Controllability of the 1D bilinear Schrödinger equation by a power series expansion

Mégane Bournissou Advisers: Karine Beauchard and Frédéric Marbach. ENS Rennes

> 31 mai 2022 ANR TRECOS

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

E-STLC in finite dimension

$$\begin{cases} \frac{dx}{dt} = f(x, \boldsymbol{u}), & t \in (0, T) \\ x(0) = x_0, \end{cases}$$

where, at time t,

- $x(t) \in \mathbb{R}^n$: state of this system,
- ▶ $u(t) \in \mathbb{R}$: control.

Definition (STLC)

The system is STLC if

 $\begin{aligned} \forall T > 0, \quad \forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall |x_0| + |x_f| < \delta, \\ \exists u \in L^{\infty}(0, T) \text{ with } \|u\|_{L^{\infty}(0, T)} < \varepsilon \quad \text{s. t.} \quad x(T; u, x_0) = x_f. \end{aligned}$

・ロト・日本・日本・日本・日本・日本

E-STLC in finite dimension

$$\begin{cases} \frac{dx}{dt} = f(x, \boldsymbol{u}), & t \in (0, T) \\ x(0) = x_0, \end{cases}$$

where, at time t,

- ▶ $x(t) \in \mathbb{R}^n$: state of this system,
- ▶ $u(t) \in \mathbb{R}$: control.

Definition (E-STLC)

Let $(E_T, \|\cdot\|_{E_T})$ be a family of normed vector spaces of real functions defined on [0, T] (ex: $E_T = L^{\infty}(0, T), H^1(0, T)$). The system is **E-STLC** if

$$\begin{aligned} \forall T > 0, \quad \forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall |x_0| + |x_f| < \delta, \\ \exists u \in E_T \text{ with } \|u\|_{E_T} < \varepsilon \quad \text{s. t.} \quad x(T; u, x_0) = x_f. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider a control-affine system $\dot{x} = f_0(x) + uf_1(x)$. Three sufficient conditions of L^{∞} -STLC:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider a control-affine system $\dot{x} = f_0(x) + uf_1(x)$. Three sufficient conditions of L^{∞} -STLC:

▶ If $S_1 := \text{Span}([f_0, [f_0, [f_0, \dots, [f_0, f_1]]]](0); k \in \mathbb{N}) = \mathbb{R}^n$; [Linear test]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider a control-affine system $\dot{x} = f_0(x) + uf_1(x)$. Three sufficient conditions of L^{∞} -STLC:

- ▶ If $S_1 := \text{Span}([f_0, [f_0, [f_0, \dots, [f_0, f_1]]]](0); k \in \mathbb{N}) = \mathbb{R}^n$; [Linear test]
- ▶ If $S_{2k} \subset S_{2k-1} := \{W(0); W \text{ bracket with } 2k 1 \text{ times } f_1\}$ for all $k \in \mathbb{N}^*$; [Hermes, Sussmann]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider a control-affine system $\dot{x} = f_0(x) + uf_1(x)$. Three sufficient conditions of L^{∞} -STLC:

- ▶ If $S_1 := \text{Span}([f_0, [f_0, [f_0, \dots, [f_0, f_1]]]](0); k \in \mathbb{N}) = \mathbb{R}^n$; [Linear test]
- ▶ If $S_{2k} \subset S_{2k-1} := \{W(0); W \text{ bracket with } 2k 1 \text{ times } f_1\}$ for all $k \in \mathbb{N}^*$; [Hermes, Sussmann]
- If there exists θ ∈ [0, 1] such that every bracket involving f₀ an odd number *l* of times and f₁ an even number k of times is a linear combination of brackets involving k_i times f₁ and l_i times f₀ with k_i + θl_i < 2 + θl. [Sussmann S(θ) condition]

Susmann's example

$$\begin{cases} \dot{x_1} = u, \\ \dot{x_2} = x_1, \\ \dot{x_3} = x_1^3 + x_2^2 \end{cases}$$

This is a control-affine system of the form

$$\dot{x} = f_0(x) + u f_1(x)$$

with the vector fields

$$f_0(x) = (0, x_1, x_1^3 + x_2^2)^{tr}$$
 and $f_1(x) = (1, 0, 0).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

E-STLC for which *E* ? (At least $E = L^{\infty}$ by Sussmann's $S(\theta)$ condition.)

