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Why are we interested in spin > 1?

¢ A mathematical problem
(Irreducible representations of the Poincaré group are classified by spin
and mass)

¢ Important for gravity
(Graviton: spin-2, “gravitino” in sugra: spin-3/2)

¢ Composite states of spin>1 exist in Nature!
e.g. (07 baryon (spin-3/2)

We can take the point particle limit

=> Consistent Lagrangian and EoM will be very useful ,



Massive free particles: some early progress
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Fierz, Pauli | Rarita, Schwinger Singh, Hagen

Massive spin-2 = symmetric tensor h
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Linear expansion of Einstein-Hilbert+mass terms

— 1 DoF
— 4 DoF

}Constraints

On-shell DoF = 10-1-4 = 5 <> helicity states -2,-1,0, 1,2



Massive free particles: some early progress

P

1939 [1941 ] 1974

Fierz, Pauli | Rarita, Schwinger Singh, Hagen

Massive spin—3/ 2 = Vector—spinor \[/am
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On-shell DoF = 8-2-2 = 4 < helicity states -3/2,-1/2,1/2,3/2



Massive free particles: some early progress
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1939 1941 1974
Fierz, Pauli Rarita, Schwinger Singh, Hagen

¢ Systematic Lagrangian formulation for arbitrary spin
¢ The constraint equations are fixed by auxiliary lower spins

1 Lagrangian formulation for arbitrary spin. I. The boson case*%

L. P. S. Singh and C. R. Hagen
Lagrangian formulation for arbitrary spin. II. The fermion case*¥

k L. P. S. Singh and C. R. Hagen j

¢ Bosons of spin s=22: need auxiliary spin s-2,s5-3, ..., 0
¢ Fermions of spin s=3/2: need auxiliary tensor-spinors of rank s—3/2,s-5/2, ..., 0



Massive charged particles: an old problem
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1939 1969~1972
Fierz, Pauli Velo, Zwanziger
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“The Velo-Zwanziger Problem”

the most immediate method

of taking into account the Massive charged particles of spin>1

effect of the electromagnetic . . )
field, proposed by Dirac, minimally coupled to electromagnetism
leads to inconsistent suffer from acausality \

equations as soon as the spin
is greater than 1.”

Constant or dynamical




Massive charged particles: an old problem
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— | How to write a consistent Lagrangian of charged massive spin-2 and spin-3/2
~ in a constant EM background?
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- What do their EoOM and constraints look like?



Massive charged particles: an old problem
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— | How to write a consistent Lagrangian of charged massive spin-2 and spin-3/2
~ in a constant EM background?
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- What do their EoOM and constraints look like?

The essential requirements are:

1) No ghost: correct on-shell DoF

DoF(spin-3/2)=4 , DoF(spin-2)=5
2) Gyromagnetic ratio g=2 Ferrara, Porrati, Telegdi (1992)
3) No superluminal propagation



Some history of charged massive spin-3/2

Massive Spin 3/2 Electrodynamics Included a large class of
(2000) non-minimal couplings, but rone
S. DESER!, V. PascaLuTSA” AND A. WALDRON # Of them escaped acausality

Inconsistencies of Massive Charged Gravitating

(2001) Higher Spins N=2 sugra with charged

gravitino: causal if gravitino has

S. DESER! AND A. WALDRON" Planckian mass

Causal Propagation of a Charged Spin 3/2 Field in (A consistent Lagrangian a priori

an External Electromagnetic Background . i ) .
(2009) S . exists, with coeflicients given

Massimo Porrati and Rakibur Rahmal impliCidY by a recursive relation

10



Some history of charged massive spin-3/2

Massive Spin 3/2 Electrodynamics Included a large class of
(2000) / *'(\imal couplings, but none

caped acausality

No explicit Lagrangian
Ince for massive charged spin-3/2
(2001) has been written yet!

a with charged

causal if gravitino has

\ /Z mass

Causal Propagation of a Charge.d Spin 3/2 Field in (A consistent Lagrangian a priori
(2009) an External Electromagnetic Background

exists, with coefficients given
Massimo Porrati and Rakibur Rahmal impliCidy by a recursive relation
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Some history of charged massive spin-2

