Topological field theories in 2d from Hecke algebras

Alexander Thomas (MPIM Bonn)

Séminaire Mathématique Physique Dijon, 5 avril 2022

joint with Vladimir Fock and Valdo Tatitscheff

Motivation

Objective

Describe geometrically the space of all functions of the character variety $\operatorname{Hom}(\pi_1(\Sigma), G)/G$.

function on Teichmüller space

Motivation

Objective

Describe geometrically the space of all functions of the character variety ${\rm Hom}(\pi_1(\Sigma), {\it G})/{\it G}.$

function on Teichmüller space

For $G = PSL_2(\mathbb{R})$, basis of functions given by Thurston laminations.

Fact (Andersen-Mattes-Reshetikhin)

Basis of function on character variety given by colored chord diagrams.

Fact (Andersen-Mattes-Reshetikhin)

Basis of function on character variety given by colored chord diagrams.

ldea

Representation theory for G is encoded in affine Hecke algebra for Langlands dual group G^L . Hecke algebras have nice diagrammatic presentations.

For a finite Hecke algebra :

 $\begin{array}{rcl} \text{surface with} & + & \text{Coxeter} & \Rightarrow & \text{Laurent} \\ \text{triangulation} & + & \text{system} & \Rightarrow & \text{polynomial} \end{array}$

Theorem (Fock, Tatitscheff, T., 2021)

- This construction does not depend on the triangulation. Hence it gives a topological invariant of the surface.
- The construction can be extended to a topological quantum field theory (TQFT) for ciliated surfaces.
- The Laurent polynomials have positive coefficients for a Coxeter system of classical type and for type H₃, E₆, E₇.

For a finite Hecke algebra :

 $\begin{array}{rll} \text{surface with} & + & \text{Coxeter} & \Rightarrow & \text{Laurent} \\ \text{triangulation} & + & \text{system} & \Rightarrow & \text{polynomial} \end{array}$

Theorem (Fock, Tatitscheff, T., 2021)

- This construction does not depend on the triangulation. Hence it gives a topological invariant of the surface.
- The construction can be extended to a topological quantum field theory (TQFT) for ciliated surfaces.
- The Laurent polynomials have positive coefficients for a Coxeter system of classical type and for type H₃, E₆, E₇.

- 2 TQFTs and ciliated surfaces
- **③** TQFT from Hecke algebras
- 4 Schur elements and positivity

2 TQFTs and ciliated surfaces

3 TQFT from Hecke algebras

4 Schur elements and positivity

Coxeter groups

 $\mathsf{Coxeter}\ \mathsf{group}=\mathsf{reflection}\ \mathsf{group}$

Definition

A Coxeter system (W, S) is a group presented by

$$\mathcal{W} = \langle s \in S \mid (st)^{m_{st}} = 1
angle \; ,$$

where $m_{st} \in \mathbb{N} \cup \{\infty\}$ with $m_{ss} = 1$.

Proposition

The symmetric group allows the following presentation:

$$\mathfrak{S}_n = \langle \sigma_1, ..., \sigma_{n-1} \mid \sigma_i^2 = 1, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, [\sigma_i, \sigma_j] = 1 \forall |i-j| > 1 \rangle.$$

So $m_{i,i+1} = 3 \forall i$ and $m_{i,j} = 2$ for all |i - j| > 1.

Hecke algebra \approx deformation of $\mathbb{C}[W]$.

Definition

The Hecke algebra associated to (W, S) is the free $\mathbb{Z}[v^{\pm 1}]$ -algebra presented by

$$\mathcal{H}_{(W,S)} = \langle (h_s)_{s\in S} \mid h_s^2 = (v^{-1}-v)h_s + 1, (h_sh_t)^{m_{st}} = 1 \forall s \neq t \rangle \;.$$

For $w = s_1 \cdots s_k$, put

$$h_w := h_{s_1} \cdots h_{s_k}.$$

Proposition

The $(h_w)_{w \in W}$ form a basis of the $\mathbb{Z}[v^{\pm 1}]$ -module \mathcal{H} , called the standard basis.

