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Real Variables

Classical formulation

In the classical formulation of real variables as maps

from a set X to the real numbers R, the set X has to

be uncountable if some variable has continuous range.

But then for any other variable with countable range

some of the multiplicities are infinite.
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This means that discrete and continuous variables can-

not coexist in this modern formalism.

Fortunately everything is fine and this problem of trea-

ting continuous and discrete variables on the same foo-

ting is completely solved using the formalism of quan-

tum mechanics.
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Werner Heisenberg

When manipulating the observables quantities for a mi-

croscopic system, the order of terms in a product plays

a crucial role. The commutativity of Cartesian coordi-

nates does not hold in the algebra of coordinates on

the phase space of a microscopic system.

5



Langage

(Anagrammes renversantes, d’Etienne Klein et Jacques

Perry-Salkow sur le sens caché du monde).

“L’horloge des anges ici-bas”

“Le boson scalaire de Higgs”

On a ici une anagramme parfaite, les deux ensembles

de mots donnent le même résultat quand on néglige

l’ordre des lettres, à savoir : a2bcde3g2hi2l2no2rs3. On

voit clairement que passer au commutatif est une perte

de sens.
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Quantum formalism

The first basic change of paradigm has indeed to do

with the classical notion of a “real variable” which one

would classically describe as a real valued function on

a set X, ie as a map from this set X to real numbers.

In fact quantum mechanics provides a very convenient

substitute. It is given by a self-adjoint operator in Hil-

bert space. Note that the choice of Hilbert space is

irrelevant here since all separable infinite dimensional

Hilbert spaces are isomorphic.
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All the usual attributes of real variables such as their

range, the number of times a real number is reached

as a value of the variable etc... have a perfect analogue

in the quantum mechanical setting. The range is the

spectrum of the operator, and the spectral multiplicity

gives the number of times a real number is reached. In

the early times of quantum mechanics, physicists had a

clear intuition of this analogy between operators in Hil-

bert space (which they called q-numbers) and variables.
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Discrete and continuous coexist

It is only because one drops commutativity that va-
riables with continuous range can coexist with variables
with countable range.

Thus it is the uniqueness of the separable infinite di-
mensional Hilbert space that cures the above problem,
L2[0,1] is the same as `2(N), and variables with conti-
nuous range coexist happily with variables with coun-
table range, such as the infinitesimal ones. The only
new fact is that they do not commute, and the real
subtlety is in their algebraic relations. For instance it
is the lack of commutation of the line element ds with
the coordinates that allows one to measure distances
in a noncommutative space given as a spectral triple.
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Newton

One striking point is the role that “variables” play in
Newton’s approach, while Leibniz introduced the term
“infinitesimal” but did not use variables. According to
Newton :

“In a certain problem, a variable is the quantity that
takes an infinite number of values which are quite de-
termined by this problem and are arranged in a definite
order”

“A variable is called infinitesimal if among its particular
values one can be found such that this value itself and
all following it are smaller in absolute value than an
arbitrary given number”
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Infinitesimals

What is surprising is that the new set-up immediately

provides a natural home for the “infinitesimal variables”

and here the distinction between “variables” and num-

bers (in many ways this is where the point of view of

Newton is more efficient than that of Leibniz) is essen-

tial.
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Indeed it is perfectly possible for an operator to be

“smaller than epsilon for any epsilon” without being

zero. This happens when the norm of the restriction of

the operator to subspaces of finite codimension tends

to zero when these subspaces decrease (under the natu-

ral filtration by inclusion). The corresponding operators

are called “compact” and they share with naive infini-

tesimals all the expected algebraic properties. Indeed

they form a two-sided ideal of the algebra of bounded

operators in Hilbert space and the only property of the

naive infinitesimal calculus that needs to be dropped is

the commutativity.
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Space X Algebra A

Real variable Self-adjoint
xµ operator H

Infinitesimal Compact
dx operator ε

Integral of
∫
ε = coefficient of

infinitesimal log(Λ) in TrΛ(ε)

