Controllability of the 1D bilinear Schrödinger equation by a power series expansion

Mégane Bournissou
Advisers: Karine Beauchard and Frédéric Marbach.
ENS Rennes

31 mai 2022
ANR TRECOS

E-STLC in finite dimension

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, u), \quad t \in(0, T) \\
x(0)=x_{0}
\end{array}\right.
$$

where, at time t,

- $x(t) \in \mathbb{R}^{n}$: state of this system,
- $u(t) \in \mathbb{R}$: control.

Definition (STLC)

The system is STLC if

$$
\begin{aligned}
& \forall T>0, \quad \forall \varepsilon>0, \quad \exists \delta>0, \quad \forall\left|x_{0}\right|+\left|x_{f}\right|<\delta, \\
& \exists u \in L^{\infty}(0, T) \text { with }\|u\|_{L^{\infty}(0, T)}^{<\varepsilon} \quad \text { s. t. } \quad x\left(T ; u, x_{0}\right)=x_{f} .
\end{aligned}
$$

E-STLC in finite dimension

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, u), \quad t \in(0, T) \\
x(0)=x_{0},
\end{array}\right.
$$

where, at time t,

- $x(t) \in \mathbb{R}^{n}$: state of this system,
- $u(t) \in \mathbb{R}$: control.

Definition (E-STLC)

Let $\left(E_{T},\|\cdot\|_{E_{T}}\right)$ be a family of normed vector spaces of real functions defined on $[0, T]$ (ex: $\left.E_{T}=L^{\infty}(0, T), H^{1}(0, T)\right)$. The system is E-STLC if

$$
\begin{aligned}
& \forall T>0, \quad \forall \varepsilon>0, \quad \exists \delta>0, \quad \forall\left|x_{0}\right|+\left|x_{f}\right|<\delta, \\
& \exists u \in E_{T} \text { with }\|u\|_{E_{T}}<\varepsilon \quad \text { s. t. } \quad x\left(T ; u, x_{0}\right)=x_{f} .
\end{aligned}
$$

Sufficient conditions of STLC in finite dimension

Consider a control-affine system $\dot{x}=f_{0}(x)+u f_{1}(x)$.
Three sufficient conditions of L^{∞}-STLC:

Sufficient conditions of STLC in finite dimension

Consider a control-affine system $\dot{x}=f_{0}(x)+u f_{1}(x)$.
Three sufficient conditions of L^{∞}-STLC:

- If $\mathcal{S}_{1}:=\operatorname{Span}\left(\left[f_{0},\left[f_{0},\left[f_{0}, \ldots,\left[f_{0}, f_{1}\right]\right]\right]\right](0) ; k \in \mathbb{N}\right)=\mathbb{R}^{n} ;[$ Linear test]

Sufficient conditions of STLC in finite dimension

Consider a control-affine system $\dot{x}=f_{0}(x)+u f_{1}(x)$. Three sufficient conditions of L^{∞}-STLC:

- If $\mathcal{S}_{1}:=\operatorname{Span}\left(\left[f_{0},\left[f_{0},\left[f_{0}, \ldots,\left[f_{0}, f_{1}\right]\right]\right]\right](0) ; k \in \mathbb{N}\right)=\mathbb{R}^{n} ;[$ Linear test]
- If $\mathcal{S}_{2 k} \subset S_{2 k-1}:=\left\{W(0) ; W\right.$ bracket with $2 k-1$ times $\left.f_{1}\right\}$ for all $k \in \mathbb{N}^{*}$; [Hermes, Sussmann]

Sufficient conditions of STLC in finite dimension

Consider a control-affine system $\dot{x}=f_{0}(x)+u f_{1}(x)$.
Three sufficient conditions of L^{∞}-STLC:

- If $\mathcal{S}_{1}:=\operatorname{Span}\left(\left[f_{0},\left[f_{0},\left[f_{0}, \ldots,\left[f_{0}, f_{1}\right]\right]\right]\right](0) ; k \in \mathbb{N}\right)=\mathbb{R}^{n} ;[$ Linear test]
- If $\mathcal{S}_{2 k} \subset S_{2 k-1}:=\left\{W(0) ; W\right.$ bracket with $2 k-1$ times $\left.f_{1}\right\}$ for all $k \in \mathbb{N}^{*}$; [Hermes, Sussmann]
- If there exists $\theta \in[0,1]$ such that every bracket involving f_{0} an odd number $/$ of times and f_{1} an even number k of times is a linear combination of brackets involving k_{i} times f_{1} and I_{i} times f_{0} with $\mathbf{k}_{\mathbf{i}}+\theta \mathbf{I}_{\mathbf{i}}<\mathbf{2}+\theta \mathbf{I}$. [Sussmann $\mathcal{S}(\theta)$ condition]