(1961) Federbush added a non-minimal term

Fierz-Pauli » Federbush L}l) covariant derivative
1 1
L =5 (0% = M) By = 51 (0% = M?) L=k (D* = M?) hypn = b (D* - M?) b
& hmnamanh + 8nhmn8khmk (hmngmgnh + h.c. ) & @nhmn@khmk
+2iegTr (h F. h)
charge—"" “——=Constant EM field

strength

12



Some history of charged massive spin-2

(1961) Federbush added a non-minimal term

Federbush
L =h"" (D= M?) hypn — h (D* = M?) h
+ (hymn@™D"h + h.c.) + 20" Ry, D h™
+2iegTr (h - F- B)
Trace equation: h o< (2g - 1) F"™®,,D%hy,,, + (no derivative terms)

This equation is a constraint only for g=1/2 !

= The ONLY available 4D Lagrangian of massive charged spin-2,

Federbush without ghost, without coupling to other spins
[ ] — No ghost only if g=1/2

Lagrangian

- SUPERLUMINAL propagation ! Porrati, Rahman, Sagnotti (2010)

~

J
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Some history of charged massive spin-2

(1989~1990) Argyres, Nappi derived a Lagrangian using
{open bosonic string theory]

¢ Originally a model of hadronic resonances
@ DPresence of a tower of higher spins

¢ ¢=2 for all charged states

Coupling an open string toan EM background: Abouelsaood, Callan, Nappi, Yost (1987)

Total charge of the string: Q=q0 +q_

/\A First massive level of open bosonic string:
9 i

D) = honn (2)al™al™|0) + V2B, (x)al™|0)
F

mn
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Some history of charged massive spin-2
(¥

®) = by (2)a™ai™|0) + V2iB(z)al™0) )

Massive spin-2 Massive spin-1

Stiickelberg field
mm) The only physical field is the massive spin-2

p1, Yost (1987)

Total charge of the string: Q=q

/\A First massive level of open bosonic st
9 i

|P) = h,,m(:r)a];mam()) +vV2iB,,

z)al™|0) ]
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Some history of charged massive spin-2

The Argyres-Nappi Lagrangian

_ i _ = 1
Laxy =Hann (@2 = == 5 i 62) h™ — 2iH (b — he)™ —H (@2 — g = 5 Tr 62) H

A2 P
£ = — [arctanh (ﬂqOF ) + arctanh (ﬂq & )]
i3 A2 A2

Constant antisymmetric tensor

H=H™_ Hon = (1 +iF), (1 +iF), , h*
Trace Rescaled spin-2 field

MD=D, with MMT = &

Dressed covariant derivative

¢ In the free limit, we recover the Fierz-Pauli Lagrangian
¢ A number of non-minimal terms

16



Some history of charged massive spin-2

The Argyres-Nappi Lagrangian
_ 1 _ _
Ly =Homm (@2 = = 5 i 62) W e DiH g (b= e )™ —H (’92 — g = % il 62) H

~ Honn {@mﬁk[(l +ie)h]" - %Qm@nH +(m o n)} U il

on shell

— (mass)”*2 in the units with e'=1/2

A
4 1 A .
(@2—2—§Tr62)7-[w—21(6-7-[—7-l-6)w=O

4

)
\ e =) The mass of the spin-2 depends on the EM background]

17



Some history of charged massive spin-2

The Argyres-Nappi Lag

(@2—2—%Trez)%w—Qi(e-H—H-e)W:O

on shell
) H=0 Manifestly consistent:
Hyvperbolic EoM
P =10 YP
) Correct DoF (no ghost)

Correct gyromagnetic ratio g=2



Some history of charged massive spin-2

The Argyres-Nappi Lagra==iar— 7\

BUT:
Consistent only in D=26!