Sussmann's example: Quadratic wins over cubic

$$\begin{cases} \dot{x_1} = u, \\ \dot{x_2} = x_1, \\ \dot{x_3} = x_1^3 + x_2^2. \end{cases} \begin{cases} x_1 = u_1, \\ x_2 = u_2, \\ x_3(T) = \int_0^T u_1(t)^3 dt + \int_0^T u_2(t)^2 dt. \end{cases}$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

Sussmann's example: Quadratic wins over cubic

$$\begin{cases} \dot{x_1} = u, \\ \dot{x_2} = x_1, \\ \dot{x_3} = x_1^3 + x_2^2. \end{cases} \begin{cases} x_1 = u_1, \\ x_2 = u_2, \\ x_3(T) = \int_0^T u_1(t)^3 dt + \int_0^T u_2(t)^2 dt. \end{cases}$$

▶ The quadratic term wins when $||u'||_{L^{\infty}(0,T)} \rightarrow 0$:

$$\int_0^T u_1(t)^3 dt = -\int_0^T u_2(t) 2u(t) u_1(t) dt = \int_0^T u_2(t)^2 \mathbf{u}'(t) dt$$

Then, when $(T, ||u'||_{L^{\infty}(0,T)}) \rightarrow 0$,

$$x_3(T) \ge (1 - ||u'||_{L^{\infty}(0,T)}) \int_0^T u_2(t)^2 dt > 0$$

 \rightsquigarrow No $W^{1,\infty}\text{-}\mathsf{STLC}$ because the quadratic term entails a drift

・ロト・1回ト・1回ト・1回ト・1回・1000

Sussmann's example: Cubic wins over quadratic

▶ The **cubic** term **wins** for controls of the form:

$$u_{\lambda}(t) = \lambda^{rac{3}{4}} \phi''\left(rac{t}{\lambda}
ight), \quad \lambda o 0.$$

Size of the controls:

 $\|u_{\lambda}\|_{H^1(0,T)} \approx \lambda^{\frac{1}{4}} \ll 1 \quad \text{but} \quad \|u_{\lambda}'\|_{L^{\infty}(0,T)} \approx \lambda^{-\frac{1}{4}} \gg 1.$

Computation of the solution

$$x_3(T) = \int_0^T u_1(t)^3 dt + \int_0^T u_2(t)^2 dt$$
$$= \lambda^{\frac{11}{2}} \int_0^1 \phi'(\theta)^3 d\theta + \lambda^6 \int_0^1 \phi(\theta)^2 d\theta$$
$$= a + o(a).$$

 \rightsquigarrow H^1 -STLC because the **cubic** term **absorbs the drift** for controls small in less regular spaces

Sussmann's example

Controllability of the following control-affine system,

$$\begin{cases} \dot{x_1} = u, \\ \dot{x_2} = x_1, \\ \dot{x_3} = x_1^3 + x_2^2. \end{cases}$$

Theorem

- The system is not W^{1,∞}-STLC (≈ Hermes condition) [Beauchard, Marbach - 2018].
- But the system is H^1 -STLC (\approx Sussmann's $S(\theta)$ condition).