Line element D−1 = Fermion√
gµν dxµdxν propagator
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Variability

At the philosophical level there is something quite sa-

tisfactory in the variability of the quantum mechanical

observables. Usually when pressed to explain what is

the cause of the variability in the external world, the

answer that comes naturally to the mind is just : the

passing of time.
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But precisely the quantum world provides a more subtle

answer since the reduction of the wave packet which

happens in any quantum measurement is nothing else

but the replacement of a “q-number” by an actual num-

ber which is chosen among the elements in its spec-

trum. Thus there is an intrinsic variability in the quan-

tum world which is so far not reducible to anything

classical. The results of observations are intrinsically va-

riable quantities, and this to the point that their values

cannot be reproduced from one experiment to the next,

but which, when taken altogether, form a q-number.
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How can time emerge

from quantum variability ?

As we shall see the study of subsystems as initiated by

von Neumann leads to a potential answer.
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Factorizations

Let the Hilbert space H factor as a tensor product :

H = H1 ⊗H2

Von Neumann investigated the meaning of such a fac-

torization at the level of operators.

A factor is an algebra of operators which has all the

obvious properties of the algebra of operators of the

form T1 ⊗ 1 acting in H = H1 ⊗H2.
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I0 On Rings of Operators

$ is lrilbert space, (Dr) tras further solutions. (cf. in particurar s§8.6 and
13.2.) Their properties seem to be of great importance for the general theory
of operators.

The general importance of the solutions of (D5) for operator theory follows
from this fact too, that their knowledge allows a characterisation and classifica-
tion of all rings of operators. This will be discussed in a subsequent paper of the
second author.

4. Another interpretation of (Dr) is suggested by quantum mechanics. The
operators of $ correspond there to all observable quantities which occur in a
mechanical system 6. (cf. (6), pp. 55-60, and (2c), p. 162. we restrict our-
selves to bounded operators, which correspond to those observables which have
a bounded renge. Thus B corresponds to the totality of these observablçs.)
Now if 6 can be decomposed into two parts 6r, 6z and if we denote the set of
the operators which correspond to observables situated entirely in 6r or in 6r
by Mr resp. M2, then we see:

(1) Mt, M2 are rings, and 1 (which corresponds to the "const&nt" observabre
1) belongs to both Mr, Mr.

(2) 11 A e M1, B e Mz then the measurements cf the obsen ables of /. and B
do not interfere (being in different parts of o); therefore a, B commute
(cf. (6), pp. 11-14 and 76, or (20), pp. rt7-t2r). Thus Mz C Mi.

(3) As 6 is the sum of 6r, 6, therefore R(M,, Mz) : B.
(1)-(3) describe the problem of "factorising" B which is dissusssd in more de-
tail in §3.1; it leads to our old problem: As Ml f Mz therefore R(Mr, Mi) :)
R(Mr, Mz) : B so R(M1, Mi) : B, that is preci^sely (Dr), which, * 1o" koorr,
is eguivalent to (Do). conversely: rf M fulûlls (D{) (th;t is Dr), then M1 -M, M, : M'satisfy (1)-(3). (Cf. §8.1 for more details.)

Thus our problem of solving (Du) corresponds to the quantum mechanical
problem of dividing a_system 6 into two subsystems 611 gzi and in particular
the solutions M of (Du) correspond to the semplete rings of all observables of
suitable quantum mechanical systems.

This interpretation of (D5) suggests of course strongly the surmise formulated
at the end of §2.2: It should be possible to describe .g as (isomorphic to) the
space of all two variable functions 1@, y), $! I î@, ù l, dr dy finite), M operating
on a only, and M'on y only. In this case @e O: would be explicitly given:
6r being described by the coordinate c, and 6r by the coordinate gr.

The fact that the surmise of §2.2 is not true, is therefore the more remarkable;
particularly so because certain features of the .exceptional" riogs M seem to
make them even better suited for quantum mechanical purposes than the cus-
tomary B. 'ÿÿe will now discuss these properties of M.

