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Introduction

Since about a century, the relation between quantum physics and
gravitation is not fully understood.

Quantum physics: very successful in nonrelativistic physics where
precise mathematical results can be compared with experiments,

somewhat less successful in elementary particle physics where
theory delivers only the first terms of a formal power series, but up
to now also excellent agreement with experiments.

General relativity: also excellent confirmation by astronomical
data. Deviations can explained by plausible assumptions (dark
matter, dark energy).

Essentially open: Consistent theory which combines general
relativity and quantum physics.

Plan of the lecture: A systematic development of quantum field
theory on curved spacetimes with an attempt to include also
perturbative quantum gravity.
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Surprises in QFT on curved backgrounds

Classical field theory, e.g. Maxwell’s theory of the electromagnetic
field, can easily be formulated on generic Lorentzian manifolds.
The electromagnetic field strength is considered as a 2-form

F = Fµνdxµ ∧ dxν

and Maxwell’s equation take the form

dF = 0

with the exterior differentiation d and

δF = j

where δ = ?−1d? is the coderivative, and j is a conserved current.
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Structures which enter are

Spacetime as a smooth orientable manifold M, hence
differential forms and exterior derivative are well defined.

A nondegenerate metric g and an orientation in terms of
which the Hodge dual can be defined:

? : Λk(M)→ Λn−k(M), n = dimM
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The standard formalism of QFT, however, relies heavily on
Poincaré symmetry:

Particles are defined as irreducible representations of the
(covering of the) Poincaré group.

There is a distinguished state, the vacuum, understood as the
state with all particles absent.

The main physical observable is the S-matrix, describing the
transition from incoming to outgoing particle configurations.

Momentum space (as the dual of the subgroup of
translations) plays an important role for calculations.

Transition to imaginary time (euclidean QFT) is often helpful
in order to improve convergence.
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None of these features is present for QFT on generic Lorentzian
spacetimes:

Generically, the group of spacetime symmetries is trivial.

Accordingly, the very concept of particles is no longer
available.

In particular, the concept of the vacuum as state without
particles becomes meaningless.

Transition to imaginary times (and a corresponding transition
to a Riemannian space) is possible only in special cases.

Calculations relying on momentum space cannot be done.

There is no unique definition of the Feynman propagator.
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First observations:

”Particle creation”: In free field theory, one might introduce a
particle concept appropriate for some spatial hypersurface.
But comparison of the particle numbers on different
hypersurfaces yields particle creation (typically infinite
changes).

”Hawking radiation”: In the analysis of a scalar field in the
field of a collapsing star one finds that an initial ground state
(in the static situation before the collapse) evolves into a state
with thermal radiation after the collapse.

”Unruh effect”: Even on Minkowski space, for a uniformly
accelerated observer, the vacuum gets thermal properties.
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Strategy for the formulation of QFT on curved spacetime:

Decouple local features (field equations, commutation
relations) from nonlocal features (correlations).
This amounts to construct, in a first step, the algebra of
observables as an abstract algebra and consider afterwards
representations by Hilbert space operators (”algebraic
approach to QFT” (Haag-Araki-Kastler)).

Find a local version of the spectrum condition (”positivity of
energy”) which is the most important structural impact of the
Hilbert space representation of QFT on Minkowski space.
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Plan of the lecture:

1 Lorentzian geometry and field equations

2 Quantization

3 Microlocal spectrum condition

4 Renormalization

5 Covariance

6 Gauge theories and gravity

7 Outlook
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1. Lorentzian geometry and field equations

A spacetime is a smooth manifold equipped with a metric g with
Lorentzian signature (+−−−).
A causal curve is a smooth curve γ with a tangent vector γ̇ which
is timelike or lightlike ,

g(γ̇, γ̇) ≥ 0 .