Susmann's example

$$
\left\{\begin{array}{l}
\dot{x_{1}}=u \\
\dot{x_{2}}=x_{1} \\
\dot{x_{3}}=x_{1}^{3}+x_{2}^{2}
\end{array}\right.
$$

This is a control-affine system of the form

$$
\dot{x}=f_{0}(x)+u f_{1}(x)
$$

with the vector fields

$$
f_{0}(x)=\left(0, x_{1}, x_{1}^{3}+x_{2}^{2}\right)^{\mathrm{tr}} \quad \text { and } \quad f_{1}(x)=(1,0,0)
$$

Question
E-STLC for which E ? (At least $E=L^{\infty}$ by Sussmann's $\mathcal{S}(\theta)$ condition.)

Sussmann's example: Quadratic wins over cubic

$$
\left\{\begin{array} { l }
{ \dot { x _ { 1 } } = u , } \\
{ \dot { x _ { 2 } } = x _ { 1 } , } \\
{ \dot { x _ { 3 } } = x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } . }
\end{array} \quad \left\{\begin{array}{l}
x_{1}=u_{1}, \\
x_{2}=u_{2}, \\
x_{3}(T)=\int_{0}^{T} u_{1}(t)^{3} d t+\int_{0}^{T} u_{2}(t)^{2} d t .
\end{array}\right.\right.
$$

Sussmann's example: Quadratic wins over cubic

$$
\left\{\begin{array} { l }
{ \dot { x _ { 1 } } = u , } \\
{ \dot { x _ { 2 } } = x _ { 1 } , } \\
{ \dot { x _ { 3 } } = x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } . }
\end{array} \quad \left\{\begin{array}{l}
x_{1}=u_{1}, \\
x_{2}=u_{2}, \\
x_{3}(T)=\int_{0}^{T} u_{1}(t)^{3} d t+\int_{0}^{T} u_{2}(t)^{2} d t .
\end{array}\right.\right.
$$

- The quadratic term wins when $\left\|u^{\prime}\right\|_{L^{\infty}(0, T)} \rightarrow 0$:

$$
\int_{0}^{T} u_{1}(t)^{3} d t=-\int_{0}^{T} u_{2}(t) 2 u(t) u_{1}(t) d t=\int_{0}^{T} u_{2}(t)^{2} \mathbf{u}^{\prime}(\mathbf{t}) d t
$$

Then, when $\left(T,\left\|u^{\prime}\right\|_{L^{\infty}(0, T)}\right) \rightarrow 0$,

$$
x_{3}(T) \geqslant\left(1-\left\|u^{\prime}\right\|_{L^{\infty}(0, T)}\right) \int_{0}^{T} u_{2}(t)^{2} d t>0
$$

\rightsquigarrow No $W^{1, \infty}$-STLC because the quadratic term entails a drift

Sussmann's example: Cubic wins over quadratic

- The cubic term wins for controls of the form:

$$
u_{\lambda}(t)=\lambda^{\frac{3}{4}} \phi^{\prime \prime}\left(\frac{t}{\lambda}\right), \quad \lambda \rightarrow 0
$$

Size of the controls:

$$
\left\|u_{\lambda}\right\|_{H^{1}(0, T)} \approx \lambda^{\frac{1}{4}} \ll 1 \quad \text { but } \quad\left\|u_{\lambda}^{\prime}\right\|_{L^{\infty}(0, T)} \approx \lambda^{-\frac{1}{4}} \gg 1
$$

Computation of the solution

$$
\begin{aligned}
x_{3}(T) & =\int_{0}^{T} u_{1}(t)^{3} d t+\int_{0}^{T} u_{2}(t)^{2} d t \\
& =\lambda^{\frac{11}{2}} \int_{0}^{1} \phi^{\prime}(\theta)^{3} d \theta+\lambda^{6} \int_{0}^{1} \phi(\theta)^{2} d \theta \\
& =a+o(a)
\end{aligned}
$$

$\rightsquigarrow H^{1}$-STLC because the cubic term absorbs the drift for controls small in less regular spaces

Sussmann's example

Controllability of the following control-affine system,

$$
\left\{\begin{array}{l}
\dot{x_{1}}=u, \\
\dot{x_{2}}=x_{1} \\
\dot{x_{3}}=x_{1}^{3}+x_{2}^{2} .
\end{array}\right.
$$

Theorem

- The system is not $W^{1, \infty}$-STLC $(\approx$ Hermes condition) [Beauchard, Marbach - 2018].
- But the system is H^{1}-STLC $(\approx$ Sussmann's $\mathcal{S}(\theta)$ condition $)$.

