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Strassen’s spectacular failure

Standard algorithm for matrix multiplication, row-column:∗ ∗ ∗∗∗
∗

 =

∗ 
uses O(n3) arithmetic operations.

Strassen (1968) set out to prove this standard algorithm was
indeed the best possible.

At least for 2× 2 matrices. At least over F2.

He failed.
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Strassen’s algorithm

Let A,B be 2× 2 matrices A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
. Set

I = (a11 + a22)(b11 + b22),

II = (a21 + a22)b11,

III = a11(b12 − b22)

IV = a22(−b11 + b21)

V = (a11 + a12)b22

VI = (−a11 + a21)(b11 + b12),

VII = (a12 − a22)(b21 + b22),

If C = AB, then

c11 = I + IV − V + VII ,

c21 = II + IV ,

c12 = III + V ,

c22 = I + III − II + VI .
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Astounding conjecture

Iterate:  2k × 2k matrices using 7k � 8k multiplications,

and n × n matrices with O(n2.81) arithmetic operations.

Bini 1978, Schönhage 1983, Strassen 1987, Coppersmith-Winograd
1988  O(n2.3755) arithmetic operations.

Astounding Conjecture

For all ε > 0, n × n matrices can be multiplied using O(n2+ε)
arithmetic operations.

 asymptotically, multiplying matrices is nearly as easy as adding
them!

1988-2011 no progress, 2011-14 Stouthers, Vasilevska-Williams,
LeGall, 2021 Alman and V-W .004 improvement.
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Tensor formulation of conjecture

Set N = n2.
Matrix multiplication is a bilinear map

M〈n〉 : CN × CN → CN ,

Bilinear maps CN × CN → CN may also be viewed as trilinear

maps CN × CN × CN∗ → C.

In other words
M〈n〉 ∈ CN∗⊗CN∗⊗CN .

Exercise: As a trilinear map, M〈n〉(X ,Y ,Z ) = trace(XYZ ).
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Tensor formulation of conjecture

A tensor T ∈ CN⊗CN⊗CN =: A⊗B⊗C has rank one if it is of the
form T = a⊗b⊗c , with a ∈ A, b ∈ B, c ∈ C . Rank one tensors
correspond to bilinear maps that can be computed using one scalar
multiplication.

The rank of a tensor T , R(T ), is the smallest r such that T may
be written as a sum of r rank one tensors. The rank is essentially
the number of scalar multiplications needed to compute the
corresponding bilinear map.
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Tensor formulation of conjecture

Theorem (Strassen): M〈n〉 can be computed using O(nτ )
arithmetic operations ⇔ R(M〈n〉) = O(nτ )

Let ω := infτ{R(M〈n〉) = O(nτ )}

ω is called the exponent of matrix multiplication.

Classical: ω ≤ 3.

Corollary of Strassen’s algorithm: ω ≤ log2(7) ' 2.81.

Astounding Conjecture

ω = 2
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Geometric formulation of conjecture

Imagine this curve represents the set of tensors of rank one sitting
in the N3 dimensional space of tensors.
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Geometric formulation of conjecture
{ tensors of rank at most two} =
{ points on a secant line to set of tensors of rank one}

x

y

z=x+y

Conjecture is about a point (matrix multiplication) lying on a
secant r -plane to set of tensors of rank one. 9 / 25



Bini’s sleepless nights

Bini-Capovani-Lotti-Romani (1979) investigated if M〈2〉, with one
matrix entry set to zero, could be computed with five
multiplications (instead of the näıve 6), i.e., if this reduced matrix
multiplication tensor had rank 5.

They used numerical methods.

Their code appeared to have a problem.
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The limit of secant lines is a tangent line!

u

v

For T ∈ CN⊗CN⊗CN , the border rank of T R(T ) denotes the
smallest r such that T is a limit of tensors of rank r .
Theorem (Bini 1980) ω = infτ{R(M〈n〉) = O(nτ )}, so border rank
is also a legitimate complexity measure.
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Wider geometric perspective

Let X ⊂ CPM be a projective variety.