We assume that our spacetime is time orientable,
i.e. there exists a smooth vector field v which is everywhere
timelike.
The choice of such a vector field induces a time orientation:
A timelike or lightlike tangent vector ξ at some spacetime point x
is called future directed if

g(ξ, v(x)) > 0 .
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A causal curve is called future directed if all its tangent vectors are
future directed.
This allows to introduce the future J+(x) of a point x as the set of
points which can be reached from x by a future directed causal
curve:

J+(x) = {y ∈ M|∃γ : x → y future directed}

In an analogous way the past J− of a point is defined.
Note that future and past are in general not closed.
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Crucial for the following is the concept of global hyperbolicity.

Definition

A spacetime is called globally hyperbolic if it does not contain
closed causal curves and if for any two points x and y the set
J+(x) ∩ J−(y) is compact.

Globally hyperbolic spacetimes have many nice properties:

They have a Cauchy surface, i.e. a smooth spacelike
hypersurface which is hit exactly once by each nonextendible
causal curve.

They have even a foliation by Cauchy surfaces, and all Cauchy
surfaces are diffeomorphic, i.e. globally hyperbolic spacetimes
are diffeomorphic to Σ× R with Cauchy surfaces
Σ× {t}, t ∈ R.
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Normally hyperbolic linear partial differential equations, i.e.
with principal symbol the inverse metric, considered as a
function on the cotangent bundle, have a well posed Cauchy
problem. In particular they have unique retarded and
advanced Green’s functions.

The simplest example is the Klein-Gordon equation

(� + m2)ϕ = 0

with the d’Alembertian

� = | det g |−
1
2∂µ(g−1)µν | det g |

1
2∂ν

in local coordinates.
Let ∆R/A denote the retarded and advanced propagators,

∆R/A : D → E ,

E space of smooth functions, D subspace of functions with
compact support.
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They are uniquely characterized by the conditions

(� + m2) ◦∆R/A = ∆R/A ◦ (� + m2) = idD

and the support condition

supp ∆R/Af ⊂ J±(supp f )

with the future (past ) J± of a subset of spacetime.

The difference
∆ = ∆R −∆A

(often called the causal propagator, and later named the
commutator function) has the property
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The bilinear form on D

σ(f , g) =

∫
f (x)(∆g)(x)dvol(x) ,

is antisymmetric, and σ(f , g) = 0 for all g ∈ D iff
f = (� + m2)h for some h with compact support.

This leads to the Poisson bracket

{ϕ(x), ϕ(y)} = ∆(x , y)

for the classical Klein Gordon field ϕ.
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2. Quantization

The space of field configurations for a scalar field is the space E of
smooth functions. Observables are functionals F : E → C.
Examples:

Regular linear functionals

F (ϕ) =

∫
ϕ(x)f (x)

with a test density f .

Regular polynomials

F (ϕ) =
N∑

n=0

∫
ϕ(x1) . . . ϕ(xn)fn(x1, . . . , xn)

with test densities fn in n variables.
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Local functionals (”Lagrangians”)

F (ϕ) =

∫
f (x , ϕ(x), ∂ϕ(x), . . . )

with a density valued function f on the jet space of M.

Functional derivatives: F (n) ≡ δF
δϕn are compactly supported

distributional densities in n variables, symmetrical under
permutations of arguments, determined by

〈F (n)(ϕ), ψ⊗n〉 =
dn

dλn
F (ϕ+ λψ)|λ=0
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Canonical structure: Poisson bracket on functionals of field
configurations by the Peierls bracket:

{F ,G} =

∫
δF

δϕ(x)
∆(x , y)

δG

δϕ(y)

Deformation Quantization: Find an ~-dependent associative
product ∗~ on the space of functionals such that in the limit ~→ 0

(F ∗~ G )(ϕ)→ F (ϕ)G (ϕ) ,

1

i~
(F ∗~ G − G ∗~ F )→ {F ,G} .

First approach: Weyl-Moyal quantization.