Question

Same phenomenon for a control-affine system in infinite dimension?

Schrödinger equation

$$
\begin{cases}i \partial_{t} \psi(t, x)=-\partial_{x}^{2} \psi(t, x)-u(t) \mu(x) \psi(t, x), & (t, x) \in(0, T) \times(0,1), \\ \psi(t, 0)=\psi(t, 1)=0, & t \in(0, T) .\end{cases}
$$

Schrödinger equation

$$
\begin{cases}i \partial_{t} \psi(t, x)=-\partial_{x}^{2} \psi(t, x)-u(t) \mu(x) \psi(t, x), & (t, x) \in(0, T) \times(0,1), \\ \psi(t, 0)=\psi(t, 1)=0, & t \in(0, T) .\end{cases}
$$

Bilinear control system

- the state: ψ, such that $\|\psi(t)\|_{L^{2}(0,1)}=1$ for all time,
- $\mu:(0,1) \rightarrow \mathbb{R}$ dipolar moment of the quantum particle,
- and $u:(0, T) \rightarrow \mathbb{R}$ denotes a scalar control.

Equation under study

To do as in finite dimension:

$$
f_{0}(\varphi)=-\varphi^{\prime \prime} \quad \text { with } \quad \operatorname{Dom}\left(f_{0}\right)=H^{2} \cap H_{0}^{1}(0,1) .
$$

Orthonormal basis of $L^{2}(0,1)$ of eigenvectors:

$$
\forall j \in \mathbb{N}^{*}, \quad \varphi_{j}:=\sqrt{2} \sin (j \pi \cdot) \quad \text { associated with } \quad \lambda_{j}:=(j \pi)^{2} .
$$

Equation under study

To do as in finite dimension:

$$
f_{0}(\varphi)=-\varphi^{\prime \prime} \quad \text { with } \quad \operatorname{Dom}\left(f_{0}\right)=H^{2} \cap H_{0}^{1}(0,1) .
$$

Orthonormal basis of $L^{2}(0,1)$ of eigenvectors:

$$
\forall j \in \mathbb{N}^{*}, \quad \varphi_{j}:=\sqrt{2} \sin (j \pi \cdot) \quad \text { associated with } \quad \lambda_{j}:=(j \pi)^{2} .
$$

Definition

Let $\left(E_{T},\|\cdot\|_{E_{T}}\right)$ be a family of normed vector spaces of real functions defined on $[0, T]$ and X a vector space of functions defined on $[0,1]$. The Schrödinger equation is said to be E-STLC around the ground state with targets in X if:

$$
\begin{aligned}
& \forall T>0, \quad \forall \varepsilon>0, \quad \exists \delta>0, \quad \forall\left(\psi_{*}, \psi_{f}\right) \in X \text { with } \\
& \quad\left\|\psi_{*}-\varphi_{1}\right\| x<\delta \text { and }\left\|\psi_{f}-\varphi_{1} e^{-i \lambda_{1} T}\right\|_{X}<\delta, \\
& \exists u \in L^{2}(0, T) \cap E_{T} \text { with }\|u\|_{E_{T}}<\varepsilon \quad \text { s. t. } \quad \psi\left(T ; u, \psi_{*}\right)=\psi_{f} .
\end{aligned}
$$

State of the art

Theorem (Ball, Marsden, Slemrod - 1982 \& Turinici - 2000) When μ is in $W^{2, \infty}$, the Schrödinger equation is not controllable in $H^{2} \cap H_{0}^{1}(0,1)$ with controls in $L_{\text {loc }}^{r}((0,+\infty), \mathbb{R})$ for $r>1$.
\rightsquigarrow Bad choice of functional settings

State of the art

Theorem (Ball, Marsden, Slemrod - 1982 \& Turinici - 2000)
When μ is in $W^{2, \infty}$, the Schrödinger equation is not controllable in $H^{2} \cap H_{0}^{1}(0,1)$ with controls in $L_{\text {loc }}^{r}((0,+\infty), \mathbb{R})$ for $r>1$.
\rightsquigarrow Bad choice of functional settings

