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A way to specify the preferable basis which determines the ensemble of universes in the many-worlds conception of quantum
theory is proposed. This way is based on a consideration of the classical limit in quantum mechanics. The specified basis is shown
to be necessary and sufficient for comparison of theory with observations.

1. Introduction

In quantum theory, a physical system is charac-
terized by the vector of the corresponding Hilbert
space, |y ), which contains all the information on
the state of the system. To interpret the vector |y >,
it is usually necessary to find the expansion of this
vector in a certain basis of the initial Hilbert space.
Although all the various expansions are equivalent
from the point of view of the mathematics of the the-
ory, in comparison of the elements of the mathe-
matics with the elements of reality this equivalence
is violated. So, in the Copenhagen conception of
quantum theory in a consideration of a concrete ex-
periment, preferable is the set of vectors to which the
initial vector of the “state” of the system may be re-
duced as a result of measurement. In the many-worlds
version of quantum theory [1,2] there also exists a
preferable basis which characterizes the ensemble of
universes described by quantum mechanics [3]. At
each time moment a concrete element of this pref-
erable basis is assigned a concrete universe. Thus, a
preferable basis determines the scheme of compar-
ison of an abstract vector |y ) of a Hilbert space with
elements of reality (ensemble of universes). In what
follows we are dealing only with the many-worlds
conception of quantum theory.

Several papers [3-5] proposed different ways to
define a preferable basis. A detailed analysis of these
preferable bases will be given elsewhere. The aim of
the present paper is to describe the classical prefer-

able basis (and its possible quasiclassical extension)
which in our opinion is not only the most natural
one but also necessary and sufficient for comparison
of theory with observations. To this end we first of
all briefly dwell on a not very trivial question con-
cerning the classical limit of quantum mechanics.

2. The classical limit of quantum mechanics

As is well known, the behaviour of macroscopic
objects obeys the laws of classical mechanics. On the
other hand, since any macro-object consists of
micro-objects each of which is described by quan-
tum mechanics and there is no reason to exclude ap-
plication of quantum laws to systems containing a
large number of particles [6]; it must be also pos-
sible for macro-objects to be described by quantum
mechanics. In the corresponding limiting case, there-
fore, the classical laws must follow from the quan-
tum-mechanical laws. The question about passing
over from the Schrédinger equation to the equations
of classical physics is usually clearly formulated and
solved only for simple concrete physical systems [7].
The concept of a classical system can also be defined
only in the framework of a concrete physical problem.

In any experiment, an observer perceives directly
only a set of classical data .#* (a=1, 2, ...) on the
state of the subsystems of an investigated physical
system. These data are always known with a limited
degree of accuracy of 8.#¢. We will call classical such
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subsystems of a physical system whose state in the
framework of the formulated problem is uniquely
characterized by a set of macroscopical operators M“
asigned to observed classical quantities .#%. An op-
erator A is called macroscopic if there exists a
(super) complete set of such vectors ;> in the Hil-
bert space of an investigated subsystem such that the
quantities

M=y, | My, (1)

satisfy the classical equations of motion with an ac-
curacy exceeding 3.4,

It can be shown that for any vector |y,> the fol-
lowing relations hold in this case,

Uil (M*=M*)? |y >\ <8< M*, ... (2)

Besides the vectors (y,;> and [¢;> can be distin-
guished only if they correspond to classically distinct
states, i.e. if for a certain o we have

|M&~M|>8.4% . (3)

If for the states i and j the conditions (3) do not hold,
we will identify these states and henceforth use the
indices i only for distinguishable states. For super-
position of the wave functions |y,> and {¢;> (i%))
(a state of the “Schrodinger cat™ type [8])

W >=ajy>tB8ly, ), (4)

the equations for the mean M= (y | M|y > derived
from the Schrodinger equation are the sum of two
classical equations (with weights j« |2 and {f]? for
M=y, M*y,> and M% =y, M*|y>). It is
natural to assume therefore that the wave function
(4) described two types of classically different en-
sembles of universes. In this case the vectors |y;>
and |y,> are the components of the preferable basis
which specify different universes.

It is natural that classical equations are not exact.
Quantum corrections to these equations are respon-
sible for an interference interaction between differ-
ent universes. These corrections are however small
as compared with 8.#<, and therefore the interaction
between universes is smaller than the accuracy of the
specification of universes. Classically different uni-
verses do not interact in this approximation and de-
velop independently.
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3. Preferable basis

On the basis of the previous consideration one can
formulate the general rule for the definition of the
preferable basis which determines an ensemble of
universes described by a given wave function. Since
an observer perceives the microworls only in the form
of macroscopic phenomena, different universes have
an interpretational sense for him only because they
are macroscopically (classically) distinct. It is use-
less to speak of microscopically distinct universes
because the interaction (interference) of such uni-
verses 1s t0o strong.

The definition of a preferable basis is based on the
following fact: the observed world of macro-objects
is a classical world.