Define the ∗-product in terms of the commutator function

(F ∗ G )(ϕ) = e
i~
2

∫
δ

δϕ1(x)
∆(x ,y) δ

δϕ2(y) F (ϕ1)G (ϕ2)|ϕ1=ϕ2=ϕ
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For linear functionals F (ϕ) =
∫
ϕf ,G (ϕ) =

∫
ϕg we find

F ∗ G (ϕ) =

∫
ϕ(x)ϕ(y)f (x)g(y) +

i~
2

∫
f (x)∆(x , y)g(y)

Problem: Product is ill defined on nonlinear local functionals.
Example: Formally∫

ϕ(x)2f (x) ∗
∫
ϕ(y)2g(y) =

∫
f (x)g(y)

(
ϕ(x2)ϕ(y)2 + 2i~∆(x , y)ϕ(x)ϕ(y)− ~2

2
∆(x , y)2

)
∆2 is not a well defined distribution.
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3. Microlocal spectrum condition

The conditions on deformation quantization,

(F ∗~ G )(ϕ)→ F (ϕ)G (ϕ) ,

1

i~
(F ∗~ G − G ∗~ F )→ {F ,G} ,

do not fix the ∗-product.
We can replace in the formula

(F ∗ G )(ϕ) = e
i~
2

∫
δ

δϕ1(x)
∆(x ,y) δ

δϕ2(y) F (ϕ1)G (ϕ2)|ϕ1=ϕ2=ϕ

the distribution i
2 ∆ by any distribution H with

H(x , y)− H(y , x) = i∆(x , y) .
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The new ∗H -product is equivalent to the previous one:

Namely, let ΓH = e
~
2

∫
H(x ,y) δ2

δϕ(x)δϕ(y) . Then

ΓHF ∗H ΓHG = ΓH(F ∗ G ) .

Wish list for H:
1 H is a bisolution of the Klein-Gordon equation, hence the

functionals F vanishing on solutions form an ideal.

2 Pointwise products of H exist, such that ∗H -products of
polynomial local functionals are well defined.

3 H is a distribution of positive type,∫
f (x)H(x , y)f (y) ≥ 0

for all complex valued test densities f .
Then the evaluation maps

F → F (ϕ)

are states, i.e. (F ∗H F )(ϕ) ≥ 0.
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4 H should locally select positive frequencies, thus fulfilling the
requirements on positivity of energy in the small.

Example:
On Minkowski space, the positive frequency part ∆+ of ∆ (the
Wightman 2-point function),

∆+(x , y) =∫
d3p

2ω(p)
e−iω(p)(x0−y0)+ip(x−y) ,

with ω(p) =
√
|p|2 + m2, fulfills all conditions.
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The conditions can be discussed in terms of the wave front sets of
the arising distributions.

The wave front set of ∆ is

WF∆ =

{(x , x ′; k, k ′)|∃ a null geodesic γ : x → x ′,

such that k||g(γ̇(0), ·) and Pγk + k ′ = 0}

Here Pγ denotes the parallel transport along γ.

Wave front set of ∆+:

WF∆+ = {(x , x ′; k, k ′) ∈WF∆, 〈k, v(x)〉 > 0}

This is one of the smallest possible wave front sets under the
condition 2Im∆+ = ∆ (the other is obtained by reversing the sign
in 〈k, v(x)〉 > 0〉 and is the wave front set of ∆− = −∆+).
But ∆− is not of positive type.
(Lucky coincidence of positivity of states and positivity of energy.)
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Definition of Hadamard functions (Radzikowski):

Definition

A bisolution H of the Klein-Gordon equation is called a Hadamard
function if

1 2ImH = ∆

2 WFH = {(x , x ′.k, k ′) ∈WF∆, 〈k , v(x)〉 > 0〉} (microlocal
spectrum condition (µSC))

3 H is of positive type.
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Before the work of Radzikowski, Hadamard functions were
characterized by their singular structure. In 4 dimensions one finds
for x and y in a geodesically convex neighborhood V , and x and y
spacelike separated

H(x , y) =
u(x , y)

σ(x , y)
+ v(x , y) log σ(x , y) + w(x , y)

with smooth function u, v ,w and

σ(x , y) = l(γx ,y )2

with the length l of the (unique) geodesic which connects x and y
within the neighborhood V .