Question

Same phenomenon for a control-affine system in infinite dimension ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Schrödinger equation

$$\begin{cases} i\partial_t\psi(t,x) = -\partial_x^2\psi(t,x) - u(t)\mu(x)\psi(t,x), & (t,x) \in (0,T) \times (0,1), \\ \psi(t,0) = \psi(t,1) = 0, & t \in (0,T). \end{cases}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Schrödinger equation

$$\begin{cases} i\partial_t \psi(t,x) = -\partial_x^2 \psi(t,x) - u(t)\mu(x)\psi(t,x), & (t,x) \in (0,T) \times (0,1), \\ \psi(t,0) = \psi(t,1) = 0, & t \in (0,T). \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bilinear control system

- the state: ψ , such that $\|\psi(t)\|_{L^2(0,1)} = 1$ for all time,
- $\mu : (0,1) \rightarrow \mathbb{R}$ dipolar moment of the quantum particle,
- ▶ and $u: (0, T) \rightarrow \mathbb{R}$ denotes a scalar control.

Equation under study

To do as in finite dimension:

$$f_0(arphi) = -arphi''$$
 with $\mathsf{Dom}(f_0) = H^2 \cap H^1_0(0,1).$

Orthonormal basis of $L^2(0, 1)$ of **eigenvectors**:

 $\forall j \in \mathbb{N}^*, \quad \varphi_j := \sqrt{2} \sin(j\pi \cdot) \quad \text{associated with} \quad \lambda_j := (j\pi)^2.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equation under study

To do as in finite dimension:

$$f_0(arphi) = -arphi''$$
 with $\mathsf{Dom}(f_0) = H^2 \cap H^1_0(0,1).$

Orthonormal basis of $L^2(0, 1)$ of **eigenvectors**:

$$orall j \in \mathbb{N}^*, \quad arphi_j := \sqrt{2} \sin(j\pi \cdot) \quad ext{associated with} \quad \lambda_j := (j\pi)^2.$$

Definition

Let $(E_T, \|\cdot\|_{E_T})$ be a family of normed vector spaces of real functions defined on [0, T] and X a vector space of functions defined on [0, 1]. The Schrödinger equation is said to be **E-STLC around the ground state with targets in** X if:

$$\begin{aligned} \forall T > 0, \quad \forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall (\psi_*, \psi_f) \in X \text{ with} \\ \|\psi_* - \varphi_1\|_X < \delta \text{ and } \|\psi_f - \varphi_1 e^{-i\lambda_1 T}\|_X < \delta, \\ \exists u \in L^2(0, T) \cap E_T \text{ with } \|u\|_{E_T} < \varepsilon \quad \text{s. t. } \psi(T; \ u, \ \psi_*) = \psi_f. \end{aligned}$$

State of the art

Theorem (Ball, Marsden, Slemrod - 1982 & Turinici - 2000) When μ is in $W^{2,\infty}$, the Schrödinger equation is **not controllable** in $H^2 \cap H^1_0(0,1)$ with controls in $L^r_{loc}((0,+\infty),\mathbb{R})$ for r > 1.

 \rightsquigarrow Bad choice of functional settings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

State of the art

Theorem (Ball, Marsden, Slemrod - 1982 & Turinici - 2000) When μ is in $W^{2,\infty}$, the Schrödinger equation is **not controllable** in $H^2 \cap H^1_0(0,1)$ with controls in $L^r_{loc}((0,+\infty),\mathbb{R})$ for r > 1.

 \rightsquigarrow Bad choice of functional settings

Theorem (Beauchard, Laurent - 2010)

When μ is in $H^3((0,1),\mathbb{R})$ such that there exists a constant c > 0 such that

$$\forall j \in \mathbb{N}^*, \quad |\langle \mu \varphi_1, \varphi_j \rangle| \ge \frac{c}{j^3},$$

the Schrödinger equation is L^2 -**STLC** with targets in $H^3_{(0)}(0,1)$.

 \rightsquigarrow Choice of μ such that the linearized system is controllable

Bibliography

Theorem (Beauchard, Morancey - 2014) When μ is in $H^3((0,1),\mathbb{R})$ such that

 $\langle \mu \varphi_1, \varphi_K \rangle = 0$ and $A^1_K(\mu) := \langle {\mu'}^2 \varphi_1, \varphi_K \rangle \neq 0,$

the Schrödinger equation is **not** L^2 -**STLC** due to a drift quantified by the H^{-1} -norm of the control.

