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Study motivation

• Various null results for WIMP searches: originally expected masses
pushed towards larger values and couplings towards weaker ones

• Post-LHC era: quartic coupling of the Higgs never too negative up to the
Planck mass to induce instability =⇒ SM may be extrapolated up to
Planck mass without encountering any inconsistency

• Inflationary cosmologies: SHDM production during reheating possible
through minimal coupling (gravitation)

• SHDM decay possible in minimal-coupling scenarios through
non-perturbative effects

• By-product decays detectable in UHECR data
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Naturalness, WIMPs and Dark Matter

* Particle physics
• Problem of the Higgs mass: as a scalar field, can be destabilized by

one-loop radiative corrections through its coupling to the top quark
(quadratic divergences)

δm2
h =

3Λ2

8π2v2

[
(4m2

t − 2M2
W −M2

Z −m2
h) + log

(
Λ

µ

)]
• Naturalness: stability of observables should prevail under small variations
of the fundamental (bare) parameters =⇒ δm2

h < m2
h =⇒ Λ < 1 TeV –

scale of new physics
• Supersymmetry or extra dimensions: add through various mechanisms to
the spectrum of elementary particles other ones, one of which would be
stable with a mass around 100 GeV and weak couplings

* Cosmology
• Freezing time estimated by equating the annihilation rate with the Hubble

parameter =⇒ ΩWIMP ∼
10−25 cm3s−1
〈σv〉

• Of the order of unity by taking, as (should be) expected for WIMPs,
〈σv〉 ∼ G2

F M2
X → the WIMP “miracle”
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Direct-detection of WIMPs?

• Direct-detection searches: measurement of nuclear recoil

PDG, Prog. Theor. Exp. Phys. 2020 (2020) 083C01

• Accelerator-based and indirect-detection searches also unsuccessful
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Direct-detection of WIMPs? Next

• Neutrino floor at reach

APPEC report, J. Billard et al., (2021) arXiv:2104.07634
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Searches at colliders

• Two ways:

• Search for missing ET+ jet or Z or top pairs: tail in pT dist.

• Mass range probed up to 2 TeV

• Mediator searches: probing the rarest final states with two large-radius
jets events

• Mass range probed from O(10) GeV to above 3 TeV
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Indirect detection of WIMPs?

→ Indirect detection based on the WIMP annihilation in SM particles
Planck Collab. A&A 594, A13 (2016) Fermi-LAT Collab., PRL 231301 (2015)

• Modification of the degree of ionization of the primordial plasma through
the energy injected by the WIMP annihilations, and thus on the
modification of the polarization of the CMB in a manner similar to
reionization

• GeV emission from dwarf spheroidal satellite galaxies of the MW, due to
their low-baryon content and lack of non-thermal processes

6



Dark Matter?

inspired from arXiv:1707.04591
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SHDM motivations? SM vacuum (in)stability

* Alternative to naturalness to probe the energy scale Λ: SM vacuum
(in)stability→ very simplified calculation below, just a trend showing the
necessity of new physics at scale Λ to avoid instability and the leading
role of mh and mt

• To lowest order in the Higgs self-coupling λ, λ(µ) evolution dominated
by the term from the top coupling (one-loop radiative correction):

µdλ
dµ
= −

3λ4
t

8π2
+ . . .

• As soon as λ(µ) turns negative, the Higgs potential becomes
unbounded from below and the vacuum can suffer from instability

• Neglecting gauge interactions, the solution of the RGE at the instability
scale λ(Λ) = 0 relates the Higgs mass with the top Yukawa coupling:

m2
h >

3m4
t

π2v2 log
Λ

v
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LHC SM phase diagrams

• Extrapolation of the SM parameters up to large energies with full 3-loop
NNLO precision

D. Buttazzo et al., JHEP vol 2013, 89 (2013)

• Precise values of Higgs boson mass + top Yukawa coupling =⇒ SM
vacuum meta-stable up to high Λ
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LHC SM phase diagrams

D. Buttazzo et al., JHEP vol 2013, 89 (2013)

• No inconsistency that would make the SM vacuum unstable by
extrapolating the SM all the way from the mass of the top to the Planck
mass

• Dark sector of super-heavy particles?