T\

(2011) Porrati, Rahman:
¢ Compactify the Argyres-Nappi Lagrangian to D<26
¢ The Lagrangian of spin-2 is coupled to an extra scalar

¢ The spin-2 and the scalar can be decoupled on shell

N————’

Correct gyromagnetic ratio g=2

19



Back to spin-3/2

Previously:
The bosonic open string leads to a consistent Lagrangian for charged massive spin-2

Now:
Does string theory help to obtain a consistent Lagrangian for charged massive spin-3/2?

20



Back to spin-3/2

Previously:
The bosonic open string leads to a consistent Lagrangian for charged massive spin-2

Now:
Does string theory help to obtain a consistent Lagrangian for charged massive spin-3/2?

[Important results, without EM background }

4D open superstring first mass states: spin-2h _ , spin-3/2{y_“A_"} ... Berkovics, Leite (1997)
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Back to spin-3/2

Previously:
The bosonic open string leads to a consistent Lagrangian for charged massive spin-2

Now:
Does string theory help to obtain a consistent Lagrangian for charged massive spin-3/2?

[Important results, without EM background }

4D open superstring first mass states: spin-2h _ , spin-3/2{y_“A_"} ... Berkovics, Leite (1997)

A 4D superspace action of the first massive level is derived

On shell, this action describes a massive spin-2 multiplet
and two massive scalar multiplets Berkovits, Leite (1998)

22



Back to spin-3/2

Previously:
The bosonic open string leads to a consistent Lagrangian for charged massive spin-2

Now:
Does string theory help to obtain a consistent Lagrangian for charged massive spin-3/2?

YES, by generalising to the

Charged Cii, the Studies 1n\ o (1997)
1 Higher-Spin States of the Supe n)

rstring in an .
Electromagnetic Background

\ Berkovits, Leite (1998)

Karim Benakli’H7 Nathan Berkovits’H, Cassiano A. Daniel@ and Matheus Lize@

- / 23




Back to spin-3/2

1 Higher-Spin States of the Superstring in an)
Electromagnetic Background

(2021)

K Karim Benakli’H7 Nathan Berkovits’H, Cassiano A. Daniel@ and Matheus Lize@

)

Main results:

¢ 4D superspace action of the first massive level of charged superstring
¢ 12 complex on-shell DoF for bosons, and 12 for fermions
¢ The EoM and constraints for spin-2 and spin-3/2 are consistent

o . . :
. —  We have the on-shell equations, where is the Lagrangian?

Benakli, Daniel, WK (2022)



The superspace action of the charged states
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The superspace action of the charged states

1
< = d*z pgpg{v,j(n"m — g™ [ — {d3, B3}V + 1611510,0 Vi, — 32(Tinp — i€mp) VP

_ 32 ((690d0)v;n s (ae(,d(, + 85 (d(,— d(‘,@ i 32H,, 5 superfields

80 off-shell cplx DoF
53 245.;'3;1(1 [d_c'tﬂa \13‘ P

4ngla

+ doodi(—2i

It’s time to expand...
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The superfields...
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Simplifying the Lagrangian

The unphysical DoF are:

~

Integrate out
¢ Lagrange multipliers ——— | p])l)/ the constraints

¢ Auxiliary fields

¢ Gauge DoF (including Stiickelberg )mssis Cloose unitary gange

¢ Transverse components of some vector fields

o )




Simplifying the Lagrangian

The unphysical DoF are:

~

¢ Lagrange multipliers s—- (pply the constraints

¢ Auxiliary fields

Integrate out

¢ Gauge DoF (including Stiickelberg )mssis Cloose unitary gange

¢ Transverse components of some vector fields

K I / Curtright, Freund (1980)

Deser, Townsend, Siegel (1980)

- .
L=(0"an)’ + Mana™ ——2 t= %A (0°-M?*) A

¢ @, is the gradient of a scalar (denoted by A)
EoM: M32a,, = n g y
oM: MZay, am (a”a ) — ¢ Only the longitudinal component of a, is physical

~

—
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Bosonic Lagrangian )