 \rightsquigarrow Choice of μ s. t. $\langle \psi(T) - \psi_1(T), \varphi_K \rangle = A_K^1(\mu) \int_0^T u_1(t)^2 dt + \dots$

A D N A 目 N A E N A E N A B N A C N

Bibliography

Theorem (Beauchard, Morancey - 2014) When μ is in $H^3((0,1),\mathbb{R})$ such that

 $\langle \mu \varphi_1, \varphi_K \rangle = 0$ and $A^1_K(\mu) := \langle {\mu'}^2 \varphi_1, \varphi_K \rangle \neq 0,$

the Schrödinger equation is **not** L^2 -**STLC** due to a drift quantified by the H^{-1} -norm of the control.

 \rightsquigarrow Choice of μ s. t. $\langle \psi(T) - \psi_1(T), \varphi_K \rangle = A_K^1(\mu) \int_0^T u_1(t)^2 dt + \dots$

A D N A 目 N A E N A E N A B N A C N

Question If $A_{K}^{1}(\mu) = 0$, what happens ?

Main result

1. Choice of μ such that there exists $K \in \mathbb{N}^*$,

 $\langle \psi(T) - \psi_1(T), \varphi_K \rangle \approx A_K^3(\mu) \int_0^T u_3(t)^2 dt + C_K(\mu) \int_0^T u_1(t)^2 u_2(t) dt + \text{error terms}$

Main result

1. Choice of μ such that there exists $K \in \mathbb{N}^*$,

 $\langle \psi(T) - \psi_1(T), \varphi_K \rangle \approx A_K^3(\mu) \int_0^T u_3(t)^2 dt + C_K(\mu) \int_0^T u_1(t)^2 u_2(t) dt + \text{error terms}$

- 2. Study of the quadratic/cubic competition
 - ▶ In an asymptotic $(T, ||u||_{H^3}) \rightarrow 0$, one has (Cub) = o(Quad).
 - "In an asymptotic $(T, ||u||_{H^2}) \rightarrow 0$ ", one has (Quad) = o(Cub).

Main result

1. Choice of μ such that there exists $K \in \mathbb{N}^*$,

 $\langle \psi(T) - \psi_1(T), \varphi_K \rangle \approx A_K^3(\mu) \int_0^T u_3(t)^2 dt + C_K(\mu) \int_0^T u_1(t)^2 u_2(t) dt + \text{error terms}$

- 2. Study of the quadratic/cubic competition
 - ▶ In an asymptotic $(T, ||u||_{H^3}) \rightarrow 0$, one has (Cub) = o(Quad).
 - "In an asymptotic $(T, ||u||_{H^2}) \rightarrow 0$ ", one has (Quad) = o(Cub).

Theorem (B., 2022)

There exists a choice of μ such that the Schrödinger equation

▶ is not H³-STLC because of a drift quantified by the H⁻³-norm of the control,

but is H²-STLC thanks to the cubic term.

Computation of the expansion: The linear term

$$i\partial_t \psi = -\partial_x^2 \psi - u\mu\psi$$
 (Lin) $i\partial_t \Psi = -\partial_x^2 \Psi - u\mu\varphi_1 e^{-i\lambda_1 t}$

Explicit resolution:

$$\Psi(T) = i \sum_{j=1}^{+\infty} \left(\langle \mu \varphi_1, \varphi_j \rangle \int_0^T u(t) e^{i(\lambda_j - \lambda_1)t} dt \right) \varphi_j e^{-i\lambda_j T}.$$

Computation of the expansion: The linear term

$$i\partial_t\psi = -\partial_x^2\psi - u\mu\psi$$
 (Lin) $i\partial_t\Psi = -\partial_x^2\Psi - u\mu\varphi_1e^{-i\lambda_1t}$

