following control-affine system,
ẋ1 = u,
ẋ2 = x1,
ẋ3 = x3

1 + x2
2 .

Theorem
I The system is not W 1,∞-STLC (≈ Hermes condition)

[Beauchard, Marbach - 2018].
I But the system is H1-STLC (≈ Sussmann’s S(θ) condition).

Question
Same phenomenon for a control-affine system in infinite dimension ?



Schrödinger equation

{
i∂tψ(t, x) = −∂2

xψ(t, x)− u(t)µ(x)ψ(t, x), (t, x) ∈ (0,T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0,T ).

Bilinear control system
I the state: ψ, such that ‖ψ(t)‖L2(0,1) = 1 for all time,
I µ : (0, 1)→ R dipolar moment of the quantum particle,
I and u : (0,T )→ R denotes a scalar control.
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Equation under study
To do as in finite dimension:

f0(ϕ) = −ϕ′′ with Dom(f0) = H2 ∩ H1
0 (0, 1).

Orthonormal basis of L2(0, 1) of eigenvectors:
∀j ∈ N∗, ϕj :=

√
2 sin(jπ·) associated with λj := (jπ)2.

Definition
Let (ET , ‖ · ‖ET ) be a family of normed vector spaces of real functions
defined on [0,T ] and X a vector space of functions defined on [0, 1].
The Schrödinger equation is said to be E-STLC around the ground
state with targets in X if:

∀T > 0, ∀ε > 0, ∃δ > 0, ∀(ψ∗, ψf ) ∈ X with
‖ψ∗ − ϕ1‖X < δ and ‖ψf − ϕ1e−iλ1T‖X < δ,

∃u ∈ L2(0,T ) ∩ ET with ‖u‖ET < ε s. t. ψ(T ; u, ψ∗) = ψf .
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State of the art

Theorem (Ball, Marsden, Slemrod - 1982 & Turinici - 2000)
When µ is in W 2,∞, the Schrödinger equation is not controllable in
H2 ∩ H1

0 (0, 1) with controls in Lr
loc((0,+∞),R) for r > 1.

 Bad choice of functional settings

Theorem (Beauchard, Laurent - 2010)
When µ is in H3((0, 1),R) such that there exists a constant c > 0
such that

∀j ∈ N∗, |〈µϕ1, ϕj〉| ≥
c
j3 ,

the Schrödinger equation is L2-STLC with targets in H3
(0)(0, 1).

 Choice of µ such that the linearized system is controllable
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Bibliography

Theorem (Beauchard, Morancey - 2014)
When µ is in H3((0, 1),R) such that

〈µϕ1, ϕK 〉 = 0 and A1
K (µ) := 〈µ′2ϕ1, ϕK 〉 6= 0,

the Schrödinger equation is not L2-STLC due to a drift quantified by
the H−1-norm of the control.

 Choice of µ s. t. 〈ψ(T )− ψ1(T ), ϕK 〉 = A1
K (µ)

∫ T
0 u1(t)2dt + . . .

Question
If A1

K (µ) = 0, what happens ?
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Main result

1. Choice of µ such that there exists K ∈ N∗,

〈ψ(T )−ψ1(T ),ϕK 〉 ≈ A3
K (µ)

∫ T
0 u3(t)2dt + CK (µ)

∫ T
0 u1(t)2u2(t)dt + error terms

2. Study of the quadratic/cubic competition
I “In an asymptotic (T , ‖u‖H3 )→ 0, one has (Cub) = o(Quad).
I “In an asymptotic (T , ‖u‖H2 )→ 0”, one has (Quad) = o(Cub).

Theorem (B., 2022)
There exists a choice of µ such that the Schrödinger equation
I is not H3-STLC because of a drift quantified by the H−3-norm

of the control,
I but is H2-STLC thanks to the cubic term.
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Computation of the expansion: The linear term

i∂tψ = −∂2
xψ − uµψ (Lin) i∂tΨ = −∂2

x Ψ− uµϕ1e−iλ1t

Explicit resolution:

Ψ(T ) = i
+∞∑
j=1

(
〈µϕ1, ϕj〉

∫ T

0
u(t)ei(λj−λ1)tdt

)
ϕje−iλj T .