Radzikowski proved that his condition (later called the microlocal
spectrum condition) is equivalent to the previous one (which was
precisely formulated by Kay and Wald immediately before
Radzikowski’s work).
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The new definition makes the machinery of microlocal analysis
available for QFT on curved spacetimes.

Immediate results:

Wick polynomials as operator valued distributions
(Brunetti,F,Köhler):
Correlation functions of Wick polynomials are expressed in
terms of products of (derivatives of) H. The wave front sets
of all these products satisfy the condition that their sum never
hits the zero section. As a consequence, the fluctuations of
the smeared energy momentum tensor are finite.

”Quantum energy inequalities” (Fewster). The energy density
has a finite expectation value in a Hadamard state, but can
become arbitrarily negative (this holds even for the vacuum
state on Minkowski space). But after smearing with a square
of a real test function it becomes bounded from below.

UV renormalization (Brunetti,F; Hollands, Wald)
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4. Renormalization

Program of causal perturbation theory (Stückelberg, Bogoliubov,
Epstein-Glaser):

Define the time ordered products of Wick products of free fields as
operator valued distributions on Fock space.

Here the time ordered products are supposed to satisfy a few
axioms, the most important one being that the time ordered
product coincides with the operator product if the arguments are
time ordered.

Epstein and Glaser (1973) succeeded in proving that solutions
satisfying the axioms exist and that the ambiguity is labeled by the
known renormalization conditions. The solution can be either
constructed directly or via one of the known methods (BPHZ,
Pauli-Villars, momentum cutoff and counter terms,etc.)
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Application of causal perturbation theory to curved spacetimes
requires a completely local reformulation. In particular

No reference to Fock space

No use of translation symmetry

New concept of the adiabatic limit

Universal renormalization conditions

Crucial ingredient is the time ordering operator T : Fmloc → Fµc

T = e
1
2
〈HF ,

δ2

δϕ2 〉

with the Feynman propagator determined by H, HF = H + i∆R .

Fmloc unital algebra (with respect to the pointwise (classical)
product) generated by local functionals.
Floc space of compactly supported local functionals which vanish
at ϕ = 0.
Fµc space of microcausal functionals, i.e. compactly supported
smooth functionals with WFF (n) ∩M × (V

n
+ ∪ V

n
−) = ∅.
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Example: Let F (ϕ) =
∫
ϕ(x)2ϕ(y)2f (x)g(y). Then

TF (ϕ) =

F (ϕ)+4~
∫

HF (x , y)ϕ(x)ϕ(y)f (x)g(y)+2~2

∫
HF (x , y)2f (x)g(y)

The wave front set of HF is the union of the wave front set of H
and the wave front set of the δ-function.

WFδ = {(x , x ; k ,−k), k 6= 0}

Hence the wave front set of HF does satisfy the criterion for
multiplication of distributions only outside of the diagonal
diag(M) = {(x , x), x ∈ M}.
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Mathematical problem: Extend a distribution which is defined
outside of a submanifold to the full manifold.
Can be reduced to the extension problem of distributions on
Rn \ {0}. The criterion is Steinmann’s scaling degree.

Definition

Let t be a distribution on an open cone in Rn. The scaling degree
is defined as

sd(t) = inf{ρ ∈ R|λρt(λ·)→ 0}

Theorem

Let t be a distribution on Rn \ {0}.
If sdt <∞ then t has extensions with the same scaling
degree. Two such extensions differ by a derivative of the
δ-function of order ≤ sdt − n.

If sd =∞ then t cannot be extended to a distribution on Rn.
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This theorem replaces completely the standard regularization
techniques. They may however be used for getting an explicit
choice among the possible extensions. The relation to
regularization techniques is as follows: In case of a finite scaling
degree ≥ n the distribution can be uniquely extended to all test
functions which vanish at zero with order ω = [sdt − n]. Choose a
projection W on a complementary subspace of D(Rn). Then an
extension tW is given by

tW = t ◦ (1−W )

All extensions are of this form. W is a projection on a finite
dimensional space and has the form
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W =
∑
|wα〉〈∂αδ|

where the functions wα form a basis of WD(Rn) which is dual to
{∂αδ, |α| ≤ ω}, i.e. ∂αwβ(0) = (−1)|α|δαβ .