5. The full system of solutions of (Do) will be discussed in s§g.B-g.4. r{hile
rve refer to those sections for a eomplete discussion, we would like to call atten-
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Three types

Type I, if the Hilbert space H factor as a tensor pro-

duct :

H = H1 ⊗H2

Von Neumann found two other types :

Type II : The classification of subspaces gives an in-

terval [0,1] or [0,∞] ; continuous dimensions !

Type III : All that remains.
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KMS Condition

Im z = β

Im z = 0
F(t) = ϕ(aσt(b))

F(t + iβ) = ϕ(σt(b)a)

0

iβ

Fx,y(t) = ϕ(xσt(y)), Fx,y(t+ iβ) = ϕ(σt(y)x), ∀t ∈ R.
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Tomita–Takesaki

Theorem

Let M be a von Neumann algebra and ϕ a faithful nor-

mal state on M , then there exists a unique

σ
ϕ
t ∈ Aut(M)

which fulfills the KMS condition for β = 1.
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Thesis (1971–1972)

Theorem (ac)

1→ Int(M)→ Aut(M)→ Out(M)→ 1,

The class of σϕt in Out(M) does not depend on ϕ.

Thus a von Neumann algebra M, has a canonical evo-

lution

R δ−→ Out(M).

Noncommutativity ⇒ Evolution
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Classification of factors

New invariants and reduction of type III to type II and

automorphisms.

The Module S(M) : It is a closed subgroup of R∗+,

Factors of type IIIλ, λ ∈ [0,1]

Periods : It is a subgroup of R, T (M) ⊂ R.
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Thermodynamical origin of time

Many mathematical corollaries but what about physics ?

Carlo Rovelli had found for philosophical reasons that

rather than the usual determination of an equilibrium

state from the time evolution one should reverse the

correspondence and obtain the time evolution from the

statistical state. Two papers in 92 and 93.
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Algebra of observables for gravitation

We interpret time as a one parameter group of auto-

morphisms of the algebra of observables for gravitation.

“Where are we ?”

The answer is spectral
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It is well known since a famous one page paper of John

Milnor that the spectrum of operators, such as the

Laplacian, does not suffice to characterize a compact

Riemannian space. But it turns out that the missing

information is encoded by the relative position of two

abelian algebras of operators in Hilbert space. Due to

a theorem of von Neumann the algebra of multiplica-

tion by all measurable bounded functions acts in Hilbert

space in a unique manner, independent of the geometry

one starts with. Its relative position with respect to the

other abelian algebra given by all functions of the La-

placian suffices to recover the full geometry, provided

one knows the spectrum of the Laplacian. For some

reason which has to do with the inverse problem, it is

better to work with the Dirac operator.
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The unitary (CKM) invariant

of Riemannian manifolds

The invariants are :

— The spectrum Spec(D).

— The relative spectrum SpecN(M)

(N = {f(D)}).
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Gordon, Web, Wolpert

Gordon, C. ; Webb, D. ; Wolpert, S. (1992), ”Isospec-

tral plane domains and surfaces via Riemannian orbi-

folds”, Inventiones mathematicae

34





Two shapes with same spectrum (Chapman).
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Shape I
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Shape II
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Same spectrum

{a2 + b2 | a, b > 0} ∪ {c2/4 + d2/4 | 0 < c < d}

=

{e2/4 + f2 | e, f > 0} ∪ {g2/2 + h2/2 | 0 < g < h}
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Three classes of notes

One looks at the fractional part

1
4 : {e2/4 + f2} with e, f > 0 = {c2/4 + d2/4} with c+ d

odd.

1
2 : The c2/4 + d2/4 with c, d odd and g2/2 + h2/2 with
g + h odd.