Theorem (Beauchard, Laurent - 2010) When μ is in $H^{3}((0,1), \mathbb{R})$ such that there exists a constant $c>0$ such that

$$
\forall j \in \mathbb{N}^{*}, \quad\left|\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle\right| \geq \frac{c}{j^{3}},
$$

the Schrödinger equation is L^{2}-STLC with targets in $H_{(0)}^{3}(0,1)$.
\rightsquigarrow Choice of μ such that the linearized system is controllable

Bibliography

Theorem (Beauchard, Morancey - 2014)
When μ is in $H^{3}((0,1), \mathbb{R})$ such that

$$
\left\langle\mu \varphi_{1}, \varphi_{K}\right\rangle=0 \quad \text { and } \quad A_{K}^{1}(\mu):=\left\langle\mu^{\prime 2} \varphi_{1}, \varphi_{K}\right\rangle \neq 0
$$

the Schrödinger equation is not L^{2}-STLC due to a drift quantified by the H^{-1}-norm of the control.
\rightsquigarrow Choice of μ s. t. $\left\langle\psi(T)-\psi_{1}(T), \varphi_{K}\right\rangle=A_{K}^{1}(\mu) \int_{0}^{T} u_{1}(t)^{2} d t+\ldots$

Bibliography

Theorem (Beauchard, Morancey - 2014)
When μ is in $H^{3}((0,1), \mathbb{R})$ such that

$$
\left\langle\mu \varphi_{1}, \varphi_{K}\right\rangle=0 \quad \text { and } \quad A_{K}^{1}(\mu):=\left\langle\mu^{\prime 2} \varphi_{1}, \varphi_{K}\right\rangle \neq 0
$$

the Schrödinger equation is not L^{2}-STLC due to a drift quantified by the H^{-1}-norm of the control.
\rightsquigarrow Choice of μ s. t. $\left\langle\psi(T)-\psi_{1}(T), \varphi_{K}\right\rangle=A_{K}^{1}(\mu) \int_{0}^{T} u_{1}(t)^{2} d t+\ldots$
Question
If $A_{K}^{1}(\mu)=0$, what happens ?

Main result

1. Choice of μ such that there exists $K \in \mathbb{N}^{*}$,

$$
\left\langle\psi(T)-\psi_{1}(T), \varphi_{K}\right\rangle \approx A_{K}^{3}(\mu) \int_{0}^{T} u_{3}(t)^{2} d t+C_{K}(\mu) \int_{0}^{T} u_{1}(t)^{2} u_{2}(t) d t+\text { error terms }
$$

Main result

1. Choice of μ such that there exists $K \in \mathbb{N}^{*}$,

$$
\left\langle\psi(T)-\psi_{1}(T), \varphi_{K}\right\rangle \approx A_{K}^{3}(\mu) \int_{0}^{T} u_{3}(t)^{2} d t+C_{K}(\mu) \int_{0}^{T} u_{1}(t)^{2} u_{2}(t) d t+\text { error terms }
$$

2. Study of the quadratic/cubic competition

- In an asymptotic $\left(T,\|u\|_{H^{3}}\right) \rightarrow 0$, one has (Cub) $=o($ Quad $)$.
- "In an asymptotic $\left(T,\|u\|_{H^{2}}\right) \rightarrow 0$ ", one has (Quad) $=o(C u b)$.

Main result

1. Choice of μ such that there exists $K \in \mathbb{N}^{*}$,

$$
\left\langle\psi(T)-\psi_{1}(T), \varphi_{K}\right\rangle \approx A_{K}^{3}(\mu) \int_{0}^{T} u_{3}(t)^{2} d t+C_{K}(\mu) \int_{0}^{T} u_{1}(t)^{2} u_{2}(t) d t+\text { error terms }
$$

2. Study of the quadratic/cubic competition

- In an asymptotic $\left(T,\|u\|_{H^{3}}\right) \rightarrow 0$, one has (Cub) $=o($ Quad $)$.
- "In an asymptotic $\left(T,\|u\|_{H^{2}}\right) \rightarrow 0$ ", one has (Quad) $=o(C u b)$.

Theorem (B., 2022)
There exists a choice of μ such that the Schrödinger equation

- is not H^{3}-STLC because of a drift quantified by the H^{-3}-norm of the control,
- but is H^{2}-STLC thanks to the cubic term.