Now let tn be a sequence of distributions on Rn which converges
to t on the space of test functions which vanish at zero of order ω.
Then

tW = t ◦ (1−W ) = lim
n

tn ◦ (1−W )

= lim
n

tn −
∑
〈tn,wα〉〈∂αδ|

This shows the occurence of divergent counter terms.
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Construction of T:

Let SFloc be the symmetric Fock space over the space of local
functionals. The multiplication map

m : SFloc → Fmloc , F1 ⊗ · · · ⊗ Fn 7→ F1 . . .Fn

is bijective.

Define n-linear maps

Tn : SnFloc → Fµc
by

Tn = m ◦ exp
∑
i<j

Dij

with Dij = 〈 δδϕi
HF

δ
δϕj
〉.

The definition of Tn involves renormalization and is performed
inductively in n by extending distributions. Define T by

T =
∑

Tn ◦m−1 .
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The time ordering operator T can be formally understood in terms
of path integrals. Namely

TF (ϕ) =

∫
dµHF

(ψ)F (ϕ− ψ)

where µHF
is the oscillating Gaussian ”measure” with covariance

HF .

The renormalized time ordered product is now defined on the space
TFmloc by

F ·T G = T (T−1F · T−1G )

where · denotes the classical (pointwise) product. We have the
following theorem (F-Rejzner)

Theorem

The renormalized time ordered product ·T is equivalent to the
classical product. It is in particular commutative and associative.
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The formal S-matrix for a local functional L is now defined as the
time ordered exponential:

S(L) = T ◦ exp ◦T−1L ≡ expT L .

Note that T acts trivially on local functionals. This corresponds to
doing normal ordering with respect to H. If we change H then L is
transformed.

Bogoliubov’s formula gives rise to a Moeller map from the free to
the interacting theory

RL(F ) = S(L)−1 ∗ (S(L) ·T F )

Here T−1F is multilocal.
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Renormalization group:

The ambiguity in the construction of T can be described in terms
of the renormalization group R of Stückelberg and Petermann. It
is related, but not identical to the renormalization group of Wilson
(which is not a group). R is the set of all analytic bijections Z of
Floc which are local, i.e.

Z (F + G ) = Z (F ) + Z (G )

if F and G have disjoint support, and have Z (1)(0) = id.
The main theorem of renormalization (Stora-Popineau, Pinter,
Hollands-Wald, Dütsch-F,Brunetti-F-Dütsch) states

Theorem

Let S be a formal S-matrix. Then any other formal S-matrix Ŝ is
obtained by

Ŝ = S ◦ Z

for a unique Z ∈ R.
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5. Covariance

In the construction of the renormalized theory the extensions of
distributions had to be done independently for every point. This
induces a huge ambiguity in the theory and would it make difficult
to compare results obtained at different points of spacetime. The
difficulty is the absence of isometries in the generic situations. In
highly symmetric situations, e.g. for de Sitter spacetime, the
problem does not appear.
The solution of this problem is to construct the theory on all
spacetimes of a given class simultaneously in a coherent way.
It is best formulated in the language of algebraic field theory.
There one associates to suitable subregions of a given spacetime
unital *-algebras such that certain axioms (the Haag-Kastler
axioms) are satisfied.
We may consider these subregions as spacetimes in their own right
and generalize the Haag-Kastler framework in the following way:
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Associate to every globally hyperbolic, contractible, orientable
and time oriented manifold M of a given dimension a unital
(C)*-algebra A(M).

For every isometric, causality and orientation preserving
embedding χ : M → N there existe an injective
homomorphism Aχ : A(M)→ A(N).

If χ : M → N and ψ : N → L are admissible embeddings as
characterized above then Aψ ◦ χ = Aψ ◦ Aχ.