X

on-shell
We write it as a sum of two pieces: [,C =L+ £2] DoF

_>3

with Ly —™ (@2 — M2> C, + @mc_m@ncn + 2iemnC_mC” One massive vector
+ Ml (92 - M2> My + Nl (92 - M2> N Two massive cplx scalars —— 2

As for Lo, we present two equivalent forms,
each with its own advantages:

I) Compact form

IT) Deformation of Fierz-Pauli

31



Bosonic Lagrangian

I) Compact form

(7 » g
—-m 2 : n m— n Ar2=m . ™M= n
EQ :a (J\[ 7]771,” = 1677171) (1: + @ (Lm,Q (1/71 = J\[ C (/7‘,’1 T g@ C;n @ Cn
1 M

—m 2 n mn ‘
—+ ﬁ |:17\[C <—5©mH + 2 Hmn) + 3 ((1) (an(c) o

—Himn | + huc.
2 1) ]

j —— 1 - . M? M? _ g
K + 57_[7””@2}177171 + 5@717_[77”1@}&}177111 . TH(mn)H(nm) A %HH S lEn,kanhkm
(dual) field ~ i . rescaled .
strength of a vector: F’7m(a) = Dman — @n(lm, an((l) = 5577“1]9(1}7]{1((1‘) spin-2 field: Hin =

. 2 )
<77mk — IW—]?E””‘) hl‘n

-

spin—Z

on shell I J

(D2 — M2) hyny — 21 (ekmBn + €xnhm) = 0
Mh = —44/29™¢,,
(D" hmn + V2Mep, =0

Trace

Divergence

-

~

¢ Correct EoM

¢ Correct DoF

¢ But coupled to c_

)
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Bosonic Lagrangian

I) Compact form

7 T
_m 2 ; : e : 9 . )
EQ =a"™ (*Z\[ Nmn — 1677171) a" S @mam@n(lnl - J\[ZCm Cm — Fgmcm@n Cn \
J

1 —m 2 n Fmn ‘ M
us ﬁ |:*’7\[C <_5©mH + 4 Hnm) +.F ((1) (an((,‘) - EH[mn]) e h-C-]

1 - 271 mn 1 n- mk "7\[2  /(mn) 17\[2 / : nkqy m
K + §Hmn© e + 59 H-mn@kh — TH / H(‘m'n) + %HH gn Hmnh»k
ual) fie ~ i rescaled 2 y
ifrenthli iiavector: Fm'”'(a) = @»m,(ln - 971,(1771, an((l> = 55777,,1,qu]){1((1) spin-2 field: Hmn = <77mk - iﬁ@nk) hAn
4 )
vectors
The EoM of @, and Cpy
hell 2, = E
& Mt = D (Dna”) 4 O(e) )| arc coupled to other fields
M 2(3m = B (@ ncn) 1. 0(6) through background
dependent terms
\ P /
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Bosonic Lagrangian

I) Compact form

These EoM and constraints can be decoupled on shell with the redefinitions:

Ol = ey — ——Corpll — -~ & =, — V2i, — T
L \[ 2 mn mem oM Check out the complete expressions:
2 1 1 ) V2 A

mn E_hmn — = mn]2 - _«fml‘] en —Qm ‘no Tt J 2211.13689
on =3 G ™ U T g Pme K 221113689
New

EoM 2 2 I K k

oME& (3D - M ) hmn = 2i (Ekmb n T eknh m

constraints

) ©'H,, =0, h=0

D,,0,a" = M?d,, 9,9,"=M"c,
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Bosonic Lagrangian

I) Compact form

These EoM and conMith the redefinitions:

1

a =, — —=¢ Same as the equations of
M?2 . Check out the complete expressions:
5 1 the Argyres-Nappi .
Binn =5 hnn — =1 Lagrangian! §— 221113689
New ( W \

EoM& (@2 _ MQ) B, = 21 (Ekmbkn . Eknhkm) They are dual to

constraints

- scalars
) | ©O"h,, =0, h=0 )

( m __ 2 . m 2 1 )
&@m@na = M*<a D Sme ™ = M€,

m?
J
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Bosonic Lagrangian

IT) Deformation of Fierz-Pauli

We can eliminate unphysical (transverse) DoF in @, and ¢y, ,

leaving the physical scalars A and B.