Hecke algebra \approx deformation of $\mathbb{C}[W]$.

Definition

The Hecke algebra associated to (W, S) is the free $\mathbb{Z}[v^{\pm 1}]$ -algebra presented by

$$\mathcal{H}_{(W,S)} = \langle (h_s)_{s\in S} \mid h_s^2 = (v^{-1} - v)h_s + 1, (h_sh_t)^{m_{st}} = 1 \forall s \neq t \rangle \;.$$

For $w = s_1 \cdots s_k$, put

$$h_w := h_{s_1} \cdots h_{s_k}.$$

Proposition

The $(h_w)_{w \in W}$ form a basis of the $\mathbb{Z}[v^{\pm 1}]$ -module \mathcal{H} , called the standard basis.

Graphical calculus

Diagrammatical way to multiply in the Hecke algebra: graphs with edges labeled by simple reflections.

Vertex types:

Quadratic relation

h

Example

Let us multiply h_{sts} with h_{st} in $\mathcal{H}_{(\mathfrak{S}_3, \{s,t\})}$. The direct computation reads:

$$h_{sts}h_{st} = h_s h_t h_s^2 h_t$$

= $h_s h_t^2 + Q h_s h_t h_s h_t$
= $h_s + Q h_s h_t + Q h_s^2 h_t h_s$
= $h_s + Q h_{st} + Q h_{ts} + Q^2 h_{sts}$

3 TQFT from Hecke algebras

Principle

- Boundary component = vector space
- Union = Tensor product
- Manifold between boundaries = linear map

Definition (Atiyah, 1988)

A topological quantum field theory associates

- a f.g. Λ -module Z(N) to each oriented d-dimensional manifold N,
- $Z(M) \in Z(\partial M)$ for each oriented (d + 1)-dimensional manifold M

such that Z is

- **1** functorial wrt. orientation-preserving diffeomorphisms of M,
- linvolutary: $Z(N^*) = Z(N)^*$,
- 3 multiplicative for disjoint union: $Z(N_1 \cup N_2) = Z(N_1) \otimes Z(N_2)$,

In multiplicative for gluing.

Definition

A ciliated surface is obtained by removing n disjoint open disks from a punctured surface $\Sigma_{g,k}$ and add marked points, called cilia, on the boundary circles.

Good geometric object to speak about triangulations.

Decorated triangulations

Structure constants in the Hecke algebra:

$$h_x h_y = \sum_{z \in W} c_{xyz}(v) h_{z^{-1}}.$$

Decorated triangulation

Take a triangulation of a ciliated surface and associate

- an element of W to each edge,
- the structure constant c_{xyz} to each face.

Definition

For a ciliated surface Σ with labeled boundary and triangulation, define

$$P_{\Sigma,W}(v) = \sum_{e} \prod_{f} c_{f}(v)$$

where the sum is over all labelings of internal edges, the product over all faces and $c_f(v)$ is the label of face f.

Definition

For a ciliated surface $\boldsymbol{\Sigma}$ with labeled boundary and triangulation, define

$$P_{\Sigma,W}(v) = \sum_{e} \prod_{f} c_{f}(v)$$

where the sum is over all labelings of internal edges, the product over all faces and $c_f(v)$ is the label of face f.

Example

Consider
$$\Sigma_{1,1}$$
 and $W = \mathfrak{S}_2$. Then

$$P_{\Sigma,W} = \sum_{x,y,z} c_{xyz}(v) c_{xzy}(v) = v^2 + 4 + v^{-2}.$$

This construction is independent of the triangulation. Hence, we obtain a topological invariant of the ciliated surface.

This comes from the associativity in the Hecke algebra.

Example

•
$$P_{0,3,\mathfrak{S}_2}(v) = P_{1,1,\mathfrak{S}_2}(v) = v^2 + 2 + v^{-2}.$$

- $P_{0,4,\mathfrak{S}_2}(v) = v^4 + 2v^2 + 2 + 2v^{-2} + v^{-4}$.
- $P_{0,3,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 10v^2 + 10 + 10v^{-2} + 2v^{-4} + v^{-6}$.