Consider a system described by a complete wave
function |w(...) ). Fixing accuracies of determina-
tion of classical observables of a system, single out
in the physical system all possible classical subsys-
tems M, M,, ... characterized by sets of macroscopic
operators M¢, M.... Each of these subsystems is de-
scribed by its own Hilbert space #*/. In the Hilbert
spaces #™', ™2 .. single out the subspaces #"
(i=1, 2, ...) whose vectors correspond to certain
classical states (see section 2), so that for any
@My e #M the following relations hold,

W LV = W) | 2 <8, < M, .
(5)
The Hilbert space # of the whole system is con-

structed as the direct product of the corresponding
Hilbert spaces,

H=HMQAMR.. . QN R..QH™C (6)
where
HAM = DD, .. (7

and #™° is the Hilbert space of microscopic sub-
systems of the dynamical system.
Define the classical preferable basis as follows:

[WEEl > = (W 5 (Wi S fpd D ™)
[WBErL > =1y > w2y wd > y™ey
B = > (2w > ™)

(8)



Volume 127, number 5

The accuracy of the definition of the vectors (8) is
sufficient for one-to-one correspondence between
theory and observations. Note that the correspond-
ing basis |y ) e #™° is fixed automatically within the
accuracy determined by the errors of the classical
observables.

4. Theory of measurements

We shall demonstrate how the proposed way to de-
fine the basis works in the theory of measurements.
Consider a quantum system S with a wave function
@S> interacting with a device M which measures
the quantity s/ of the system S. The device should
be a classical object and its indications are charac-
terized by a classical observable .# (declination of
the arrow) which is assigned a macroscopic operator
M. In the space of the wave functions of the device
one can single out subspaces #7% such that for
Iy > e #Y we have

Wi (M=MIA4,1)? WYy <8 MA,], ... ~ (9)

where M[A,]=<y¥ |M|w% >, and 8.#[A,] is the
error in “arrow” fixation. If the initial wave vector
of the system S is the eigenvector of the operator A
which corresponds to the eigenvalue A,, then the re-
sult of the interaction between the system S and the
device M should have the form

(Wi W > = Wi Wiy, (10)

where |y is the vector corresponding to the ini-
tial state of the device. The condition (10) is nec-
essary for realizing a good measurement of the
quantity 7 by the device M [9].

if

IWS>=;a1|w§,>, (11)

then (10) and the linearity of the Schrédinger equa-
tion imply

|V/S>|'//34>—>§1201|‘//§1/>|'//%>' (12)

Different terms of the superposition (12) corre-
spond to classically different universes (‘‘indications
of the arrow” of the device .#=M][A,] are distinct
for them). The basis |y3,> |w ) is preferable be-
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cause for its vectors the conditions (5) are satisfied.
For the microsystem S the components of the pref-
erable basis are eigenvectors of the operator A:
{w5, >. The choice of components of the preferable
basis is unique. Indeed, suppose that there exists an-
other preferable basis |, > for the system S. Then
the wave function of the whole system after mea-
surements can be represented in the form

W) =Ya,ws> vy, (13)

where |y are the vectors of the Hilbert space of
the device. Expand |w5,> in a power series of

1725%
WS> =Yemlys) . (14)

At least two of the coefficients ¢,,, essentially differ
from zero because |w3, > # |w3,, > on no A4,,. Substi-
tuting (14) into the right-hand side of (12) and com-
paring the expression obtained with (13), we find

—1/2
1:/7%>=;a,c,m|w%>(>;|ak|2|ckm:2) s

It is easy to verify that |y > ¢ # for no A, because
for (15) the conditions (5) are not satisfied. Con-
sequently, the basis |w,,> is not preferable.

5. Concluding remarks

Above, setting the error 8.4 of the values of the
classical observables .#* we defined an ensemble of
universes which can be considered as classically dis-
tinct non-interacting universes. The term “non-in-
teracting” implies here that an interference influence
of some universes upon others leads to corrections
in .#“ smaller than 6 .#“ and cannor therefore be dis-
covered. By decreasing 3.4 (i.e. increasing the ac-
curacy of a classical device) we finally reach the
values equal to the quantum mechanical dispersions
8.#% of the operators M* for the states |y;>e#M. .
The quantities 845 cannot be smaller than certain
minimal values determined by the parameters of the
system. This is due to non-commutativity of canon-
ically conjugate operators, that is, to the uncertainty
principle. The accuracy of a classical device cannot
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exceed the quantum-mechanical uncertainty of
8.4 . If we decide to impart a more precise meaning
to the operators M%, we will have to consider the
“device” in a quantum-mechanical manner.

The idea of reality as a set of ensembles of “non-
interacting” universes is also meaningful in the ab-
sence of an observer. In this case, when quantum
fluctuations 8.#; are small as compared with the
mean values of the operators which characterize the
states of macroscopic subsystems (3M% < M*, ...)
the quasiclassical approximation is valid, and for
8.#* it is natural to choose JMY, that is,
SM*~3MY. In this case different universes are
weakly interacting. It is just in this case that the
Hartle~-Hawking wave function [10] can be inter-
preted as the one describing an ensemble of classi-
cally distinct universes [11].

If the dispersions of all the operators M are com-
parable with the mean values (that is, M, ~ M) it
is senseless to speak of distinct universes because
corrections due to the interaction (the interference)
for universes specified in an arbitrary way will ex-
ceed the accuracy of specification of these universes.
It is more natural in this case to think of reality as
of an ensemble of tightly bound universes without
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individual properties which would make them dif-
ferent from each other because the interference in-
teraction is too strong.
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