0 : {a2 + b2 | a, b > 0} ∪ {4c2/4 + 4d2/4 | 0 < c < d} et
{4e2/4 + f2 | e, f > 0} ∪ {g2/2 + h2/2 | 0 < g < h} with
g + h even.
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Possible chords

The possible chords are not the same. Blue–Red is not

possible for shape II the one which contains the rec-

tangle.
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Points

The missing invariant should be interpreted as giving

the probability for correlations between the possible fre-

quencies, while a “point” of the geometric space X can

be thought of as a correlation, i.e. a specific positive

hermitian matrix ρλκ (up to scale) which encodes the

scalar product at the point between the eigenfunctions

of the Dirac operator associated to various frequencies

i.e. eigenvalues of the Dirac operator.
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It is rather convincing also that our faith in outer space

is based on the strong correlations that exist between

different frequencies, as encoded by the matrix gλµ, so

that the picture in infrared of the milky way is not that

different from its visible light counterpart, which can be

seen with a bare eye on a clear night.
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Geometry

Developing geometry for spaces whose coordinates do

not commute leads to a spectral version of geometry

intimately related to the formalism of quantum mecha-

nics.
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Riemannian paradigm

The Riemannian paradigm is based on the Taylor ex-

pansion in local coordinates of the square of the line

element and in order to measure the distance between

two points one minimizes the length of a path joining

the two points

d(a, b) = Inf
∫
γ

√
gµ ν dx

µ dxν
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Dirac
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Spectral paradigm

P. Dirac showed how to extract the square root of the

Laplacian and this provides a direct connection with the

quantum formalism : the line element is the propagator

ds = D−1

d(a, b) = Sup |f(a)− f(b)| | ‖[D, f ]‖ ≤ 1.

This is a “Kantorovich dual” of the usual formula.
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Line Element
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Change of unit of length, 1967, 1984

Meter → Wave length (Krypton (1967) spectrum of 86Kr then

Caesium (1984) hyperfine levels of C133)
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Gauge transfos = Int(A)

Let us consider the simplest example

A = C∞(M,Mn(C)) = C∞(M)⊗Mn(C)

Algebra of n× n matrices of smooth functions on ma-

nifold M .

The group Int(A) of inner automorphisms is locally iso-

morphic to the group G of smooth maps from M to the

small gauge group SU(n)

1→ Int(A)→ Aut(A)→ Out(A)→ 1

becomes identical to

1→Map(M,G)→ G → Diff(M)→ 1.
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Einstein–Yang-Mills

We have shown that the study of pure gravity on this

space yields Einstein gravity on M minimally coupled

with Yang-Mills theory for the gauge group SU(n). The

Yang-Mills gauge potential appears as the inner part of

the metric, in the same way as the group of gauge

transformations (for the gauge group SU(n)) appears

as the group of inner diffeomorphisms.
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Geometry

Developing geometry for spaces whose coordinates do

not commute leads to a spectral version of geometry

intimately related to the formalism of quantum mecha-

nics.
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Spectral paradigm

P. Dirac showed how to extract the square root of the

Laplacian and this provides a direct connection with the

quantum formalism : the line element is the propagator

ds = D−1

d(a, b) = Sup |f(a)− f(b)| | ‖[D, f ]‖ ≤ 1.

This is a “Kantorovich dual” of the usual formula.
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Space X Algebra A

Real variable Self-adjoint
xµ operator H

Infinitesimal Compact
dx operator ε

Integral of
∫
ε = coefficient of

infinitesimal log(Λ) in TrΛ(ε)

Line element D−1 = Fermion√
gµν dxµdxν propagator
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Spectral triples

(A,H, D) , ds = D−1 ,

d(A,B) = Sup {|f(A)− f(B)| ; f ∈ A , ‖[D, f ]‖ ≤ 1 }

Meter → Wave length (Krypton (1967) spectrum of 86Kr then

Caesium (1984) hyperfine levels of C133)
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Spectral Geometry

d(a, b) = Sup {|f(a)− f(b)| ; f ∈ A , ‖[D, f ]‖ ≤ 1 }

Once we know the spectrum Λ of D, the missing infor-
mation is contained in the relative position SpecN(M)
of the two von Neumann algebras : N = {h(D)} and M

all measurable (bounded) functions. The pair (M,H)
does not depend upon the manifold.

