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Outline

Transverse-momentum dependent distributions
What? Why? How?

Why going to next-to-leading power?

How? A few technical details

A complete example: quasi-TMD distribution in lattice QCD



What are TMD distributions?

Parton distributions that depends on the parton’s
Longitudinal (light-cone) momentum and transverse momentum

Often are considered only quark-quark and gluon-gluon parton distributions

(proton, p|q(...)q(...)[proton, p)
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Can be considered a medium filled with strongly-interacting QCD degrees of freedom

Fixed momentum in the ‘+’ light-cone direction



What are TMD distributions?

" light-cone direction
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Transverse space b



A bit more formally
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How do we restore gauge-invariance?
& Depends entirely on the process!

What type of Wilson line path should we use?
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A bit more formally
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Well-defined (they have close evolution equations)

For all other possible choices of Gamma this is not true anymore



Why we need TMD distributions?

Allow for more information on the internal structure of the proton

Spin-orbit correlations between proton spin and parton’s transverse momentum
=

Sivers distribution
They enters the description of measured physical processes

Their scaling properties are related to the structure of QCD vacuum

Drell-Yan SIDIS
proton, proton = lepton, lepton, X proton, lepton =2 lepton, H, X

Can be accessed partially from lattice calculations



Why we need TMD distributions?

The language

Hadronic tensor

HH — Z (p1, p2|J* ()| X) (X |JV(0)|p1, p2) > TMD distributions

X

Leptonic tensor [ HY

Leading-power
factorization '\/\O\m




How do we extract them?

The measurement has to be differential in a ‘transverse’ variable

For DY the transverse component For SIDIS the transverse component
of the virtual photon of the produced hadron
respect to the proton-proton plane respect to the proton-photon plane
qr ~ Q/4 /
@
Need to select the ~ 200GeV qr r~ Q

appropriate kinematic region

Fixed order
Non-perturbative TMD [T (N7
Resummation %




Lattice observables

DY/SIDIS current

J"(y) = q(y)v" a(y)

We assume that

Wij(yT;[’,L;fv,P’ S)
(P,S|@ (yr + (v)[yr + (v;yr + Lv][Lv; 0]¢*(0) | P, S)

Conjugate of the current Current,
similar to DY/SIDIS

More similar to DY/SIDIS hadronic tensor
than to TMD correlator

Quasi-TMD current

Ji(y,v) = [Lv + yr; Y)abgi(y)

L — o0



Background field approach

We assume that hadrons contains only collinear fields
< We do not consider small-x effects (!)
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How one fixes the scaling of the position of the current?

Avoid the enhancement of collinear momentum
<~ Keep small-x effects suppressed

Do not enhance anti-collinear momentum

To remain in the TMD region, ensure bOr¢5 ~ 1

{¢, b} ™~ P—Fl{la /\_1}

One handy advantage of BGF: different gauge choices for dynamical
and background fields



Going to next-to-leading power

(And what it means?)

Phase-space factors

. : Expansion of the kinematical parameters
Suppressed contributions in the P P

. . . in the ratio A
Contraction of hadronic and leptonic tensors
Kinematical power corrections Genuine power corrections
Same operator as LP New operators

that appears with suppression factor



The next steps

Expand at the desired perturbative order and expand the fields in power of A
Evaluate all the necessary loop integrals

Rewriting all the fields in terms of ‘good’ components only
using equation of motions

Recombination of divergences, renormalization

Assemble the final TMD operators



Few analytical details

0
H'(2) = Pexp [—ig/ dsv'A, . (sv+ z)
L

Vanishes with clever

Leading-power  Jrp/Lo(z) = H'(2)éx(2) choice of gauge

A

1
Next-to-leading power Ixrp/Lo(2) = —§HT g— (@1 —%ngnT igdor) & (2)
l
|

From bad component of quark field



Few analytical details

Linked to the absence (presence) of a Absent in quasi-TMD
hadron in the anti-collinear sector Present in SIDIS/DY case(!)
H()O L ton gt ()6, e
g(z) = H'(2)Ci&u(2) 57 H(2)Cy 7 9, &n(2)
9+ . a "9 !
F T H () 5= Coln ()6 (2) + 2y Y HY(2) Auu(2) 5~ Coufan(2)
2 0 2 o



Restoring gauge invariance

After restoring gauge invariance with the appropriate Wilson lines
The relevant operators are semi-compact!