•
$$P_{1,1,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 4v^2 + 4 + 4v^{-2} + 2v^{-4} + v^{-6}$$
.

Oberservations

For punctured surfaces, we observe that P

- is a polynomial in $q = v^{-2}$,
- is symmetric in $q \mapsto q^{-1}$,
- has positive integer coefficients.

Example

•
$$P_{0,3,\mathfrak{S}_2}(v) = P_{1,1,\mathfrak{S}_2}(v) = v^2 + 2 + v^{-2}.$$

- $P_{0,4,\mathfrak{S}_2}(v) = v^4 + 2v^2 + 2 + 2v^{-2} + v^{-4}$.
- $P_{0,3,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 10v^2 + 10 + 10v^{-2} + 2v^{-4} + v^{-6}$.

•
$$P_{1,1,\mathfrak{S}_3}(v) = v^6 + 2v^4 + 4v^2 + 4 + 4v^{-2} + 2v^{-4} + v^{-6}$$
.

Oberservations

For punctured surfaces, we observe that P

- is a polynomial in $q = v^{-2}$,
- is symmetric in $q\mapsto q^{-1}$,
- has positive integer coefficients.

Aim of reformulation:

- Description independent of a fixed basis,
- Arbitrary elements in \mathcal{H} as boundary labels.

Definition

The standard trace of the Hecke algebra is the map $tr : \mathcal{H} \to \mathcal{H}$ given by

$$\operatorname{tr}\left(\sum_{w\in W}a_wh_w\right)=a_{id}.$$

Proposition

The standard trace is symmetric and non-degenerate.

Aim of reformulation:

- Description independent of a fixed basis,
- Arbitrary elements in \mathcal{H} as boundary labels.

Definition

The standard trace of the Hecke algebra is the map tr : $\mathcal{H} \to \mathcal{H}$ given by

$$\operatorname{tr}\left(\sum_{w\in W}a_wh_w\right)=a_{id}.$$

Proposition

The standard trace is symmetric and non-degenerate.

All the ingredients of our construction can be expressed via the trace:

Proposition

The structure constants are given by $c_{xyz} = \operatorname{tr} h_x h_y h_z$.

The trace allows to identify \mathcal{H}^* with \mathcal{H} . We fix

- $(C_w)_{w \in W}$ a basis of \mathcal{H} ,
- $(C^w)_{w \in W}$, its dual basis.

Proposition

The dual to the standard basis is given by $h^{X} = h_{X^{-1}}$ since

tr
$$h_x h_y = \delta_{xy=1}$$
 .

All the ingredients of our construction can be expressed via the trace:

Proposition

The structure constants are given by $c_{xyz} = \operatorname{tr} h_x h_y h_z$.

The trace allows to identify \mathcal{H}^* with \mathcal{H} . We fix

- $(C_w)_{w \in W}$ a basis of \mathcal{H} ,
- $(C^w)_{w \in W}$, its dual basis.

Proposition

The dual to the standard basis is given by $h^{x} = h_{x^{-1}}$ since

tr
$$h_x h_y = \delta_{xy=1}$$
 .

Hecke TQFT

Decorated triangulation revisited

Take a triangulation of a ciliated surface and associate

- \bullet a copy of ${\mathcal H}$ or ${\mathcal H}^*$ to each oriented edge,
- the multiplication tensor c_f to each face f whose elements are given by the structure constants.

 $\mathsf{Gluing} = \mathsf{natural} \ \mathsf{pairing} \ \mathsf{between} \ \mathcal{H}^* \ \mathsf{and} \ \mathcal{H}$

Theorem

This construction gives a non-commutative TQFT for ciliated surfaces.

Hecke TQFT

Decorated triangulation revisited

Take a triangulation of a ciliated surface and associate

- \bullet a copy of ${\mathcal H}$ or ${\mathcal H}^*$ to each oriented edge,
- the multiplication tensor c_f to each face f whose elements are given by the structure constants.