Computation of the expansion: The linear term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad(\operatorname{Lin}) i \partial_{t} \psi=-\partial_{x}^{2} \Psi-u \mu \varphi_{1} e^{-i \lambda_{1} t}
$$

Explicit resolution:

$$
\Psi(T)=i \sum_{j=1}^{+\infty}\left(\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle \int_{0}^{T} u(t) e^{i\left(\lambda_{j}-\lambda_{1}\right) t} d t\right) \varphi_{j} e^{-i \lambda_{j} T} .
$$

Computation of the expansion: The linear term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad(\operatorname{Lin}) i \partial_{t} \Psi=-\partial_{x}^{2} \Psi-u \mu \varphi_{1} e^{-i \lambda_{1} t}
$$

Explicit resolution:

$$
\Psi(T)=i \sum_{j=1}^{+\infty}\left(\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle \int_{0}^{T} u(t) e^{i\left(\lambda_{j}-\lambda_{1}\right) t} d t\right) \varphi_{j} e^{-i \lambda_{j} T}
$$

- If $\left\langle\mu \varphi_{1}, \varphi_{K}\right\rangle=0$ then

$$
\left\langle\Psi(t), \varphi_{K}\right\rangle \equiv 0
$$

\rightsquigarrow Go further into the expansion

Computation of the expansion: The linear term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad(\mathrm{Lin}) i \partial_{t} \Psi=-\partial_{x}^{2} \Psi-u \mu \varphi_{1} e^{-i \lambda_{1} t}
$$

Explicit resolution:

$$
\Psi(T)=i \sum_{j=1}^{+\infty}\left(\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle \int_{0}^{T} u(t) e^{i\left(\lambda_{j}-\lambda_{1}\right) t} d t\right) \varphi_{j} e^{-i \lambda_{j} T}
$$

- If $\left\langle\mu \varphi_{1}, \varphi_{K}\right\rangle=0$ then

$$
\left\langle\Psi(t), \varphi_{K}\right\rangle \equiv 0
$$

\rightsquigarrow Go further into the expansion

- If for all $j \in \mathbb{N}^{*},\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle \neq 0$, then $\Psi(T)=\psi_{f}$ is equivalent to

$$
\forall j \in \mathbb{N}^{*}, \quad \int_{0}^{T} u(t) e^{i\left(\lambda_{j}-\lambda_{1}\right) t} d t=-i \frac{\left\langle\psi_{f}, \varphi_{j}\right\rangle}{\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle} e^{i \lambda_{j} T} .
$$

Computation of the expansion: The quadratic term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad \text { (Quad) } i \partial_{t} \xi=-\partial_{x}^{2} \xi-u \mu \Psi
$$

Explicit computations:

$$
\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle=\int_{0}^{T} u(t) \int_{0}^{t} u(\tau) h(t, \tau) d \tau d t
$$

Computation of the expansion: The quadratic term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad \text { (Quad) } i \partial_{t} \xi=-\partial_{x}^{2} \xi-u \mu \psi
$$

Explicit computations:

$$
\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle=\int_{0}^{T} u(t) \int_{0}^{t} u(\tau) h(t, \tau) d \tau d t
$$

Lemma (Coercivity of the quadratic term)
One can choose μ such that there exists $T^{*}>0$ such that for all $T \in\left(0, T^{*}\right)$ and for all $u \in L^{2}(0, T)$,

$$
-\operatorname{sign}\left(A_{K}^{3}\right)\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \geq \frac{\left|A_{K}^{3}\right|}{4} \int_{0}^{T} u_{3}(t)^{2} d t
$$

Computation of the expansion: The quadratic term

Sketch of the proof.
$\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle=\int_{0}^{T} u(t) \int_{0}^{t} u(\tau) h(t, \tau) d \tau d t$
$=-i A_{K}^{1}(\mu) \int_{0}^{T} u_{1}(t)^{2} e^{i\left(\lambda_{K}-\lambda_{1}\right)(t-T)} d t+\int_{0}^{T} u_{1}(t) \int_{0}^{t} u_{1}(\tau) \partial_{1} \partial_{2} h(t, \tau) d \tau d t$

+ (boundary terms)
$=-i \sum_{p=1}^{3} A_{K}^{p}(\mu) \int_{0}^{T} u_{p}(t)^{2} e^{i\left(\lambda_{K}-\lambda_{1}\right)(t-T)} d t$
$+\int_{0}^{T} u_{3}(t) \int_{0}^{t} u_{3}(\tau) \partial_{1}^{3} \partial_{2}^{3} h(t, \tau) d \tau d t+$ (boundary terms)
And so on....