If χ : M → L and ψ : N → L are admissible embeddings such
that χ(M) is spacelike separated from ψ(N), then

[Aχ(A(M)),Aψ(A(N))] = {0} .

If χ(M) contains a Cauchy surface of N, then Aχ is an
isomorphism.
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In other words, the quantum field theory is considered to be a
functor
from the category of spacetimes (with admissible embeddings as
morphisms)
to the category of unital (C)*-algebras (with injective
homomorphisms as morphisms)
(locally covariant QFT (Brunetti-F-Verch)).
In this framework, one can define fields independently of the choice
of a spacetime.
Namely a locally covariant quantum field is a natural
transformation between the functor of test function spaces and the
QFT functor. This means that a field Φ is a family of maps
ΦM : D(M)→ A(M) such that for χ : M → N

ΦN ◦ χ∗ = Aχ ◦ ΦM

i.e.
ΦN(χ(x)) = Aχ(ΦM(x)) .
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Note that the last equation expresses, in the case N = M, the
covariance of the field under the symmetry χ.
Thus the condition can be considered as a generalization of
covariance to the situations where spacetimes may have no
nontrivial symmetries.

Application to renormalization:
Define the time ordering operator as a natural transformation,
i.e. if M is an admissible subregion of N then the time ordering
TM must coincide with TN restricted to functionals with support
in M.
Obstruction: there does not exist a natural Hadamard function, i.e.
a family HM such that HN(χ(x), χ(y)) = HM(x , y). This is related
to the nonexistence of a vacuum.
Solution was obtained by Hollands and Wald.
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6. Gauge theories and gravity

Up to now, only scalar theories are considered.
Dirac and Majorana fields create no fundamentally new problems,
but require some work on consistent choice of signs and factors i .

In gauge theories and gravity, however, new phenomena occur
since the field equations have no well posed Cauchy problem, due
to the gauge symmetry.

In classical field theory one usually fixes the gauge such that the
Cauchy problem becomes well posed.

In quantum field theory, and also in the canonical formalism of
classical field theory this is not directly possible since the
expressions one would like to set to 0 have nonvanishing
commutators (or Poisson brackets, respectively).
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One therefore chooses another way and extends the theory such
that the Cauchy problem becomes well posed, and then extracts
from this the physically relevant theory.

In electrodynamics, e.g., one introduces the so-called
Nakanishi-Lautrup field B and adds a term BδA + λ

2 B2 to the
Lagrangian.
After construction of the theory, one considers the commutant of
B, divides out the ideal generated by B and obtains at the end the
algebra of observables.

In Yang Mills theories one needs in addition to add scalar fermionic
fields, the Faddeev-Popov ghosts and antighosts. One finds a
graded derivation, the BRST transformation s which satisfies
s2 = 0. The cohomology of s, i.e.Kes/Ras yields then the algebra
of observables.
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In gravity, an analogous procedure leads to a trivial cohomology,
due to the absence of local observables.

Way out: Use dynamical fields as coordinates (possible for generic
field configurations).

Quantization: Choose a generic globally hyperbolic metric g0.
Expand the extended action around g0 to second order in
h = (g − g0), bµ, c

µ, c̄µ and choose a Hadamard solution for the
linearized field equation.

Construct the time-ordered product such that BRST invariance
holds.

Show, that infinitesimal changes of the background do not change
the theory (principle of perturbative agreement (Hollands-Wald)).

Construct states around solutions of the classical field equations.
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Conclusions and outlook

The functorial approach to quantum field theory, originally
developed for the purposes of renormalization on curved
spacetimes, offers a framework for a background independent
approach to quantum gravity.

The problem of nonrenormalizability is open. An
interpretation as an effective field theory seems to be possible.

The flow of the renormalization group should be studied and
compared with the results of Reuter et al.

Applications to physical phenomena are urgently needed.

The restriction to generic backgrounds is a practical obstacle
for the discussion of concrete examples. A way out might be
the addition of fields like the dust fields (Brown-Kuchar) as
used e.g. in loop quantum gravity.
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