Explicit resolution:

$$\Psi(T) = i \sum_{j=1}^{+\infty} \left(\langle \mu \varphi_1, \varphi_j \rangle \int_0^T u(t) e^{i(\lambda_j - \lambda_1)t} dt \right) \varphi_j e^{-i\lambda_j T}.$$

▶ If $\langle \mu \varphi_1, \varphi_K \rangle = 0$ then

 $\langle \Psi(t), \varphi_K \rangle \equiv 0.$

 \rightsquigarrow Go further into the expansion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computation of the expansion: The linear term

$$i\partial_t \psi = -\partial_x^2 \psi - u\mu\psi$$
 (Lin) $i\partial_t \Psi = -\partial_x^2 \Psi - u\mu\varphi_1 e^{-i\lambda_1 t}$

Explicit resolution:

$$\Psi(T) = i \sum_{j=1}^{+\infty} \left(\langle \mu \varphi_1, \varphi_j \rangle \int_0^T u(t) e^{i(\lambda_j - \lambda_1)t} dt \right) \varphi_j e^{-i\lambda_j T}.$$

• If $\langle \mu \varphi_1, \varphi_K \rangle = 0$ then

$$\langle \Psi(t), \varphi_K \rangle \equiv 0.$$

 \rightsquigarrow Go further into the expansion

▶ If for all $j \in \mathbb{N}^*$, $\langle \mu \varphi_1, \varphi_j \rangle \neq 0$, then $\Psi(T) = \psi_f$ is equivalent to

$$\forall j \in \mathbb{N}^*, \quad \int_0^T u(t) e^{i(\lambda_j - \lambda_1)t} dt = -i \frac{\langle \psi_f, \varphi_j \rangle}{\langle \mu \varphi_1, \varphi_j \rangle} e^{i\lambda_j T}.$$

→ Solvability of a moment problem

Computation of the expansion: The quadratic term

$$i\partial_t \psi = -\partial_x^2 \psi - u\mu\psi$$
 (Quad) $i\partial_t \xi = -\partial_x^2 \xi - u\mu\Psi$

Explicit computations:

$$\langle \xi(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle = \int_0^T u(t) \int_0^t u(\tau) h(t, \tau) d\tau dt.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Computation of the expansion: The quadratic term

$$i\partial_t \psi = -\partial_x^2 \psi - u\mu\psi$$
 (Quad) $i\partial_t \xi = -\partial_x^2 \xi - u\mu\Psi$

Explicit computations:

$$\langle \xi(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle = \int_0^T u(t) \int_0^t u(\tau) h(t, \tau) d\tau dt.$$

Lemma (Coercivity of the quadratic term)

One can **choose** μ such that there exists $T^* > 0$ such that for all $T \in (0, T^*)$ and for all $u \in L^2(0, T)$,

$$-\operatorname{sign}(A_{\mathcal{K}}^{3})\langle\xi(T),\varphi_{\mathcal{K}}e^{-i\lambda_{1}T}\rangle\geq\frac{|A_{\mathcal{K}}^{3}|}{4}\int_{0}^{T}u_{3}(t)^{2}dt.$$

 \rightsquigarrow Integrations by parts

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Computation of the expansion: The quadratic term

Sketch of the proof.

$$\langle \xi(T), \varphi_{\kappa} e^{-i\lambda_{1}T} \rangle = \int_{0}^{T} u(t) \int_{0}^{t} u(\tau)h(t,\tau)d\tau dt = -iA_{\kappa}^{1}(\mu) \int_{0}^{T} u_{1}(t)^{2} e^{i(\lambda_{\kappa}-\lambda_{1})(t-T)}dt + \int_{0}^{T} u_{1}(t) \int_{0}^{t} u_{1}(\tau)\partial_{1}\partial_{2}h(t,\tau)d\tau dt$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

+(boundary terms)

$$= -i\sum_{p=1}^{3} A_{K}^{p}(\mu) \int_{0}^{T} u_{p}(t)^{2} e^{i(\lambda_{K}-\lambda_{1})(t-T)} dt$$
$$+ \int_{0}^{T} u_{3}(t) \int_{0}^{t} u_{3}(\tau) \partial_{1}^{3} \partial_{2}^{3} h(t,\tau) d\tau dt + (\text{boundary terms})$$

And so on....