Computation of the expansion: The cubic term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad \text { (Cub) } i \partial_{t} \zeta=-\partial_{x}^{2} \zeta-u \mu \xi
$$

Computation of the expansion: The cubic term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad \text { (Cub) } i \partial_{t} \zeta=-\partial_{x}^{2} \zeta-u \mu \xi
$$

Goal (Behavior of the cubic term)
One can choose μ such that

$$
\left\langle\zeta(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \approx C_{K}(\mu) \int_{0}^{T} u_{1}(t)^{2} u_{2}(t) d t
$$

\rightsquigarrow Okay for oscillating controls

Computation of the expansion: The cubic term

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u \mu \psi \quad \text { (Cub) } i \partial_{t} \zeta=-\partial_{x}^{2} \zeta-u \mu \xi
$$

Goal (Behavior of the cubic term)
One can choose μ such that

$$
\left\langle\zeta(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \approx C_{K}(\mu) \int_{0}^{T} u_{1}(t)^{2} u_{2}(t) d t
$$

\rightsquigarrow Okay for oscillating controls

Lemma
When $\left(T,\left\|u_{1}\right\|_{L^{\infty}}\right) \rightarrow 0$, the cubic remainder is estimated by

$$
\left\langle\left(\psi-\psi_{1}-\psi-\xi\right)(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle=\mathcal{O}\left(\left\|u_{1}\right\|_{L^{2}(0, T)}^{3}\right) .
$$

Quadratic obstruction: No H^{3}-STLC

1. The quadratic term has a coercivity:

$$
\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \geq A_{K}^{3} \int_{0}^{T} u_{3}(t)^{2} d t
$$

Quadratic obstruction: No H^{3}-STLC

1. The quadratic term has a coercivity:

$$
\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \geq A_{K}^{3} \int_{0}^{T} u_{3}(t)^{2} d t
$$

2. Estimate of the cubic remainder: When $\left(T,\left\|u_{1}\right\|_{L^{\infty}}\right) \rightarrow 0$,

$$
\left\langle\left(\psi-\psi_{1}-\psi-\xi\right)(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle=\mathcal{O}\left(\left\|u_{1}\right\|_{L^{2}(0, T)}^{3}\right) .
$$

Quadratic obstruction: No $H^{3}-$ STLC

1. The quadratic term has a coercivity:

$$
\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \geq A_{K}^{3} \int_{0}^{T} u_{3}(t)^{2} d t .
$$

2. Estimate of the cubic remainder: When $\left(T,\left\|u_{1}\right\|_{L^{\infty}}\right) \rightarrow 0$,

$$
\left\langle\left(\psi-\psi_{1}-\psi-\xi\right)(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle=\mathcal{O}\left(\left\|u_{1}\right\|_{L^{2}(0, T)}^{3}\right) .
$$

3. The quadratic term prevails: for $u \in H^{3}(0, T)$,

$$
\left\|u_{1}\right\|_{L^{2}(0, T)}^{3} \leq C\left(\left\|u^{(3)}\right\|_{L^{2}(0, T)}+T^{3}\|u\|_{L^{2}(0, T)}\right)\left\|u_{3}\right\|_{L^{2}(0, T)}^{2} .
$$

Quadratic obstruction: No H^{3}-STLC

1. The quadratic term has a coercivity:

$$
\left\langle\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \geq A_{K}^{3} \int_{0}^{T} u_{3}(t)^{2} d t
$$

2. Estimate of the cubic remainder: When $\left(T,\left\|u_{1}\right\|_{L^{\infty}}\right) \rightarrow 0$,

$$
\left\langle\left(\psi-\psi_{1}-\psi-\xi\right)(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle=\mathcal{O}\left(\left\|u_{1}\right\|_{L^{2}(0, T)}^{3}\right) .
$$

3. The quadratic term prevails: for $u \in H^{3}(0, T)$,

$$
\left\|u_{1}\right\|_{L^{2}(0, T)}^{3} \leq C\left(\left\|u^{(3)}\right\|_{L^{2}(0, T)}+T^{3}\|u\|_{L^{2}(0, T)}\right)\left\|u_{3}\right\|_{L^{2}(0, T)}^{2} .
$$

4. The nonlinear solution has a coercivity: for $u \in H^{3}(0, T)$ sufficiently small,

$$
\left\langle\psi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \geq A \int_{0}^{T} u_{3}(t)^{2} d t
$$

STLC result despite the drift: $H^{2}-$ STLC

We assume that the space of the targets is sliced in two:

STLC result despite the drift: $H^{2}-S T L C$

We assume that the space of the targets is sliced in two:

- The subspace spanned by the lost direction φ_{K} at the linear level.

