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Some basic claims (to be justified, afterwards)

1. The quantum-mechanical state (the “wave function”) does
not have an “ontological status”. It does not describe “what
is”. It is a mathematical device enabling us to make bets
about what may happen in the future.

2. Inthe presence of information loss and entanglement with
lost degrees of freedom, pure states typically evolve into
mixed states (without violation of any basic principles of
quantum theory), and it is this fact that makes a rational
theory of measurements/observations possible!

3. Without fundamental loss of information and entanglement
of observed degrees of freedom with unobservable/“lost”
degrees of freedom, retrieval of information about
quantum systems by measurements/observations would
actually be impossible.




Basic claims, ctd.

4. No information- or unitarity paradoxes in quantum
theory, (even if space-time is curved, e.g., in the
presence of black holes)! Time evolution of states of
quantum systems exhibiting information loss and
entanglement with unobservable degrees of freedom
(that, for example, may have disappeared in a heat
bath, or escaped towards infinity, or have fallen
through a horizon of a black hole) is actually never
unitary - it is “tree-like”!

5. Operator algebras (including type III, factors!) and
other sophisticated mathematical tools have been
invented to be used in Quantum Theory, rather than to
be ignored!
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1. Introduction - Questions to be Addressed

In our courses, we tend to describe quantum-
mechanical systems as pairs of a Hilbert space, H,
and a propagator, U(ts), describing time-evolution.
Unfortunately, these data encode almost no invariant
structure (besides spectral properties of U(ts)) and
give the erroneous impression that quantum theory
might be deterministic. Thus, among fundamental

problems of quantum theory are:
* What do we have to add to the usual formalism
of quantum theory in order to arrive at a mathe-

matical structure that (through “interpretation”)
can be given physical meaning, independently of

“observers”?




Questions, ctd.

* Where does intrinsic randomness in quantum theory
come from, given the deterministic character of the
Schrodinger equation? In which way does it differ from
classical randomness?

* Do we understand the effective dynamics of quantum
systems, e.g., ones in contact with a heat bath
(“Quantum Brownian Motion”), or systems under
repeated measurements (exhibiting “quantum jumps”)?

* What do we mean by an “isolated system” in quantum
mechanics, and why is this an important notion? How
does one prepare a system in a prescribed state?

Answers and insight come from understanding roles of
Information Loss & Entanglement




2. Information Loss

A simple-minded definition of quantum-mechanical systems:

An isolated quantum system, S, is characterized by
following choices:

(i) ('H, U(t, 3)), R> t,s (U= unitary propagator)

(i) alist, Og = {a;}icr, » of bounded, selfadjoint
operators on ‘H representing physical quantities/
potential properties of S that can be measured/
observed in direct “projective measurements”,

(S must be an isolated system chosen large enough for
quantities represented by a;, ¢ € Ig , to be measureable).




Information Loss, ctd.

Choose fiducial time, ¢,, and define (Heisenberg picture)

a(t) := Ul(ty, t)aU(t, ty), a € Og,

to be the operator representing the pot. prop. corresp.
to a € Og attime t,; S list of ops. Og(t)

Pot. properties, a(s), measureable/observable at times
s>t generate a W*-alg, &s;:

th = (ZHai(tiﬂai € Os,tz‘ > t>_

As =&, Sg (states) (1)

B(H) 2 As 2 €51 2 €5 2 Os(s), s >t (2)

# & [nformation Loss! .




Information Loss, ctd.

Define

Ts(a(t)) == a(s + 1)

so that Ts 1 Est = Es(trs)

Ts is a *endom; Tg not a *autom < information loss
—> entanglement with “lost” degrees of freedom!

[t is easy to construct examples of (generally non-
autonomous) quantum systems exhibiting information loss,
in the sense of Eq. (2):

(1) Independent “probes”, Ej, j=1,2,3,..., with E] being
destroyed at time T j, (Tt discrete time step)

(2) “Small” systems temporarily interacting with quantized
wave medium, (e.g., photons, phonons, etc.)




(3) Information loss in theories like QED - see Buchh.-Rob.

All ops. in &,
are localized

mVP’ P, = (¢, %)

for ¢t > ¢,

~worldline of JF




3. An application: Projective (von Neumann)

measurement
We will now discuss how phys. quantities are measured projectively.
Some fundamental questions to be addressed:

(1) What is meant by a “measurement” of @ € (D¢ ? Around which
time t does it take place ? A measurement of @ ought to result

in “@ having a value”, i.e., become an “empirical/objective
property” of S

& state on £s; =~ incoherent mixture of eigenstates of a(t),

at some time t. (Proj. measnts. vs. indirect (Kraus) measnts.)
(2) Given a state of S, does QM predict which ¢ € Og

will be measured first; what does QM predict about the

outcome of measnt. of @ ? In which way is QM intrinsically

indeterministic? Why does a measnt. of @ have a random
outcome?




Projective measurements, ctd.