_ 1 = 1 = 1 _ 1 =
‘c = ‘4:9771 - —~m ng € Bgm — ZEmabc bc’@a - €ma ba:) Em CON
ﬁ [ ap B0+ o () g Emabe Tt \[’ EmH D+ 3 \[) Emy Tt
< ( mn 1 mn 2 ~mk ~ n>—1\
7 = = = s—=€ €.
’ ar A dual field strength

[pu-

1 1
\[) ,ﬂ@ B + WL ( )Q,IB Zan[pq@ HPT + WG,IIDP'HDI . \—[)Gnlg H]
2

5 ey ; = ] L 2
_ "\[2‘41_1 i.B (@2 o :\[2) B — menzngka@n@kB il 57{("1’1)@21177171 k1 5@117_[”27191\‘117711.‘

o5 = M? _, | , 1 _ ,
- :?\[27'[("7”1)7‘[(,7”1) 2 77_[(17111)]?””2 _ 57_[ (@2 . “\[2) h + 5@717{7”71@]“%1\771

— % (7-_1’""@,”,@”/1 + h.c.) -+ ﬁ [21 (@”ﬂnme”’k@kB) — (ee)HB + h.c.]

"‘?\‘[2 ) /I l comn D l .
\ + 7 (H[ ] + ﬁlf B) (H[mn] - ﬁlFmHB) | /




Bosonic Lagrangian

IT) Deformation of Fierz-Pauli

One spin-2

g—>

N

[A:Dm - ﬁgmbggb L3

mn

mn i
X (7} = ﬁ€

— M? 4A+B(Q

- *‘?\[27:[(””1)%(17111)

43 (A" D,0,h +he) +

\[ ) / nm 1
2 (H 2k

2 ~mk~ n e

(:111@ B +

M2 o : _
= 7f}_[(mn W 57_[ (@2 . :\[2) R 5@71/}_{,}”191‘,%1&7771

Two cplx scalars

1
2M4

=\ 1 | /berya . ha ¥
(EG) BCDm - 55771(1[70%1) 2 — ,\[9 mQHl Qb i ,\[) mb?‘[@bjl\

! ; i
55111])(1@17'[1 / o Wgnl@p?{pl

(e€) ©,B —

2
M4

1 |
oA - 3pe® ”]

*\[2) B — Gm,IEkaQn@kB + H mn)o R i QnHankhml.

— (ee) HB + h.c.]

2:\ b} [21 (@”’}__lnmgmlc@kB)
¢ Can also be decoupled on shell N\

£mn L. /
B) (H[mn] - ﬁlfmn B)

¢ It has physical DoF only

¢ In absence of EM background, we recover
the Fierz-Pauli Lagrangian+decoupled scalars

_
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Fermionic Lagrangian (2-component notation)

{:_ \/;5 2 (270" Dudim) + (10" * " @k)m

o \/EM [(/111”/\/1/71) €3 hC]
+ V2

1 7 : m -
_Z (wlo-m@mlﬁl) 321 (710- Dm')’l )‘

+ (3 (X’ln(T,,m@”lﬂl) - l (X’{]Dm‘l’l) — (/l'f’@m)’l)

2

i m 7 4 =1 =
—5 M (Xodn) - 2iM (¥ omy1) + hec.

+(1 & 2)

|
+ M| — (lﬁ]‘yl) + h.c.

V2

1 = — — m —
\— I [Xl (€-T)Tmy1 + x; (€-0)owy2 +W

¢ The physical states are the spin-3/2
Amjs Xmj coupled to spin-1/2 ¥,y
with j=1, 2.