STLC result despite the drift: $H^{2}-S T L C$

We assume that the space of the targets is sliced in two:

- The subspace spanned by the lost direction φ_{K} at the linear level.
- The subspace spanned by every other components $\left(\varphi_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{N}^{*}-\{\mathbf{K}\}}$, controllable at the linear level.

Theorem
For every $\psi_{0}, \psi_{f} \in H_{(0)}^{11}(0,1)$ 'small', there exists $v \in H_{0}^{2}(0, T)$ such that

$$
\forall j \in \mathbb{N}^{*}-\{K\}, \quad\left\langle\psi\left(T ; v, \psi_{0}\right), \varphi_{j}\right\rangle=\left\langle\psi_{f}, \varphi_{j}\right\rangle,
$$

with the following estimate

$$
\|v\|_{H_{0}^{2}(0, T)} \leq C\left(\left\|\psi_{0}-\varphi_{1}\right\|_{H_{(0)}^{11}(0,1)}+\left\|\psi_{f}-\varphi_{1} e^{-i \lambda_{1} T}\right\|_{H_{(0)}^{11}(0,1)}\right) .
$$

STLC result despite the drift: H^{2}-STLC

1. There exists a family of controls $\left(u_{b}\right)_{b \in \mathbb{R}}$ small in $H_{0}^{2}(0, T)$ such that

$$
\left\langle\psi\left(T ; u_{b}, \varphi_{1}\right), \varphi_{K}\right\rangle=b+o(b) .
$$

\rightsquigarrow Use the cubic term
2. $₫$ There exists a family of controls $\left(v_{b}\right)_{b \in \mathbb{R}}$ small in $H_{0}^{2}(T, 2 T)$ such that

$$
\begin{gathered}
\psi\left(2 T ; v_{b}, \varphi_{1}\right)=b \varphi_{K}+o(b), \\
\left|\left\langle\psi\left(2 T ; v_{b}\right)-\psi\left(T ; u_{b}\right), \varphi_{K}\right\rangle\right| \leq C\|\mathbf{v}\|_{L^{2}(0, T)}^{2}, \\
\|\mathbf{v}\|_{H_{0}^{2}(0, T)} \leq C\left\|\psi\left(T ; u_{b}, \varphi_{1}\right)-\varphi_{1} e^{-i \lambda_{1} T}\right\|_{H_{(0)}^{11}(0,1)} .
\end{gathered}
$$

\rightsquigarrow Not working...

STLC result despite the drift: H^{2}-STLC

1. There exists a family of controls $\left(u_{b}\right)_{b \in \mathbb{R}}$ small in $H_{0}^{2}(0, T)$ such that

$$
\left\langle\psi\left(T ; u_{b}, \varphi_{1}\right), \varphi_{K}\right\rangle=b+o(b) .
$$

\rightsquigarrow Use the cubic term
2. $₫$ There exists a family of controls $\left(v_{b}\right)_{b \in \mathbb{R}}$ small in $H_{0}^{2}(T, 2 T)$ such that

$$
\begin{gathered}
\psi\left(2 T ; v_{b}, \varphi_{1}\right)=b \varphi_{K}+o(b), \\
\left|\left\langle\psi\left(2 T ; v_{b}\right)-\psi\left(T ; u_{b}\right), \varphi_{K}\right\rangle\right| \leq C\left\|\mathbf{v}_{3}\right\|_{L^{2}(0, T)}^{2}, \\
\|\mathbf{v}\|_{H_{0}^{2}(0, T)} \leq C\left\|\psi\left(T ; u_{b}, \varphi_{1}\right)-\varphi_{1} e^{-i \lambda_{1} T}\right\|_{H_{(0)}^{11}(0,1)} .
\end{gathered}
$$

\rightsquigarrow Not working...