The relative spectrum SpecN(M) gives the probability
for correlations between the possible frequencies, while
a “point” of the geometric space X can be thought of
as a correlation, i.e. a specific positive hermitian matrix
ρλκ.
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Spectral Geometry

Manifold ↔ Poincaré duality in KO-homology

(A,H, D) , ds = D−1 , J, γ

[a, b0] = 0 , [[D, a], b0] = 0 , b0 = Jb∗J−1

J2 = ε , DJ = ε′JD, J γ = ε′′γJ, Dγ = −γD

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1
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In Physics

— H : one particle Euclidean Fermions

— D : inverse propagator

— J : charge conjugation

— γ : chirality
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Reconstruction Theorem

The restriction to spin manifolds is obtained by requi-

ring a real structure i.e. an antilinear unitary operator J

acting in H which plays the same role and has the same

algebraic properties as the charge conjugation operator

in physics.

In the even case the chirality operator γ plays an impor-

tant role, both γ and J are decorations of the spectral

triple.
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The following further relations hold for D, J and γ

J2 = ε , DJ = ε′JD, J γ = ε′′γJ, Dγ = −γD

The values of the three signs ε, ε′, ε′′ depend only, in the

classical case of spin manifolds, upon the value of the

dimension n modulo 8 and are given in the following

table :

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1
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Metric dimension and KO-dimension

In the classical case of spin manifolds there is thus a

relation between the metric (or spectral) dimension gi-

ven by the rate of growth of the spectrum of D and

the integer modulo 8 which appears in the above table.

For more general spaces however the two notions of

dimension (the dimension modulo 8 is called the KO-

dimension because of its origin in K-theory) become

independent since there are spaces F of metric dimen-

sion 0 but of arbitrary KO-dimension.
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Fine Structure

Starting with an ordinary spin geometry M of dimen-

sion n and taking the product M × F , one obtains a

space whose metric dimension is still n but whose KO-

dimension is the sum of n with the KO-dimension of

F .

As it turns out the Standard Model with neutrino mixing

favors the shift of dimension from the 4 of our familiar

space-time picture to 10 = 4 + 6 = 2 modulo 8.
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Finite spaces

In order to learn how to perform the above shift of di-

mension using a 0-dimensional space F , it is important

to classify such spaces. This was done in joint work with

A. Chamseddine. We classified there the finite spaces

F of given KO-dimension. A space F is finite when the

algebra AF of coordinates on F is finite dimensional.

We no longer require that this algebra is commutative.
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Classification

We classified the irreducible (A,H, J) and found out

that the solutions fall into two classes. Let AC be the

complex linear space generated by A in L(H), the alge-

bra of operators in H. By construction AC is a complex

algebra and one only has two cases :

1. The center Z (AC) is C, in which case AC =

Mk(C) for some k.

2. The center Z (AC) is C⊕ C and AC = Mk(C) ⊕
Mk(C) for some k.
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Moreover the knowledge of AC = Mk(C) shows that A
is either Mk(C) (unitary case), Mk(R) (real case) or,

when k = 2` is even, M`(H), where H is the field of

quaternions (symplectic case). This first case is a minor

variant of the Einstein-Yang-Mills case described above.

It turns out by studying their Z/2 gradings γ, that these

cases are incompatible with KO-dimension 6 which is

only possible in case (2).

67



KO-dimension 6

If one assumes that one is in the “symplectic–unitary”

case and that the grading is given by a grading of the

vector space over H, one can show that the dimension

of H which is 2k2 in case (2) is at least 2×16 while the

simplest solution is given by the algebra A = M2(H) ⊕
M4(C). This is an important variant of the Einstein-

Yang-Mills case because, as the center Z (AC) is C⊕ C,

the product of this finite geometry F by a manifold

M appears, from the commutative standpoint, as two

distinct copies of M .
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Reduction to SM gauge group

We showed that requiring that these two copies of M

stay a finite distance apart reduces the symmetries from

the group SU(2) × SU(2) × SU(4) of inner automor-

phisms of the even part of the algebra to the symme-

tries U(1)×SU(2)×SU(3) of the Standard Model. This

reduction of the gauge symmetry occurs because of the

order one condition

[[D, a], b0] = 0 , ∀ a, b ∈ A
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Inner fluctuations

Joint work with Ali Chamseddine

and Walter van Suijlekom
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Breaking to C⊕ H⊕M3(C)

This leads us to address the issue of the breaking from

the natural algebra A which results from the classifica-

tion of irreducible finite geometries of KO-dimension 6

(modulo 8), to the algebra corresponding to the SM.