¢ Spin-3/2 constraints:

0_'mX1m =0 [Coupling to spin-1/2! ]
il
D" im =~ 75 (€-0)yi /
- 3. N7
O'n/llm :$1’)/1 = W (€ - 0-)71
- 3M _ 1
D" Ay =——=¥1 — 57" (€
Im 2\/51/’1 2MO- (6 O-)le
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Fermionic Lagrangian (2-component notation)

[:_ @ 2(A D2 + (P10 @m

—~ V2M [(A2"x,,) + h.c.]
+ V2

1 7 . m -
_Z (wlo-m@mlﬁl) 321 (710- Dm')’l )]

1
+ 3( ’1”0',””3”0,01) TS

2 (X,{]z\mwl) —~ 2 (/l’IHDIH’}/l)

i m T x =M=
—5 M (Xodn) - 2iM (¥ omy1) + hec.

+(1 & 2)

|
+ M| — (lﬁ]‘y]) + h.c.

V2

1 o =\ & m _
\_ M [X1 (€:T)Tmy1 t X, (€-0)ony2 +W

¢ We can decouple spin-3/2 and

spin-1/2 on shell by the redefinitions:

=/ - 1 . ez
/llm = i + 2_\/5 [1 - IW (€- O-)] OmY1
2

1 ) - _
- W [r]mn - 1W (€mn + lemn)] anl

(e-0) O_m'wzl

, 1
Xim EXim T \/§M2



Fermionic Lagrangian (2-component notation)

¢ We can decouple spin-3/2 and

P = — L3 spin-1/2 on shell by the redefinitions:
V2 p i [ 2 ]
. Ay, By ¥ ——= | 1 —i— (e-T) |G
_\3 Spnﬁ— I1)/.2 de;m;}/)lle.:d 1 22 1;/12
with Dirac EoM in [ . NUN P
Hmn — 17— (€mn + lemn)] iy /g
+ V2 VM M?
/\/,lm =Xim T \/— 5 (G'O-)O_m'wpl
3 (X] T mn+ Q—\’ New equationsz
i m = " m v@ io_-mbl1171 = _M'Zla iO-mtbm&l = —My,
_EM (/l] O-mwl) - M (Xl O'm)/]) +h.c. iO_'nDﬂ/\/lm = _M/-lllm’
1 o G BE 2 -
+M T Wy +he | +0 © 2) 107D, dy,, = M(nmn - M fmn)/\/l
2

1 [ : 1 ] Dm/\/lm =0, X, =0
——¥7 (e F)Omy1 + X35 (€ T)om¥2 + hoc. - 1 -
M 1 :Dm/llm - 2MO- (6 O-)/\/lm O-m/llm =0




spin-3/2 equations (4-component notation)

X/
‘I’lm = ( lma) charged spin-3/2

o

/llm

EoM: D+ M)W, =i : "
OM. (1 + ) 1,7/1 —_— 1M E’nn 1L
° 1
Divergence DM — (™M 4 g L
constraint: [ 'M (E & )711] im = 0,
y-trace ’)/m‘I’l _ 0
m —

constraint:
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spin-3/2 equations (4-component notation)

X
‘Pl m = lma charged spin-3/2
Without background:

Fob () + M) ¥ = oo, O
i 1
Divergence m 1 = _
constraint: [a 2 M yn] ¥Yin =0,
'y—trace y}n\I,lm _ O \

constraint: Rarita-Schwinger
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Side remark:
Other forms of the spin-3/2 Lagrangian

With additional redefinitions, we can write the Lagrangian in
alternative (more complicated) forms:

1) One that gives directly decoupled EoM and constraints

2) One that reduces trivially to RS Lagrangian in absence of
background

Check out €~ 2211.13691
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Conclusions

¢ A Lagrangian formulation is important to describe composite states
in the point particle approximation

¢ We found consistent 4D Lagrangians including charged massive
spin-3/2 and spin-2
Bosons: 12 complex DoF on shell ; Fermions: 12 complex DoF on shell

¢ On-shell equations can be decoupled !
Bosons: Same as Argyres-Nappi ; Fermions: (NEW) explicit EoM and

constraints

¢ Another paper with all calculation details in preparation...



Thank you!