Our case: M = N3 − 1,
X = Seg(PN−1 × PN−1 × PN−1) ⊂ P(CN⊗CN⊗CN).

Stratify CPM by a sequence of nested varieties

X ⊂ σ2(X ) ⊂ σ3(X ) ⊂ · · · ⊂ σf (X ) = CPM

where
σr (X ) := ∪x1,...,xr∈X span{x1, . . . , xr}

is the variety of secant Pr−1’s to X .

Secant varieties have been studied for a long time.

In 1911 Terracini could have predicted Strassen’s discovery:
σ7(Seg(P3 × P3 × P3)) = P63.
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How to disprove astounding conjecture?

Let σr = σ̂r (Seg(PN−1 × PN−1 × PN−1)) ⊂ CN⊗CN⊗CN = CN3

tensors of border rank at most r .

Find a polynomial P (in N3 variables) in the ideal of σr , i.e., such
that P(T ) = 0 for all T ∈ σr .

Show that P(M〈n〉) 6= 0.

Embarassing (?): had not been known even for M〈2〉, i.e., for σ6
when N = 4.

Arora and Barak: lower bounds are “complexity theory’s
Waterloo ”
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Why did I think this would be easy?: Representation
Theory

Matrices of rank at most r : zero set of size r + 1 minors.

Tensors of border rank at most 1: zero set of size 2 minors of
flattenings tensors to matrices: A⊗B⊗C = (A⊗B)⊗C .

Tensors of border rank at most 2: zero set of degree 3 polynomials.

Representation theory: systematic way to search for polynomials.

2004 L-Manivel: No polynomials in ideal of σ6 of degree < 12

2013 Hauenstein-Ikenmeyer-L: No polynomials in ideal of σ6 of
degree < 19. However there are polynomials of degree 19. Caveat:
too complicated to evaluate on M〈2〉. Good news: easier
polynomial of degree 20 (trivial representation)  
(L 2006, Hauenstein-Ikenmeyer-L 2013) R(M〈2〉) = 7.
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Rank methods

A matrix has rank ≤ r iff all size (r + 1)× (r + 1) minors are zero.

Classical A⊗B⊗C = (A⊗B)⊗C border rank > r iff ∃ nonzero size
r + 1 minor of flattening.

Only gives weak bounds

To go further, embed A⊗B⊗C in larger matrix space:

e.g., (L-Ottaviani 2013) A⊗B⊗C ⊂ (ΛpA∗⊗B)⊗(Λp+1A⊗C ) (*)

and take minors.
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Results using rank methods

Strassen 1983: R(M〈n〉) ≥ 3
2n

2 .

Lickteig 1985: R(M〈n〉) ≥ 3
2n

2 + n
2 − 1

1985-2012: no further progress other than M〈2〉

(*)  (L-Ottaviani 2013) R(M〈n〉) ≥ 2n2 − n

For those familiar with representation theory: (*) found via a
G = GL(A)× GL(B)× GL(C ) module map from A⊗B⊗C to a
space of matrices (systematic search possible). For those familiar
with alg. geom.: (*) natural from vector bundle map perspective
(think Koszul)

Punch line: Found equations by exploiting symmetry of σr
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Bad News: Barriers

Theorem (Bernardi-Ranestad,Buczynski-Galcazka,Efremenko-
Garg-Oliviera-Wigderson): Game essentially over for rank
(determinantal) methods.

For the experts: Variety of zero dimensional schemes of length r
is not irreducible r > 7.

Determinantal methods detect zero dimensional schemes (want
zero dimensional smoothable schemes).

σr (X ) :=
⋃
{〈R〉 | length(R) = r , R ⊂ X , R : smoothable}

secant variety.
Let

κr (X ) :=
⋃
{〈R〉 | length(R) = r , R ⊂ X}

cactus variety.
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Bad News cont’d

Determinantal equations are equations for the cactus variety.