Gluing = natural pairing between \mathcal{H}^* and \mathcal{H}

Theorem

This construction gives a non-commutative TQFT for ciliated surfaces.

Polygonal gluings

Proposition

For punctured surfaces $\Sigma_{g,k}$, we have

$$P_{g,k,W} = \operatorname{tr}(\sum_{w} C_{w} C^{w})^{k-1} (\sum_{a,b} C_{a} C_{b} C^{a} C^{b})^{g}$$

Polygonal gluings

Proposition

For punctured surfaces $\Sigma_{g,k}$, we have

$$P_{g,k,W} = \operatorname{tr}(\sum_{w} C_{w} C^{w})^{k-1} (\sum_{a,b} C_{a} C_{b} C^{a} C^{b})^{g}$$

2 TQFTs and ciliated surfaces

3 TQFT from Hecke algebras

Proposition

The element
$$s = (\sum_{w} C_{w}C^{w})^{k-1} (\sum_{a,b} C_{a}C_{b}C^{a}C^{b})^{g}$$
 is in the center of \mathcal{H} .

Proposition

The element
$$s = (\sum_w C_w C^w)^{k-1} (\sum_{a,b} C_a C_b C^a C^b)^g$$
 is in the center of \mathcal{H} .

Proof.

It is sufficient to show that $tr(shh') = tr(hsh') \forall h, h' \in \mathcal{H}$. This comes from our TQFT by a rotation of angle π .

Center of Hecke algebra and Schur elements

Correspondence trace function - central element:

Proposition

An element in \mathcal{H}^* given by $h \in \mathcal{H} \mapsto tr(h_0 h)$ is a trace function iff $h_0 \in Z(\mathcal{H})$.

Definition

- χ_{λ} : irreducible character of \mathcal{H}
- Schur element $Z_{\lambda} \in Z(\mathcal{H})$: corresponding element in the center

Proposition

The Schur elements $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$ form a basis of the center $Z(\mathcal{H})$ satisfying:

$$Z_{\lambda}Z_{\mu} = \delta_{\lambda,\mu}s_{\lambda}Z_{\lambda} \ \ \forall \ \lambda,\mu \in \mathsf{Irr}(\mathcal{H}) \ .$$

Center of Hecke algebra and Schur elements

Correspondence trace function - central element:

Proposition

An element in \mathcal{H}^* given by $h \in \mathcal{H} \mapsto tr(h_0 h)$ is a trace function iff $h_0 \in Z(\mathcal{H})$.

Definition

- χ_{λ} : irreducible character of \mathcal{H}
- Schur element $Z_{\lambda} \in Z(\mathcal{H})$: corresponding element in the center

Proposition

The Schur elements $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$ form a basis of the center $Z(\mathcal{H})$ satisfying:

$$Z_{\lambda}Z_{\mu} = \delta_{\lambda,\mu}s_{\lambda}Z_{\lambda} \ \ \forall \ \lambda,\mu \in \mathsf{Irr}(\mathcal{H}) \ .$$

Center of Hecke algebra and Schur elements

Correspondence trace function - central element:

Proposition

An element in \mathcal{H}^* given by $h \in \mathcal{H} \mapsto tr(h_0 h)$ is a trace function iff $h_0 \in Z(\mathcal{H})$.

Definition

- χ_{λ} : irreducible character of \mathcal{H}
- Schur element $Z_{\lambda} \in Z(\mathcal{H})$: corresponding element in the center

Proposition

The Schur elements $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$ form a basis of the center $Z(\mathcal{H})$ satisfying:

$$Z_\lambda Z_\mu = \delta_{\lambda,\mu} s_\lambda Z_\lambda \ \, orall \, \lambda,\mu \in \mathsf{Irr}(\mathcal{H}) \; .$$

Explicit expression

Theorem

The polynomial invariant corresponding to a punctured surface is given by

$$\mathcal{P}_{g,k,W}(q) = \sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}(q)^{2g-2+k}$$

Remarks

• We easily get the invariance under $q \mapsto q^{-1}$.

• We can put k = 0, even if we don't know how to define P.