Computation of the expansion: The cubic term

$$i\partial_t \psi = -\partial_x^2 \psi - u\mu\psi$$
 (Cub) $i\partial_t \zeta = -\partial_x^2 \zeta - u\mu\xi$

Computation of the expansion: The cubic term

$$i\partial_t \psi = -\partial_x^2 \psi - u\mu\psi$$
 (Cub) $i\partial_t \zeta = -\partial_x^2 \zeta - u\mu\xi$

Goal (Behavior of the cubic term) One can **choose** μ such that

$$\langle \zeta(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle \approx C_{\mathcal{K}}(\mu) \int_0^T u_1(t)^2 u_2(t) dt.$$

 \rightsquigarrow Okay for oscillating controls

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Computation of the expansion: The cubic term

$$i\partial_t \psi = -\partial_x^2 \psi - u\mu\psi$$
 (Cub) $i\partial_t \zeta = -\partial_x^2 \zeta - u\mu\xi$

Goal (Behavior of the cubic term) One can **choose** μ such that

$$\langle \zeta(T), \varphi_{\kappa} e^{-i\lambda_1 T} \rangle \approx C_{\kappa}(\mu) \int_0^T u_1(t)^2 u_2(t) dt.$$

 \rightsquigarrow Okay for oscillating controls

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

When $(T, ||u_1||_{L^{\infty}}) \rightarrow 0$, the cubic remainder is estimated by

$$\langle (\psi - \psi_1 - \Psi - \xi)(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle = \mathcal{O}\left(\|u_1\|_{L^2(0,T)}^3 \right).$$

1. The quadratic term has a coercivity:

$$\langle \xi(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle \geq A_{\mathcal{K}}^3 \int_0^T u_3(t)^2 dt.$$

1. The quadratic term has a coercivity:

$$\langle \xi(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle \geq A_{\mathcal{K}}^3 \int_0^T u_3(t)^2 dt.$$

2. Estimate of the cubic remainder: When $(T, \|u_1\|_{L^\infty}) \to 0$,

$$\langle (\psi - \psi_1 - \Psi - \xi)(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle = \mathcal{O}\left(\|u_1\|_{L^2(0,T)}^3 \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

1. The quadratic term has a coercivity:

$$\langle \xi(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle \geq A_{\mathcal{K}}^3 \int_0^T u_3(t)^2 dt.$$

2. Estimate of the cubic remainder: When $(T, \|u_1\|_{L^\infty}) \to 0$,

$$\langle (\psi - \psi_1 - \Psi - \xi)(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle = \mathcal{O}\left(\|u_1\|_{L^2(0,T)}^3 \right).$$

3. The quadratic term prevails: for $u \in H^3(0, T)$,

 $\|u_1\|_{L^2(0,T)}^3 \leq C\left(\|u^{(3)}\|_{L^2(0,T)} + T^3\|u\|_{L^2(0,T)}\right)\|u_3\|_{L^2(0,T)}^2.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. The quadratic term has a coercivity:

$$\langle \xi(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle \geq A_{\mathcal{K}}^3 \int_0^T u_3(t)^2 dt.$$

2. Estimate of the cubic remainder: When $(T, \|u_1\|_{L^\infty}) o 0$,

$$\langle (\psi - \psi_1 - \Psi - \xi)(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle = \mathcal{O}\left(\|u_1\|_{L^2(0,T)}^3 \right).$$

