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Study motivation

» Various null results for WIMP searches: originally expected masses
pushed towards larger values and couplings towards weaker ones

» Post-LHC era: quartic coupling of the Higgs never too negative up to the
Planck mass to induce instability = SM may be extrapolated up to
Planck mass without encountering any inconsistency

« Inflationary cosmologies: SHDM production during reheating possible
through minimal coupling (gravitation)

+ SHDM decay possible in minimal-coupling scenarios through
non-perturbative effects

+ By-product decays detectable in UHECR data



Naturalness, WIMPs and Dark Matter

@ Particle physics

* Problem of the Higgs mass: as a scalar field, can be destabilized by

one-loop radiative corrections through its coupling to the top quark

(quadratic divergences)

3A2
822
» Naturalness: stability of observables should prevail under small variations
of the fundamental (bare) parameters — 5mi < mf] = A<1TeV-

A
om = [(4m,2 - 2M3, — M5 — m?) + log (;)]

scale of new physics

» Supersymmetry or extra dimensions: add through various mechanisms to
the spectrum of elementary particles other ones, one of which would be
stable with a mass around 100 GeV and weak couplings

@ Cosmology

* Freezing time estimated by equating the annihilation rate with the Hubble

—25 31
parameter = Qwmp ~ 10((+“>5

» Of the order of unity by taking, as (should be) expected for WIMPs,
(ov) ~ GEMZ — the WIMP “miracle”



« Direct-detection searches: measurement of nuclear recoil
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» Accelerator-based and indirect-detection searches also unsuccessful

PDG, Prog. Theor. Exp. Phys. 2020 (2020) 083C01
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Dark Matter?
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SHDM motivations? SM vacuum (in)stability

@ Alternative to naturalness to probe the energy scale A: SM vacuum
(in)stability — very simplified calculation below, just a trend showing the
necessity of new physics at scale A to avoid instability and the leading
role of m, and m;

» To lowest order in the Higgs self-coupling A, A(u) evolution dominated
by the term from the top coupling (one-loop radiative correction):

pdd 347
Fr
» As soon as A(u) turns negative, the Higgs potential becomes
unbounded from below and the vacuum can suffer from instability
» Neglecting gauge interactions, the solution of the RGE at the instability
scale A(A) = 0 relates the Higgs mass with the top Yukawa coupling:
m? > i log A
= n2y2 %




LHC SM phase diagrams

» Extrapolation of the SM parameters up to large energies with full 3-loop
NNLO precision

D. Buttazzo et al., JHEP vol 2013, 89 (2013)
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» Precise values of Higgs boson mass + top Yukawa coupling = SM
vacuum meta-stable up to high A



LHC SM phase diagrams

D. Buttazzo et al., JHEP vol 2013, 89 (2013)
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+ No inconsistency that would make the SM vacuum unstable by
extrapolating the SM all the way from the mass of the top to the Planck
mass

» Dark sector of super-heavy particles?



Dark-Matter Galaxy

» Rotation curves

 Large-scale structure simulations from primordial fluctuations

3

* Energy density po = 0.3 GeV cm™




UHE particles as secondaries of SHDM decays

« For n pairs of qq,

9

dNy(x)  n(n—1)(n-2)e, f1 dz x (1 X)”‘3 Dp(2)

dx 3 zz\ z z

* e, “efficiency” of the hadronization process into pions

* Dp(z): fragmentation function
of a parton into a hadron
obtained from the
fragmentation functions of

dN/dx

partons evolved starting from
measurements at the

electroweak scale up to the
energy scale fixed by My
using the DGLAP equation




The Pierre Auger Observatory

Underground muon
detectors (24+)

Pierre Auger Observatory
Province Mendoza, Argentina

More than 400 members,
98 institutes, 17 countries

Water-Cherenkov
9 detectors and

1665 surface detectors
water-Cherenkov tanl
(grid of 1.5 km, 3000 km?)

Fluorescence
Southern hemisphere: Malargue, telescopes

Province Mendoza, Argentina




UHE Cosmic Rays

* Nuclei from proton to CNO and Fe

» Accelerated in extragalactic sources
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Anisotropy signatures of SHDM by-product decays

* Flux of secondaries from SHDM decay (i = v, v,V,N,N):
1 dn;

JAlEy s — =1
! ( ) 47TM)(TX dE 0

ds ppm(Xe + Xi(s;n)).

* ppm: DM profile

. % energy spectra of i = y,v,V, N,N from hadronization processes,
evolving the fragmentation functions from EW scale up to My using
DGLAP [Aloisio et al., Phys. Rev. D 69 094023 (2004)]

* Free parameters: My, tx
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Searches for UHE photons
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Searches for UHE neutrinos

Regular proton shower

DG v interacting
in the mountains

Deep DG v shower

Muonic companent of the shower

E-M component of the shower

Upgoing ES v shower
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Upper limits
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Constraints on perturbative decay

» Decay rate for an effective interaction term containing a monomial of
dimension n in mass unit:

M 2n-8
FX oC CL’)(@MX (TX) .

* Fine tuning between axe and n
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Constraints on non-perturbative decay

[Kuzmin & Rubakov, Phys. Atom. Nucl.979 61, 1028 (1998)]

» SHDM particles protected « Lifetime of metastable X
from standard decay by particles: Tx ~ M;‘ exp (4r/ax)
perturbative effects through a [tHooft, PRL 37 (1976) 8]
new quantum number 015
« Still, non-perturbative effects t Nk
can lead to decays through o1 [SRRNAN
“‘instantons” in &
non-commutative gauge
theories o e ]
« For B, L and X currents not
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associated to gauge M, (Gev)
interactions, possibility to

exchange quantum numbers

through an anomaly



Non-thermal SHDM production during reheating

+ No coupling between SM and DM sectors except gravitational

* DM production by “freeze-in” mechanism through s-channel
SM+SM—DM+DM [Garny et al. PRL 116 (2016) 101302] OF ¢ + ¢ —DM+DM Mambrini & olive
Phys. Rev. D 103 2021) 11, 115009 While inflaton decays into SM particles and reheats
the universe after inflation:

d _
”;(t(t) T+ 3H(ONK(t) ~ Z 2,

)

Reheating dynamics between t = H; 1 and t = 1"(;1 at Tipy tchung etal. Phys. Revsze
D 60, 063504 (1999), Giudice et al., Phys. Rev. D 64, 023508 (2001)]:

« T(a) = 0.2(eMpHin) /2 (a2 - a4)"*

* H(a) = Hinr(a/ainr)"*/%,a < am

* H(a) = Hixre?(a/am) 2,2 > am
Reheating efficiency € ~ 4Ty, (MpHin)
characterizing the duration of the reheating period
(e 1 = instantaneous reheating)

-1/2

defined between 0 and 1,



Viable regions

+ Delineating viable regions in the (Hiyr, Mx) plane for various € values to
match the DM relic density
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* GUT mass scale viable for e — 1 (T, relatively high) = tensor/scalar
ratio r of the primordial modes possibly detectable in the CMB
- For e < 0.01, 10" GeV mass scale viable, testable for ax < 0.09



» Assuming no new physics up to high energy scales, several constraints
on the properties of a dark sector of SH particles brought by the
absence of UHE photons

» X particles with masses as large as the GUT energy scale could be
sufficiently abundant to match the DM relic density, provided that the
inflationary energy scale is high (Hinr ~ 10" GeV) and Ty, is high (so
that reheating is quasi-instantaneous)

+ UHECR/CMB complementarity
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