I If 〈µϕ1, ϕK 〉 = 0 then

〈Ψ(t), ϕK 〉 ≡ 0.

 Go further into the expansion
I If for all j ∈ N∗, 〈µϕ1, ϕj〉 6= 0, then Ψ(T ) = ψf is equivalent to

∀j ∈ N∗,
∫ T

0
u(t)ei(λj−λ1)tdt = −i 〈ψf , ϕj〉

〈µϕ1, ϕj〉
eiλj T .

 Solvability of a moment problem
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Computation of the expansion: The quadratic term

i∂tψ = −∂2
xψ − uµψ (Quad) i∂tξ = −∂2

x ξ − uµΨ

Explicit computations:

〈ξ(T ), ϕKe−iλ1T 〉 =
∫ T

0
u(t)

∫ t

0
u(τ)h(t, τ)dτdt.

Lemma (Coercivity of the quadratic term)
One can choose µ such that there exists T ∗ > 0 such that for all
T ∈ (0,T ∗) and for all u ∈ L2(0,T ),

− sign(A3
K )〈ξ(T ), ϕKe−iλ1T 〉 ≥ |A

3
K |
4

∫ T

0
u3(t)2dt.

 Integrations by parts
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Computation of the expansion: The quadratic term

Sketch of the proof.

〈ξ(T ), ϕKe−iλ1T 〉 =
∫ T

0
u(t)

∫ t

0
u(τ)h(t, τ)dτdt

= −iA1
K (µ)

∫ T

0
u1(t)2ei(λK−λ1)(t−T )dt +

∫ T

0
u1(t)

∫ t

0
u1(τ)∂1∂2h(t, τ)dτdt

+(boundary terms)

= −i
3∑

p=1
Ap

K (µ)
∫ T

0
up(t)2ei(λK−λ1)(t−T )dt

+
∫ T

0
u3(t)

∫ t

0
u3(τ)∂3

1∂
3
2h(t, τ)dτdt +(boundary terms)

And so on....



Computation of the expansion: The cubic term

i∂tψ = −∂2
xψ − uµψ (Cub) i∂tζ = −∂2

x ζ − uµξ

Goal (Behavior of the cubic term)
One can choose µ such that

〈ζ(T ), ϕKe−iλ1T 〉 ≈ CK (µ)
∫ T

0
u1(t)2u2(t)dt.

 Okay for oscillating controls

Lemma
When (T , ‖u1‖L∞)→ 0, the cubic remainder is estimated by

〈(ψ − ψ1 −Ψ− ξ)(T ), ϕKe−iλ1T 〉 = O
(
‖u1‖3L2(0,T )

)
.
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Quadratic obstruction: No H3-STLC

1. The quadratic term has a coercivity:

〈ξ(T ), ϕKe−iλ1T 〉 ≥ A3
K

∫ T

0
u3(t)2dt.

2. Estimate of the cubic remainder: When (T , ‖u1‖L∞)→ 0,

〈(ψ − ψ1 −Ψ− ξ)(T ), ϕKe−iλ1T 〉 = O
(
‖u1‖3L2(0,T )

)
.

3. The quadratic term prevails: for u ∈ H3(0,T ),

‖u1‖3L2(0,T ) ≤ C
(
‖u(3)‖L2(0,T ) + T 3‖u‖L2(0,T )

)
‖u3‖2L2(0,T ).

4. The nonlinear solution has a coercivity: for u ∈ H3(0,T )
sufficiently small,

〈ψ(T ), ϕKe−iλ1T 〉 ≥ A
∫ T

0
u3(t)2dt.
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‖u(3)‖L2(0,T ) + T 3‖u‖L2(0,T )

)
‖u3‖2L2(0,T ).

4. The nonlinear solution has a coercivity: for u ∈ H3(0,T )
sufficiently small,

〈ψ(T ), ϕKe−iλ1T 〉 ≥ A
∫ T

0
u3(t)2dt.