3. The quadratic term prevails: for $u \in H^3(0, T)$,

$$\|u_1\|_{L^2(0,T)}^3 \leq C\left(\|u^{(3)}\|_{L^2(0,T)} + T^3\|u\|_{L^2(0,T)}\right) \|u_3\|_{L^2(0,T)}^2.$$

The nonlinear solution has a coercivity: for u ∈ H³(0, T) sufficiently small,

$$\langle \psi(T), \varphi_{\mathcal{K}} e^{-i\lambda_1 T} \rangle \geq A \int_0^T u_3(t)^2 dt.$$

We assume that the space of the targets is sliced in two:

We assume that the space of the targets is sliced in two:

• The subspace spanned by the **lost direction** $\varphi_{\mathbf{K}}$ at the linear level.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We assume that the space of the targets is sliced in two:

- The subspace spanned by the **lost direction** $\varphi_{\mathbf{K}}$ at the linear level.
- The subspace spanned by every other components (φ_j)_{j∈N*-{K}}, controllable at the linear level.

Theorem

For every $\psi_0, \psi_f \in H^{11}_{(0)}(0,1)$ 'small', there exists $v \in H^2_0(0,T)$ such that

$$\forall j \in \mathbb{N}^* - \{K\}, \quad \langle \psi(T; v, \psi_0), \varphi_j \rangle = \langle \psi_f, \varphi_j \rangle,$$

with the following estimate

$$\|v\|_{H^{2}_{0}(0,T)} \leq C\left(\|\psi_{0}-\varphi_{1}\|_{H^{11}_{(0)}(0,1)}+\|\psi_{f}-\varphi_{1}e^{-i\lambda_{1}T}\|_{H^{11}_{(0)}(0,1)}\right).$$

1. There exists a family of controls $(u_b)_{b\in\mathbb{R}}$ small in $H^2_0(0, T)$ such that

$$\langle \psi(T; u_b, \varphi_1), \varphi_K \rangle = b + o(b).$$

 \rightsquigarrow Use the cubic term

2. A There exists a family of controls $(v_b)_{b\in\mathbb{R}}$ small in $H_0^2(T, 2T)$ such that

$$\psi(2T; v_b, \varphi_1) = \frac{b\varphi_{\kappa}}{b} + o(b),$$

$$\begin{aligned} |\langle \psi(2T; v_b) - \psi(T; u_b), \varphi_K \rangle| &\leq C \|\mathbf{v}\|_{\mathsf{L}^2(\mathbf{0},\mathsf{T})}^2, \\ \|\mathbf{v}\|_{\mathsf{H}^2_0(\mathbf{0},\mathsf{T})} &\leq C \|\psi(T; u_b, \varphi_1) - \varphi_1 e^{-i\lambda_1 T} \|_{H^{11}_{(0)}(0,1)}. \end{aligned}$$

 \rightsquigarrow Not working...

1. There exists a family of controls $(u_b)_{b\in\mathbb{R}}$ small in $H^2_0(0, T)$ such that

$$\langle \psi(T; u_b, \varphi_1), \varphi_K \rangle = b + o(b).$$

 \rightsquigarrow Use the cubic term

2. A There exists a family of controls $(v_b)_{b\in\mathbb{R}}$ small in $H_0^2(T, 2T)$ such that

$$\psi(2T; v_b, \varphi_1) = \frac{b\varphi_{\kappa}}{b} + o(b),$$

$$\begin{aligned} |\langle \psi(2T; v_b) - \psi(T; u_b), \varphi_K \rangle| &\leq C \|\mathbf{v}_3\|_{\mathbf{L}^2(\mathbf{0},\mathbf{T})}^2, \\ \|\mathbf{v}\|_{\mathbf{H}^2_0(\mathbf{0},\mathbf{T})} &\leq C \|\psi(T; u_b, \varphi_1) - \varphi_1 e^{-i\lambda_1 T} \|_{H^{11}_{(0)}(\mathbf{0},1)}. \end{aligned}$$

 \rightsquigarrow Not working...