• For
$$q=1$$
, we get $P_{g,k,W}(1)=(\#W)^{2g-2+k}\sum_{\chi}rac{1}{\chi(1)^{2g-2}}$.

Example

For $W = \mathfrak{S}_2$, we have $s_1 = 1 + q$ and $s_2 = 1 + q^{-1}$. Hence

 $P_{g,k,\mathfrak{S}_2}(q) = (1+q)^{2g-2+k} + (1+q^{-1})^{2g-2+k}$

Explicit expression

Theorem

The polynomial invariant corresponding to a punctured surface is given by

$$\mathcal{P}_{g,k,W}(q) = \sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}(q)^{2g-2+k}$$

Remarks

• We easily get the invariance under $q\mapsto q^{-1}$.

• We can put k = 0, even if we don't know how to define P.

• For
$$q=1$$
, we get $P_{g,k,W}(1)=(\#W)^{2g-2+k}\sum_{\chi}rac{1}{\chi(1)^{2g-2}}$.

Example

For
$$W = \mathfrak{S}_2$$
, we have $s_1 = 1 + q$ and $s_2 = 1 + q^{-1}$. Hence

$$P_{g,k,\mathfrak{S}_2}(q) = (1+q)^{2g-2+k} + (1+q^{-1})^{2g-2+k}$$

For a ciliated surface Σ with boundary labeled by $h_1,...,h_n\in\mathcal{H},$ we have

$$P_{\Sigma,W} = \sum_{\lambda} (\dim V_{\lambda})^k (s_{\lambda})^{2g-2+k+n} \chi_{\lambda}(h_1) \cdots \chi_{\lambda}(h_n).$$

Idea of proof

- Use polygonal gluing.
- Express $\sum_{w} C_{w} C^{w}$ and $\sum_{a,b} C_{a} C_{b} C^{a} C^{b}$ in the basis $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$.
- Use $Z_{\lambda}Z_{\mu} = \delta_{\lambda,\mu}s_{\lambda}Z_{\lambda}$.

For a ciliated surface Σ with boundary labeled by $h_1,...,h_n\in\mathcal{H},$ we have

$$P_{\Sigma,W} = \sum_{\lambda} (\dim V_{\lambda})^{k} (s_{\lambda})^{2g-2+k+n} \chi_{\lambda}(h_{1}) \cdots \chi_{\lambda}(h_{n}).$$

Idea of proof

- Use polygonal gluing.
- Express $\sum_{w} C_{w}C^{w}$ and $\sum_{a,b} C_{a}C_{b}C^{a}C^{b}$ in the basis $(Z_{\lambda})_{\lambda \in Irr(\mathcal{H})}$.

• Use
$$Z_{\lambda}Z_{\mu} = \delta_{\lambda,\mu}s_{\lambda}Z_{\lambda}$$
.

The polynomial invariant $P_{g,k,W}(q)$ has positive coefficients for all classical W and for the exceptional types H_3 , E_6 and E_7 . For all other types, it can have negative coefficients.

Example

For G_2 and $\Sigma_{0,3}$, we have

$$P_{0,3,G_2} = q^6 + 2q^5 + 2q^4 + 2q^3 + 2q^2 + 72q - 18 + \dots$$

Theorem

The Schur elements $s_{\lambda}(q)$ have positive coefficients for all Coxeter groups of classical type and for the exceptional types E_6 and E_7 .

Proof uses an explicit formula of Maria Chlouveraki.

The polynomial invariant $P_{g,k,W}(q)$ has positive coefficients for all classical W and for the exceptional types H_3 , E_6 and E_7 . For all other types, it can have negative coefficients.

Example

For G_2 and $\Sigma_{0,3}$, we have

$$P_{0,3,G_2} = q^6 + 2q^5 + 2q^4 + 2q^3 + 2q^2 + 72q - \mathbf{18} + \dots$$

Theorem

The Schur elements $s_{\lambda}(q)$ have positive coefficients for all Coxeter groups of classical type and for the exceptional types E_6 and E_7 .

Proof uses an explicit formula of Maria Chlouveraki.