STLC result despite the drift: H2-STLC

We assume that the space of the targets is sliced in two:

I The subspace spanned by the lost direction ϕK at the linear level.
I The subspace spanned by every other components (ϕj)j∈N∗−{K},

controllable at the linear level.

Theorem
For every ψ0, ψf ∈ H11

(0)(0, 1) ‘small’, there exists v ∈ H2
0 (0,T ) such

that
∀j ∈ N∗ − {K}, 〈ψ(T ; v , ψ0), ϕj〉 = 〈ψf , ϕj〉,

with the following estimate

‖v‖H2
0 (0,T ) ≤ C

(
‖ψ0 − ϕ1‖H11

(0)(0,1) + ‖ψf − ϕ1e−iλ1T‖H11
(0)(0,1)

)
.
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STLC result despite the drift: H2-STLC

1. There exists a family of controls (ub)b∈R small in H2
0 (0,T ) such

that
〈ψ(T ; ub, ϕ1), ϕK 〉 = b + o(b).

 Use the cubic term
2. B There exists a family of controls (vb)b∈R small in H2

0 (T , 2T )
such that

ψ(2T ; vb, ϕ1) = bϕK + o(b),

|〈ψ(2T ; vb)− ψ(T ; ub), ϕK 〉| ≤ C‖v‖2L2(0,T),

‖v‖H2
0(0,T) ≤ C‖ψ(T ; ub, ϕ1)− ϕ1e−iλ1T‖H11

(0)(0,1).

 Not working...
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 Use the cubic term
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such that

ψ(2T ; vb, ϕ1) = bϕK + o(b),

|〈ψ(2T ; vb)− ψ(T ; ub), ϕK 〉| ≤ C‖v3‖2L2(0,T),
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 Working!



STLC result despite the drift: H2-STLC

3. B There exists two families of controls (v<b )b∈R and (v=b )b∈R
small in H2

0 (T , 2T ) such that

ψ(2T ; v<b , ϕ1) = bϕK + o(b),
ψ(2T ; v=b , ϕ1) = ibϕK + o(b).

4. For all target ψf ∈ H11
(0)(0, 1) ‘small’, there exists

w ∈ H2
0 ((0,T ),R) arbitrary small in H2(0, 2T ) such that

ψ(2T ; w , ϕ1) = ψf .

 Brouwer fixed point theorem



A systematic approach

Let ẋ = f (x , u) a finite or infinite dimensional control system.

1. Assume that the space H of the targets reached at the linear level
is of finite codimension n.

2. Assume that one can find a basis (ξi )i=1,...,n of a supplementary
of H such that for all T > 0 and i = 1, . . . , n, there exists a
continuous application b ∈ R 7→ ui

b ∈ ET such that

x(T ; ui
b, 0) = bξi +O(|b|1+si ) with ‖ui

b‖ET = O(|b|si ).

Then, the system is E -STLC.

Open questions
Application to other equations (KdV)? Recovering an infinite number
of lost directions?
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Let ẋ = f (x , u) a finite or infinite dimensional control system.
1. Assume that the space H of the targets reached at the linear level

is of finite codimension n.

2. Assume that one can find a basis (ξi )i=1,...,n of a supplementary
of H such that for all T > 0 and i = 1, . . . , n, there exists a
continuous application b ∈ R 7→ ui

b ∈ ET such that

x(T ; ui
b, 0) = bξi +O(|b|1+si ) with ‖ui

b‖ET = O(|b|si ).

Then, the system is E -STLC.

Open questions
Application to other equations (KdV)? Recovering an infinite number
of lost directions?



Thanks for your attention!



Sussmann’s example: The Lie Brackets


ẋ1 = αu,
ẋ2 = βx1,
ẋ3 = γx3

1 + δx2
2 .

f0
f1

1

2

3

0 1 2

•
αe1 •

βαe2

•
δ(βα)2e3B

•
γα2e3

6∈

Hermes cond.
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ẋ1 = αu,
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ẋ3 = γx3

1 + δx2
2 .

f0
f1
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3
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Sussmann’s condition