1. There exists a family of controls $(u_b)_{b\in\mathbb{R}}$ small in $H^2_0(0, T)$ such that

$$\langle \psi(T; u_b, \varphi_1), \varphi_K \rangle = b + o(b).$$

 \rightsquigarrow Use the cubic term

2. A There exists a family of controls $(v_b)_{b\in\mathbb{R}}$ small in $H_0^2(T, 2T)$ such that

$$\psi(2T; v_b, \varphi_1) = b\varphi_{\kappa} + o(b),$$

$$\begin{aligned} |\langle \psi(2T; \mathbf{v}_b) - \psi(T; \mathbf{u}_b), \varphi_K \rangle| &\leq C \|\mathbf{v}_3\|_{\mathsf{L}^2(\mathbf{0},\mathsf{T})}^2, \\ \|\mathbf{v}\|_{\mathsf{H}^{-\mathsf{k}}(\mathbf{0},\mathsf{T})} &\leq C \|\psi(T; \mathbf{u}_b, \varphi_1) - \varphi_1 e^{-i\lambda_1 T} \|_{\mathsf{H}^{7-2\mathsf{k}}(\mathbf{0},1)}^{-2\mathsf{k}}. \end{aligned}$$

 \rightsquigarrow Working!

3. A There exists two families of controls $(v_b^{\Re})_{b\in\mathbb{R}}$ and $(v_b^{\Im})_{b\in\mathbb{R}}$ small in $H_0^2(T, 2T)$ such that

$$\psi(2T; v_b^{\Re}, \varphi_1) = b\varphi_K + o(b),$$

$$\psi(2T; v_b^{\Im}, \varphi_1) = ib\varphi_K + o(b).$$

4. For all target $\psi_f \in H^{11}_{(0)}(0,1)$ 'small', there exists $w \in H^2_0((0,T),\mathbb{R})$ arbitrary small in $H^2(0,2T)$ such that

$$\psi(2T; w, \varphi_1) = \psi_f.$$

→ Brouwer fixed point theorem

Let $\dot{x} = f(x, u)$ a finite or infinite dimensional control system.

Let $\dot{x} = f(x, u)$ a finite or infinite dimensional control system.

1. Assume that the space \mathcal{H} of the targets reached at the linear level is of **finite codimension** *n*.

Let $\dot{x} = f(x, u)$ a finite or infinite dimensional control system.

- 1. Assume that the space \mathcal{H} of the targets reached at the linear level is of **finite codimension** *n*.
- 2. Assume that one can find **a basis** $(\xi_i)_{i=1,...,n}$ of a **supplementary** of \mathcal{H} such that for all T > 0 and i = 1, ..., n, there exists a **continuous** application $b \in \mathbb{R} \mapsto u_b^i \in E_T$ such that

 $x(T; u_b^i, 0) = b\xi_i + \mathcal{O}(|b|^{1+s_i})$ with $||u_b^i||_{E_T} = \mathcal{O}(|b|^{s_i}).$

Then, the system is *E*-**STLC**.

Let $\dot{x} = f(x, u)$ a finite or infinite dimensional control system.

- 1. Assume that the space \mathcal{H} of the targets reached at the linear level is of **finite codimension** *n*.
- 2. Assume that one can find **a basis** $(\xi_i)_{i=1,...,n}$ of a **supplementary** of \mathcal{H} such that for all T > 0 and i = 1, ..., n, there exists a **continuous** application $b \in \mathbb{R} \mapsto u_b^i \in E_T$ such that

 $x(T; u_b^i, 0) = b\xi_i + \mathcal{O}(|b|^{1+s_i})$ with $||u_b^i||_{E_T} = \mathcal{O}(|b|^{s_i}).$

Then, the system is *E*-**STLC**.

Open questions

Application to other equations (KdV)? Recovering an infinite number of lost directions?

Thanks for your attention!

Sussmann's example: The Lie Brackets

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Sussmann's example: The Lie Brackets

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