Projective measurements

We have to clarify what may be meant by a projective
measurement of a potential property a € (D¢ and what the
role of information loss & entanglement in measnts. is:

Og 3 a = a* with eigenvalues aq, as, ..., o
p) ? ?

k
a(t) =) a;Il(t) (3)

“Measurement/observation” of @ around time ¢t

&> a is an “empirical/objective property” of S around time ¢ :




Projective measurements, ctd.

State 0 isan incoherent superposition of eigenstates of @,

k
p(b) =) p(I;(t)bIL;(t)),  forall b€ Esy, (4)
j=1

where p is the state of S right before measnt. of @, i.e,,

p = pt = ples, )

Information Loss = 0 = p¢ is usually a mixed state
on 52,5 even if the initial state of S has been pure, as a
state on Ag!




Projective measurements, ctd.

Suppose, for simplicity, that £s; is isomorphic to some
B(H ,), (i.e., E>¢ is of type I, => syst. non-autonomous)

Eq.(4) <« [a(t),P] =0, (6)
where P, is the density matrix on £>; corresp. to p;
Definition

a € Qg is measured/observed around time ¢t < @ isan
“empirical/objective prop.” of S around time t iff
a(t)| ranger, =t F(P;) - 2z, for some bd. fu. F, (7)

and some z in the center of £>¢.More generally, a(t)
belongs to the center of the centralizer of the state Pt , Z-,.
Note that R.S. of (7) is cond.expectation of a(t) w.r. to

Z~4.Eq. (7)=> Eq. (4)! # Tomita-Takesaki theory!)




Projective measurements, ctd.

Axiom A

If @ is measured (i.e., an empirical /objective prop. of S)
around time ¢ then @ has avalue € {ay, ..., @t} around
time ¢t.

The value o of a is observed w. probability

p;(t) = p(IL;(t)) (8)

If «; is observed around time ¢ then the state
p§(-) =pi()™" - p(I1;(£) ()IT;(¢)) on Ex (9)

should be used for improved predictions of future after
time t. (Eq. (8) is Born’s Rule, eq. (9) “collapse postulate™.)




Projective measurements - summary

(1) Given the initial state of the system S, time evolution,
{U(t,s)}, determines which pot. prop. a € Qg will first be
measured (i.e., become empirical /objective), and around
which time!

(2) Measnt. of ay is independent of an earlier measnt. of a;
iff as becomes empirical/objective after time of measnt.
of a; , no matter what the outcome of measnt. of a; was,
. al . . al .
i.e.,, for all states P; (+),j=1, ..., k with P; (+) asin (9).
= Decoherence, “consistent histories”.
(3) Time of measurement: Time, t., of observation of @
det. by minimizing in ¢ the fu. ||a(t)|ranger, — F(F) - 2|,
where F(P,) - z is the “cond. exp.” of a(t) onto Z;.
(4) Zzt (= center of centralizer of SZt ) contains all phys.

quantities observable at time t.




Projective measurements — summary

(5) A state is called “passive” iff the center, Z-;, of the
centralizer of &s; is time-independent. There are plenty of
examples of passive states:

. Equilibrium (KMS) states at positive temperature in
QFT; KMS states of a QFT in the space-time of a static
black hole.

. Perturbations of the vacuum state by coherent clouds of

massless particles (e.g., of photons - courtesy of D.

Buchholz).

Passive states have the property that they do not admit any
projective measurements/observations of any physical quantities -
besides measurements of time-independent parameters
characteristic of the state in question, e.g., the temperature or a
chemical potential of an equilibrium state, (which, indeed, are
time-independent quantities).




4. Conclusions

We have to learn more about which states and which types of
time evolutions of isolated systems allow for non-trivial
measurements/observations of time-dependent physical
quantities satisfying Axiom A.

Need for illuminating examples and models! - Ex.: Dynamics

of a two-level atom in a heat bath monitored by photon
detectors, (see, e.g., De Roeck-Derezinski, Bauer-Bernard-...):

dP; = —a(P; — p) + vP(1 — P,)dW;,
P, : occupation prob. of upper level,
dW,: Brownian motion; (e, 7y, p: consts.)

States of quantum systems do not have any “ontological”
significance. The “ontology” of QT resides in time-ordered
sequences of “events” (= results of projective or indirect
observations accompanied by info. loss and entanglement
with unobservable degrees of freedom).
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“Why should I blame anyone but myself if I cannot understand
what I know nothing about?” - Pablo Picasso
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1. Introduction - survey of examples

Return to equilibrium - Master equations, kinetic limit, etc.
(examples: equilibration of spins or oscillators, thermal ionization,
easy half of 0®* Law,...; with B & Sig; M - see also Jac & Pil)

Relaxation to a ground state - scattering techniques, cluster
expansions in real-time variable - DeR (example: decay of excited
atom or molecule; preparation of states in QM, etc.; with Gr,S; Schub)

Approach to a NESS or to a NE time-periodic state - scattering
techniques, resonance theory for Liouvillians, dynamics with entropy
production, Onsager relations (application: e.g., 2" Law of
Thermodynamics; with M & Ue, A-S)

Anderson Localization — multi-scale analysis, small denominators
(examples: absence of diffusion for a quantum particle in a random-
or 1D gp potential, absence of heat transport in disordered arrays of
anharmonic oscillators, ...; with Sp; Sp & W; A; B & G)




Survey of examples, ctd.