10



Dark-Matter Galaxy

• Rotation curves

• Large-scale structure simulations from primordial fluctuations

• Energy density ρ� = 0.3 GeV cm−3
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UHE particles as secondaries of SHDM decays

• For n pairs of qq,

dNγ (x)
dx

=
n(n − 1)(n − 2)επ

3

∫ 1

x

dz
z

x
z

(
1 −

x
z

)n−3 Dh(z)
z

,

• επ : “efficiency” of the hadronization process into pions

• Dh(z): fragmentation function
of a parton into a hadron
obtained from the
fragmentation functions of
partons evolved starting from
measurements at the
electroweak scale up to the
energy scale fixed by MX

using the DGLAP equation
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The Pierre Auger Observatory
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UHE Cosmic Rays

• Nuclei from proton to CNO and Fe

• Accelerated in extragalactic sources
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Anisotropy signatures of SHDM by-product decays

• Flux of secondaries from SHDM decay (i = γ, ν, ν,N,N):

Jgal
i (E) =

1
4πMXτX

dNi

dE

∫ ∞

0
ds ρDM(x� + xi (s; n)).

• ρDM: DM profile
• dNi

dE : energy spectra of i = γ, ν, ν,N,N from hadronization processes,
evolving the fragmentation functions from EW scale up to MX using
DGLAP [Aloisio et al., Phys. Rev. D 69 094023 (2004)]

• Free parameters: MX , τX
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Searches for UHE photons
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Searches for UHE neutrinos
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Upper limits
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Constraints on perturbative decay

• Decay rate for an effective interaction term containing a monomial of
dimension n in mass unit:

ΓX ∝ αXΘMX

(
MX

Λ

)2n−8

.

• Fine tuning between αXΘ and n
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Non-perturbative decay: instantons

• SHDM particles protected from standard decay by perturbative effects
through a new quantum number

• Still, non-perturbative effects can lead to decays through “instantons” in
non-commutative gauge theories

• Distinct classes of vacua, labeled by a topological quantum number
characterizing the long-range structure of gauge field configurations,
which is connected to their local properties associated with UV
divergences during the renormalization step

• For B, L and X currents not associated to gauge interactions, possibility
to exchange quantum numbers through an anomaly
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Constraints on non-perturbative decay

[Kuzmin & Rubakov, Phys. Atom. Nucl.979 61, 1028 (1998)]

• Lifetime of metastable X particles: τX ' M−1X exp (4π/αX ) [t’Hooft, PRL 37 (1976) 8]
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Non-thermal SHDM production during reheating

• No coupling between SM and DM sectors except gravitational
• DM production by “freeze-in” mechanism through s-channel
SM+SM→DM+DM [Garny et al. PRL 116 (2016) 101302] or φ + φ→DM+DM [Mambrini & Olive

Phys. Rev. D 103 (2021) 11, 115009] while inflaton decays into SM particles and reheats
the universe after inflation:

dnX (t)
dt

+ 3H(t)nX (t) '
∑

i
n2

i Γi

• Reheating dynamics between t = H−1inf and t = Γ−1φ at Trh [Chung et al. Phys. Rev.929

D 60, 063504 (1999), Giudice et al., Phys. Rev. D 64, 023508 (2001)]:
• T (a) ' 0.2(εMPlHinf )1/2

(
a−3/2 − a−4

)1/4
• H(a) = Hinf (a/ainf )−3/2,a ≤ arh

• H(a) = Hinfε
2(a/arh)−2,a > arh

• Reheating efficiency ε ' 4Trh(MPlHinf )−1/2 defined between 0 and 1,
characterizing the duration of the reheating period
(ε ' 1 =⇒ instantaneous reheating)
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Viable regions

• Delineating viable regions in the (Hinf ,MX ) plane for various ε values to
match the DM relic density
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• GUT mass scale viable for ε → 1 (Trh relatively high) =⇒ tensor/scalar
ratio r of the primordial modes possibly detectable in the CMB

• For ε ≤ 0.01, 1013 GeV mass scale viable, testable for αX . 0.09
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Summary

• Assuming no new physics up to high energy scales, several constraints
on the properties of a dark sector of SH particles brought by the
absence of UHE photons

• X particles with masses as large as the GUT energy scale could be
sufficiently abundant to match the DM relic density, provided that the
inflationary energy scale is high (Hinf ' 1013 GeV) and Trh is high (so
that reheating is quasi-instantaneous)

• UHECR/CMB complementarity
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