σr (Seg(PA× PB × PC )) = P(A⊗B⊗C ) when r ∼ m2

3

κr (Seg(PA× PB × PC )) = P(A⊗B⊗C ) when r ∼ 6m

Punch line: Barrier to progress.
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How to go further?

So far, lower bounds via symmetry of σr .

The matrix multiplication tensor also has symmetry:

T ∈ A⊗B⊗C , define symmetry group of T
GT := {g ∈ GL(A)× GL(B)× GL(C ) | g · T = T}

GL×3n ⊂ GM〈n〉 ⊂ GL×3
n2

= GL(A)× GL(B)× GL(C ):

Proof: (g1, g2, g3) ∈ GL×3n

trace(XYZ ) = trace((g1Xg2
−1)(g2Yg3

−1)(g3Zg1
−1))
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How to exploit GT?

Given T ∈ A⊗B⊗C
R(T ) ≤ r ⇔ ∃ curve Et ⊂ G (r ,A⊗B⊗C ) such that
i) For t 6= 0, Et is spanned by r rank one elements.
ii) T ∈ E0.

For all g ∈ GT , gEt also works.
 (L-Michalek 2017) can insist on normalized curves (those with
E0 Borel fixed).

 R(M〈n〉) ≥ 2n2 − log2n− 1

More bad news: this method cannot go much further.
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New idea: Buczyńska-Buczyński
Use more algebraic geometry: Consider not just curve of r points,
but the curve of ideals It ∈ Sym(A∗ ⊕ B∗ ⊕ C ∗) it gives rise to:
border apolarity method

T = limt→0
∑r

j=1 Tj ,t

It ideal of [T1,t ] ∪ · · · ∪ [Tr ,t ] ⊂ PA× PB × PC
Can consider limiting ideal but how to take limits?

Answer: Haiman-Sturmfels multigraded Hilbert scheme lives in a
product of Grassmannians.

Moreover: Can insist that limiting ideal I0 is Borel fixed: reduces
to small search in each multi-degree.

Instead of single curve Et ⊂ G (r ,A⊗B⊗C ) limiting to Borel fixed
point, for each (i , j , k) get curve in Gr(r ,S iA∗⊗S jB∗⊗SkC ∗), each
limiting to Borel fixed point and satisfying compatibility conditions.

Upshot: algorithm that either produces all normalized candidate
I0’s or proves border rank > r .
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Border apolarity results: Conner-Harper-L 2019:

 very easy computer free algebraic proof R(M〈2〉) = 7

Recall: Strassen R(M〈3〉) ≥ 14, L-Ottaviani R(M〈3〉) ≥ 15,
L-Michalek R(M〈3〉) ≥ 16.

Thm. R(M〈3〉) ≥ 17

Recall: so far only R(M〈2〉) known among nontrivial matrix
multiplication tensors.

Thm. R(M〈223〉) = 10 and Thm. R(M〈233〉) = 14

Thm. For all n > 25, R(M〈2nn〉) ≥ n2 + 1.32n + 1.
Thm. For all n > 14, R(M〈3nn〉) ≥ n2 + 2n.

First significant lower bound results for any “unbalanced” tensor.
Also good for other tensors, e.g. Thm: R(det3) = 17 important for
study of upper bounds on the exponent (another lecture)
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Bad News: Still have the barrier

Bad news: off the shelf border apolarity gives determinantal
equations— subject to barrier.

Conner-Huang-L 2020: augmentations that enable extensions of
the method,

 additional results. In particular:

R(perm3) = 16 (Conner-Huang-L). 2020
important for Strassen’s laser method for upper bounds on the
exponent of matrix multiplication solved CS problem open since
1988 another lecture – paths to overcome upper bound barriers via
geometry and representation theory
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Path to overcome the lower bound barrier

Effective implementation of deformation theory: allows one to
determine if an ideal is a limit of ideals of smooth schemes.

May 2022: with student Arpan Pal and Joachim Jelisiejew, small
example of this to determine border rank  

First effective implementation of deformation theory in the study
of tensors.

Path to overcome lower bound barriers!
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. recent developments:
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