This breaking was effected using the requirement of the

first order condition on the Dirac operator. This condi-

tion was used as a mathematical requirement to select

the maximal subalgebra

C⊕ H⊕M3(C) ⊂ HR ⊕ HL ⊕M4(C)

which is compatible with the first order condition and

is the main reason behind the unique selection of the

SM.
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Fluctuations without order one condition

Our point of departure is that one can extend inner

fluctuations to the general case, i.e. without assuming

the order one condition. It suffices to add a quadratic

term which only depends upon the universal 1-form ω ∈
Ω1(A) to the formula and one restores in this way,

— The gauge invariance under the unitaries U =

uJuJ−1

— The fact that inner fluctuations are transitive,

i.e. that inner fluctuations of inner fluctuations

are themselves inner fluctuations.
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DA = D +A(1) + Ã(1) +A(2)

where

A(1) =
∑
i

ai [D, bi]

Ã(1) =
∑
i

âi
[
D, b̂i

]
, âi = JaiJ

−1, b̂i = JbiJ
−1

A(2) =
∑
i,j

âiaj
[[
D, bj

]
, b̂i
]

=
∑
i,j

âi
[
A(1), b̂i

]
.

Clearly A(2) which depends quadratically on the fields in

A(1) vanishes when the first order condition is satisfied.
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Semigroup of inner fluctuations

We show moreover that the resulting inner fluctuations

come from the action on operators in Hilbert space of

a semi-group Pert(A) of inner perturbations which only

depends on the involutive algebra A and extends the

unitary group of A.
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The map η to Ω1(A)

(i) The following map η is a surjection

η : {
∑

aj ⊗ bop
j ∈ A⊗A

op |
∑

ajbj = 1} → Ω1(A),

η(
∑

aj ⊗ bop
j ) =

∑
ajδ(bj).

(ii) One has

η
(∑

b∗j ⊗ a
∗op
j

)
=
(
η
(∑

aj ⊗ bop
j

))∗
(iii) One has, for any unitary u ∈ A,

η
(∑

uaj ⊗ (bju
∗)op

)
= γu

(
η
(∑

aj ⊗ bop
j

))
where γu is the gauge transformation of potentials.
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Semigroup Pert(A)

(i) The self-adjoint normalized elements of A⊗Aop form
a semi-group Pert(A) under multiplication.

(ii) The transitivity of inner fluctuations (i.e. the fact
that inner fluctuations of inner fluctuations are inner
fluctuations) corresponds to the semi-group law in the
semi-group Pert(A).

(iii) The semi-group Pert(A) acts on real spectral triples
through the homomorphism

µ : Pert(A)→ Pert(A⊗ Â)

given by

A ∈ A⊗Aop 7→ µ(A) = A⊗ Â ∈
(
A⊗ Â

)
⊗
(
A⊗ Â

)op
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(iv) Let A =
∑
aj ⊗ bop

j ∈ A ⊗ Aop normalized by the

condition
∑
ajbj = 1. Then the operator D′ = D(η(A))

is equal to the inner fluctuation of D with respect to

the algebra A⊗ Â and the 1-form η(A⊗ Â), that is

D′ = D +
∑

aiâj[D, bîbj]

(v) An inner fluctuation of an inner fluctuation of D is

still an inner fluctuation of D, and more precisely one

has, with A and A′ normalized elements of A⊗Aop as

above,

(D(η(A))) (η(A′)) = D(η(A′A))

where the product A′A is taken in the tensor product

algebra A⊗Aop.
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