Leading power (twist-1) Next-to-leading power (twist-2)
Ui(z,b) = [oon + b, zn + b€ (2n, b) Us(z1m, zon) = [oon, z1n|F* T (zon + b)[21n, 20n)€x(2n + b)
b b
Fet
R N S




Semi-compact operators as building blocks

UV renormalization diagrams

Uk = ZyUn ()




Leading power combination
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Now we interpret them as the combination of two twist-1 semi-compact operator

®11,ij(2,b) = (p, S|U1,;(2n + b)[W.L. at Too]U1,;(0)lp, S)



Next-to-leading power combinationS

b q F”+ b -
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q : q Fr :
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®10,:i(2,0) = (p, S|U1.(z1m + b)[...]U1.:(0, 2on + b)|p, S)
®21,:5(2,0) = (p, S|U2,j(21n + b, 29n +b)[...]JU1,:(0)|p, S)

Two distinct TMDs!
TMD twist is given by two numbers: at leading power just one case (1,1)
At next-to-leading power two cases (2,1) and (1,2)

Why does this not happen in the PDF case?

o----0--0 The same color structure as o----0--0
q q  FAt q Pt q



Quasi-TMD peculiarity

In the quasi-TMD case we also have to introduce a TMD-like object
As vacuum matrix element of specific Wilson loops

< Plays the role as the leading-twist distribution
U = (0L [—hce + b, BLH (b)H' (0)[0, —7o]|0)

Nc
Via(ab) = (Ol [0 + bUH B 0)0,2n)Fu-[on, ~oc]0
Upor(z,b) = (0] % (100 + b, 21+ | Fy_[2m + b, b H (b)H'(0)[0, —200] 0)
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Divergences and scale dependence

Onar,ij = (0, S|Un,;({zin}, b)[...]JUn i ({20}, 0)|p, S)

PN = R(V)Zn({zin}) @ Zu({zen}) @ S (p?, €)

The UV divergences for Un Three independent divergences
Three renormalization constants

The UV divergences for Uy, ) .
Three anomalous dimensions

Rapidity divergences

d
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Momentum-fraction interpretation

412
Doy Different contributions in different slices
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Complex evolution for complex functions!

L] * [vOT 4]

Buta(on ez DI = Bl " (s, b No definite
T r :
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Definite T-parity combinations

To parametrize the twist-(2,1) —(1,2)

(I)Ll—:]@(xlam%x?)ab) -

(I)LI:]@($1,$2,ZE3,b) —

Only non-vanishing traces with " {nyr, fy+’y5, iao‘+’)/5}
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32 distributions in total U L Ti=0 | Tu=1 T/—
16 T-even, 16 T-odd U fo Jo he hy
J=0,1,2 tensor contributions L oJ_L Q.LL herL hi_L
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More possible spin combinations with
three fields




Definite T-parity combinations

In terms of definite T-parity distributions the evolution equations
are non-diagonal, real, and mixes the two type of distributions

The mixing is proportional to the direction of the Wilson line
i.e. mixing of T-even and T-odd distributions with a coefficient that
change sign under time reversal

TMD distributions of twist-three are generalized functions
No definite value at x, = 0, but definite integrals

Special rapidity divergences



What about generic twist-3 TMD distributions?

Ty [(I)(CU, b)F] I' € {17759'-)/“77}&757 7:0-067& io_+—f)/5}

Isolate one ‘good’ and one ‘bad’ quark component,
we should use quark EOM to express everything in terms of good components,
i.e. operators of definite twist

(0 Ofi; L .
Generic twist-3 xfr= f . —g. ' — fim — b aleT Derivative of twist-2

Twist-2

BUT evolution equations are NOT closed

()= (Bmu(D) ) (5 ) -G+ )2 (5 )2 (e 22 ) (8

[Py, F_} = {f,g} or {h,e}{fs, [} = twsit-2 of{F, F_}



(Standard) Rapidity divergences

Rapidity divergences are soft divergences
and are removed by the cancellation
of the double-counting of the soft region

Diagrammatically they emerges from

And are given by the standard R factor

Nen




(Special) Rapidity divergences

For twist-2 semi-compact operators we also have another kind of rapidity divergences

For both (2,1) and (1,2) case

Give the standard R factor as in LP ot ]
—1In (q—+> 0, D (b)®4, (z,b)

These are cancelled in-between different terms of the cross-section
Not by the soft-factor

Can also be seen as divergences for vanishing gluon momentum fraction



What about the quasi-TMD case?
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What now?

Insert the renormalization of TMD operators

Remove standard rapidity divergences with the soft factor

Subtract the special rapidity divergences to obtain an expression finite term by term
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Final steps

Write everything in terms of definite T-parity TMD

Make explicit the complex structure (also present in the coefficient functions)
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Using the factorization theorem

Extract Collins-Soper kernel Determine physical TMD distributions
At LP the ratio in momentum space At NLP no ratios
is systematically improvable are systematically improvable

F(L=0b;P) _ ( (v&))m’“) L0 by
F(0=0,b; p; Py) (vP1) NLPAH
?O ) = 1+ 4ay(u)Cpn (UEY {m s —oM@F M)}
NLEAT ’ (vPy) 4(vPy)(vP,) NEEAT
@ LP one assume M=const @ NLP M=const works only for few selected cases

Only a limited number of quasi-TMD at NLP (6 out of 16) satisfy the constraints



Conclusions

Physical processes, TMD distributions

Quasi-TMD distributions on the lattice

Factorization theorem, power counting and semi-compact operators

Rapidity divergence: standard and special

Special rapidity divergences cancellation and boost-invariance restoration

How to use the quasi-TMD factorization theorem