STLC result despite the drift: H^{2}-STLC

1. There exists a family of controls $\left(u_{b}\right)_{b \in \mathbb{R}}$ small in $H_{0}^{2}(0, T)$ such that

$$
\left\langle\psi\left(T ; u_{b}, \varphi_{1}\right), \varphi_{K}\right\rangle=b+o(b) .
$$

\rightsquigarrow Use the cubic term
2. $₫$ There exists a family of controls $\left(v_{b}\right)_{b \in \mathbb{R}}$ small in $H_{0}^{2}(T, 2 T)$ such that

$$
\begin{gathered}
\psi\left(2 T ; v_{b}, \varphi_{1}\right)=b \varphi_{K}+o(b), \\
\left|\left\langle\psi\left(2 T ; v_{b}\right)-\psi\left(T ; u_{b}\right), \varphi_{K}\right\rangle\right| \leq C\left\|\mathbf{v}_{3}\right\|_{\mathrm{L}^{2}(0, \mathrm{~T})}^{2}, \\
\|\mathbf{v}\|_{\mathbf{H}^{-\mathrm{k}}(0, \mathrm{~T})} \leq C\left\|\psi\left(T ; u_{b}, \varphi_{1}\right)-\varphi_{1} e^{-i \lambda_{1} T}\right\|_{\mathbf{H}_{(0)}^{7-2 \mathrm{k}}(0,1)} .
\end{gathered}
$$

STLC result despite the drift: H^{2}-STLC

3. $₫$ There exists two families of controls $\left(v_{b}^{\Re}\right)_{b \in \mathbb{R}}$ and $\left(v_{b}^{\Im}\right)_{b \in \mathbb{R}}$ small in $H_{0}^{2}(T, 2 T)$ such that

$$
\begin{aligned}
& \psi\left(2 T ; v_{b}^{\Re}, \varphi_{1}\right)=b \varphi_{K}+o(b) \\
& \psi\left(2 T ; v_{b}^{\Im}, \varphi_{1}\right)=i b \varphi_{K}+o(b)
\end{aligned}
$$

4. For all target $\psi_{f} \in H_{(0)}^{11}(0,1)$ 'small', there exists $w \in H_{0}^{2}((0, T), \mathbb{R})$ arbitrary small in $H^{2}(0,2 T)$ such that

$$
\psi\left(2 T ; w, \varphi_{1}\right)=\psi_{f} .
$$

A systematic approach

Let $\dot{x}=f(x, u)$ a finite or infinite dimensional control system.

A systematic approach

Let $\dot{x}=f(x, u)$ a finite or infinite dimensional control system.

1. Assume that the space \mathcal{H} of the targets reached at the linear level is of finite codimension n.

A systematic approach

Let $\dot{x}=f(x, u)$ a finite or infinite dimensional control system.

1. Assume that the space \mathcal{H} of the targets reached at the linear level is of finite codimension n.
2. Assume that one can find a basis $\left(\xi_{i}\right)_{i=1, \ldots, n}$ of a supplementary of \mathcal{H} such that for all $T>0$ and $i=1, \ldots, n$, there exists a continuous application $b \in \mathbb{R} \mapsto u_{b}^{i} \in E_{T}$ such that

$$
x\left(T ; u_{b}^{i}, 0\right)=b \xi_{i}+\mathcal{O}\left(|b|^{1+s_{i}}\right) \quad \text { with } \quad\left\|u_{b}^{i}\right\|_{E_{T}}=\mathcal{O}\left(|b|^{s_{i}}\right)
$$

Then, the system is E-STLC.

A systematic approach

Let $\dot{x}=f(x, u)$ a finite or infinite dimensional control system.

1. Assume that the space \mathcal{H} of the targets reached at the linear level is of finite codimension n.
2. Assume that one can find a basis $\left(\xi_{i}\right)_{i=1, \ldots, n}$ of a supplementary of \mathcal{H} such that for all $T>0$ and $i=1, \ldots, n$, there exists a continuous application $b \in \mathbb{R} \mapsto u_{b}^{i} \in E_{T}$ such that

$$
x\left(T ; u_{b}^{i}, 0\right)=b \xi_{i}+\mathcal{O}\left(|b|^{1+s_{i}}\right) \quad \text { with } \quad\left\|u_{b}^{i}\right\|_{E_{T}}=\mathcal{O}\left(|b|^{s_{i}}\right)
$$

Then, the system is E-STLC.
Open questions
Application to other equations (KdV)? Recovering an infinite number of lost directions?

Thanks for your attention!

Sussmann's example: The Lie Brackets

Sussmann's example: The Lie Brackets

