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Transverse-momentum dependent distributions
What? Why? How? 

Why going to next-to-leading power?

How? A few technical details

A complete example: quasi-TMD distribution in lattice QCD

Outline



Parton distributions that depends on the parton’s
Longitudinal (light-cone) momentum and transverse momentum

Often are considered only quark-quark and gluon-gluon parton distributions

Can be considered a medium filled with strongly-interacting QCD degrees of freedom

Fixed momentum in the ‘+’ light-cone direction

What are TMD distributions?



Transverse space

‘-’ light-cone direction

What are TMD distributions?



How do we restore gauge-invariance?


What type of Wilson line path should we use?

Depends entirely on the process!

A bit more formally



For all other possible choices of Gamma this is not true anymore

Well-defined (they have close evolution equations)

A bit more formally



Allow for more information on the internal structure of the proton

Spin-orbit correlations between proton spin and parton’s transverse momentum


Sivers distribution

They enters the description of measured physical processes

Can be accessed partially from lattice calculations

Drell-Yan SIDIS

proton, proton → lepton, lepton, X proton, lepton → lepton, H, X

Their scaling properties are related to the structure of QCD vacuum

Why we need TMD distributions?



The language

Leptonic tensor

Hadronic tensor

Leading-power
factorization

TMD distributions

Why we need TMD distributions?



The measurement has to be differential in a ‘transverse’ variable

For DY the transverse component 
of the virtual photon

respect to the proton-proton plane

For SIDIS the transverse component 
of the produced hadron

respect to the proton-photon plane

Need to select the 
appropriate kinematic region

How do we extract them?

Fixed order

Non-perturbative TMD 

Resummation

Next-to-leading power 



Current, 
similar to DY/SIDIS

Conjugate of the current

More similar to DY/SIDIS hadronic tensor 
than to TMD correlator

DY/SIDIS current Quasi-TMD current

We assume that 

Lattice observables



We assume that hadrons contains only collinear fields

Background field approach

We do not consider small-x effects (!)

Physical observables Lattice observables



Do not enhance anti-collinear momentum

NNLP

One handy advantage of BGF: different gauge choices for dynamical 
and background fields

How one fixes the scaling of the position of the current?

Avoid the enhancement of collinear momentum
 Keep small-x effects suppressed

To remain in the TMD region, ensure



(And what it means?)

Phase-space factors
Suppressed contributions in the 

Contraction of hadronic and leptonic tensors

Expansion of the kinematical parameters
in the ratio λ

Kinematical power corrections Genuine power corrections

Same operator as LP
that appears with suppression factor

New operators

Going to next-to-leading power



Expand at the desired perturbative order and expand the fields in power of λ

Rewriting all the fields in terms of ‘good’ components only
using equation of motions

Evaluate all the necessary loop integrals

Recombination of divergences, renormalization 

Assemble the final TMD operators

The next steps



Leading-power

Next-to-leading power

From bad component of quark field

Vanishes with clever
choice of gauge

Few analytical details



Absent in quasi-TMD
Present in SIDIS/DY case(!)

Linked to the absence (presence) of a
hadron in the anti-collinear sector

Few analytical details



After restoring gauge invariance with the appropriate Wilson lines
The relevant operators are semi-compact!

Leading power (twist-1) Next-to-leading power (twist-2)

Restoring gauge invariance



Semi-compact operators as building blocks

UV renormalization diagrams



Now we interpret them as the combination of two twist-1 semi-compact operator

Leading power combination



or

Two distinct TMDs! 
TMD twist is given by two numbers: at leading power just one case (1,1)

At next-to-leading power two cases (2,1) and (1,2)

Why does this not happen in the PDF case?

The same color structure as

Next-to-leading power combinationS



In the quasi-TMD case we also have to introduce a TMD-like object
As vacuum matrix element of specific Wilson loops

Plays the role as the leading-twist distribution

Quasi-TMD peculiarity



The UV divergences for 

The UV divergences for 

Rapidity divergences

Three independent divergences
Three renormalization constants

Three anomalous dimensions

Divergences and scale dependence



Different contributions in different slices

Process dependent evolution equations!

Momentum-fraction interpretation

Imaginary evolution equations?!



No definite
complexity

No definite time-reversal parity

Complex evolution for complex functions!



To parametrize the twist-(2,1) –(1,2)

Only non-vanishing traces with

32 distributions in total
16 T-even, 16 T-odd

J=0,1,2 tensor contributions


More possible spin combinations with 
three fields

Definite T-parity combinations



In terms of definite T-parity distributions the evolution equations 
are non-diagonal, real, and mixes the two type of distributions

The mixing is proportional to the direction of the Wilson line
i.e. mixing of T-even and T-odd distributions with a coefficient that 

change sign under time reversal

TMD distributions of twist-three are generalized functions
No definite value at x2 = 0, but definite integrals

Special rapidity divergences

Definite T-parity combinations



What about generic twist-3 TMD distributions?

Isolate one ‘good’ and one ‘bad’ quark component, 
we should use quark EOM to express everything  in terms of good components,

i.e. operators of definite twist

Generic twist-3

Genuine twist-1+2,2+1 Twist-2

Derivative of twist-2

BUT evolution equations are NOT closed



Rapidity divergences are soft divergences 
and are removed by the cancellation

of the double-counting of the soft region

Diagrammatically they emerges from

And are given by the standard R factor

(Standard) Rapidity divergences



For twist-2 semi-compact operators we also have another kind of rapidity divergences 

These are cancelled in-between different terms of the cross-section
Not by the soft-factor 

Can also be seen as divergences for vanishing gluon momentum fraction

For both (2,1) and (1,2) case

Give the standard R factor as in LP

(Special) Rapidity divergences



What about the quasi-TMD case?



Restored boost invariance!

Insert the renormalization of TMD operators

Remove standard rapidity divergences with the soft factor

Subtract the special rapidity divergences to obtain an expression finite term by term

What now?



Write everything in terms of definite T-parity TMD

Make explicit the complex structure (also present in the coefficient functions)

Final steps



@ LP one assume M=const @ NLP M=const works only for few selected cases

Only a limited number of quasi-TMD at NLP (6 out of 16) satisfy the constraints

At LP the ratio in momentum space
is systematically improvable

At NLP no ratios 
are systematically improvable

Using the factorization theorem

Extract Collins-Soper kernel Determine physical TMD distributions



Conclusions

Physical processes, TMD distributions 

Quasi-TMD distributions on the lattice

Factorization theorem, power counting and semi-compact operators

Rapidity divergence: standard and special

Special rapidity divergences cancellation and boost-invariance restoration

How to use the quasi-TMD factorization theorem