Quantum Brownian Motion, position-space decoherence,
equipartition - derivation of diffusive motion “from

scratch” (example: atom with finitely many internal states coupled to
a qm heat bath and hopping on a lattice; with DeR, Piz)

Static disorder and thermal noise: Weak diffusive transport
(examples: dyn. of a BEC, electron transport in a sparsely populated
conduction band of a disordered semi-conductor: with J. Schenker)

Quantum- and Hamiltonian Friction - friction through emission of
Cherenkov radiation (examples: heavy atom moving through a Bose
gas exhibiting BEC; dipole moving through optically dense medium;
with Gang Zhou & Sof)

Dynamics of quantum systems subjected to repeated measurements,
emergence of facts in QM - statistics of measurement protocols,
stochastic evolution egs., large deviations; “theory of knowledge

acquisition”. .




Survey of examples, ctd.

(example: experiments of Haroche-Raimond group, electron
conduction in presence of Coulomb blockade, etc.; with B, F, Sch)

- Dynamics in limiting regimes - mean-field limit, kinetic limit
(Gross-Pitaevskii description of Bose gases, (Bogliubov-)Hatree-Fock:

e.g., neutron stars; point-particle limit of NL Hartree Eq., etc.; with
Schwarz, Kn. and others)

“Postmodern” examples of effective dynamics:
* Quantum chaos vs. quantum integr. behavior; e.v. statistics, ...

* Quantum quenches, dynamical problems related to hard half of 0%
Law of Thermodynamics (e.g., “ETH”)

* Many-body localization (see also results w. A; Sp & W; B & G)
* Very fast processes, such as ionization, involving (laser) light (F-P-S)

* Dynamics of inverted populations (dynamics of negative-
temperature initial states; entanglement dynamics; ...)

Unfortunately, [ don’t have much to say about these examples, yet -
who has?

[ will limit my attention to quantum systems!




2. Thermal noise kills Anderson localization

(with J. Schenker)

In this section we consider a quantum particle hopping
on the simple cubic lattice Zd, d = 2,3, under the
influence of a random potential and coupled to a heat
bath at some positive temperature 5_1. The state of the
particle is described by a one-particle density matrix,

p(z,y),z,y € Z% (1)
The dynamics of p is described by a Liouville equation
8tpt — ‘C(pt)a (2)

where t denotes time, and L is the ‘Liouvillian’ given by
a ‘Lindblad generator’ of the form




Thermal noise, ctd,

L=—1 ade +g(G — L), g>0, (3

where the Hamiltonian
Hy,=—-A+ v, (4)

is a standard random Schrédinger op. (Anderson
Hamiltonian), with v, = {w (x)}x c7d 2 random
potential (the w(a:) are iid rv’'s with, e.g,, bd. distr., i4 , of
cpt. support), G is a “gain term” and L is a “loss term”.
Introducing the variables X =z +yand £ =z — v,
we can write the integral kernel of p as a function of

X and &, i.e, as p(X, f) . Then G and L are given




Thermal noise, ctd,

by the formulae
(Gp)(X, &) = > r(&n)p(X,n),
neZd
and (5)
(Lp)(X,€) == > _ (€ —n,0)p(X,n),
nezZad

where the kernel (£, n)satisfies a detailed-balance
condition at the temperature ﬂ—l of the heat bath (w.r.t.
the kinetic energy, — A, of the particle).

Our main result is the following theorem.




Thermal noise, ctd,

Theorem. Consider Eq. (2) for p¢, with

pt=0(wa y) — 5w05y0-
[f the coupling constant g > 0 then the diffusion constant

D := lim¢—yoot ! Z z|°Epi(z, z), (6)
I

where £ denotes an expectation w.r. to the product
measure Ha: EZdl‘L(w (.’E)), exists and satisfies

(i) 0<D<o

(4) if the disorder is large enough for D|,—
to vanish (complete localization in absence of
thermal noise) then




Thermal noise, ctd,

, D
llmg\o%

exists and is finite.

The proof of this theorem makes use of the following
formalism. Let () denote the space of random variables

w(-). We define the Hilbert space
H = lg(Zd X Zd) ® LQ(Q zp(w(z)))

Fourier transformation of vectors, ¥, in H is defined by
\If(k T, w) E e~k W(z + a,a; Tew)

acZd
Let ﬁt(k‘, Z, w) denote the Fourier transform of p¢.




Thermal noise, ctd,

Then ﬁt(k, x; w) satisfies the equation

Oipt(k) = —Grpt(k),

where ;. = “Fourier transform of L ” (see blackboard).

Then the diffusion constant D/d is given by the expression
. 1 ik . 1 \
—hmmzail Ze * Epy(z, z)|r=0 = —llmt-)oczaglEPt(ka 0; )[x=0

Defining the vector q5 = (581 — 5_31) ® 1, we find that
D/d — hme\0(¢a ¢>

The R.S. can be estimated using the Feshbach-Schur map.
Well, this is a little sketchy! (But details are fairly easy.) .