Fact

Finite Hecke algebras describe representations of $G(\mathbb{F}_q)$.

Conjecture

The TQFT is linked to the character variety over \mathbb{F}_q .

Fact

For q = 1 our polynomial counts the number of unramified coverings.

Conjecture

The TQFT counts special ramified coverings over Σ . It gives an associated tau-function of a deformation of the KP hierarchy.

Fact

Finite Hecke algebras describe representations of $G(\mathbb{F}_q)$.

Conjecture

The TQFT is linked to the character variety over \mathbb{F}_q .

Fact

For q = 1 our polynomial counts the number of unramified coverings.

Conjecture

The TQFT counts special ramified coverings over Σ . It gives an associated tau-function of a deformation of the KP hierarchy.

Research directions

- Graphical calculus and link to ramified covers
- Generalization to more general symmetric algebras
- Generalization to affine Hecke algebras
 - Higher laminations
 - Link to spectral networks?
- Categorification?

Thanks for your attention !

V. Fock, V. Tatitscheff, A.T., *Topological quantum field theories from Hecke algebras*, arXiv:2105.09622

The polynomial invariant corresponding to a punctured surface is given by

$$\mathcal{P}_{g,k,W}(q) = \sum_\lambda (\dim V_\lambda)^k s_\lambda(q)^{2g-2+k} \; .$$

Proof

$$P_{g,k,W}(q) = \operatorname{tr}\left((C_w C^w)^{k-1} (C_x C_y C^x C^y)^g \right)$$

= $\operatorname{tr}\left(\sum_{\lambda} \dim V_{\lambda} Z_{\lambda} \right)^{k-1} (\sum_{\lambda} s_{\lambda} Z_{\lambda})^g$
= $\operatorname{tr}\sum_{\lambda} (\dim V_{\lambda})^{k-1} s_{\lambda}^{2g-2+k} Z_{\lambda}$
= $\sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}^{2g-2+k}.$

The polynomial invariant corresponding to a punctured surface is given by

$$\mathcal{P}_{g,k,W}(q) = \sum_\lambda (\dim V_\lambda)^k s_\lambda(q)^{2g-2+k} \; .$$

Proof

$$P_{g,k,W}(q) = \operatorname{tr}\left((C_w C^w)^{k-1} (C_x C_y C^x C^y)^g\right)$$

= $\operatorname{tr}\left(\sum_{\lambda} \dim V_{\lambda} Z_{\lambda}\right)^{k-1} (\sum_{\lambda} s_{\lambda} Z_{\lambda})^g$
= $\operatorname{tr}\sum_{\lambda} (\dim V_{\lambda})^{k-1} s_{\lambda}^{2g-2+k} Z_{\lambda}$
= $\sum_{\lambda} (\dim V_{\lambda})^k s_{\lambda}^{2g-2+k}.$

Lemma

For $h \in \mathcal{H}$, the element $\sum_w C_w h C^w$ is in $Z(\mathcal{H})$ and decomposes as

$$\sum_w C_w h C^w = \sum_\lambda \chi_\lambda(h) Z_\lambda \; .$$

Theorem

For a ciliated surface Σ with boundary labeled by $h_1, ..., h_n \in \mathcal{H}$, we have

$$P_{\Sigma,W} = \sum_{\lambda} (\dim V_{\lambda})^k (s_{\lambda})^{2g-2+k+n} \chi_{\lambda}(h_1) \cdots \chi_{\lambda}(h_n).$$

Lemma

For $h \in \mathcal{H}$, the element $\sum_w C_w h C^w$ is in $Z(\mathcal{H})$ and decomposes as

$$\sum_w C_w h C^w = \sum_\lambda \chi_\lambda(h) Z_\lambda \; .$$

Theorem

For a ciliated surface Σ with boundary labeled by $h_1, ..., h_n \in \mathcal{H}$, we have

$$P_{\Sigma,W} = \sum_{\lambda} (\dim V_{\lambda})^k (s_{\lambda})^{2g-2+k+n} \chi_{\lambda}(h_1) \cdots \chi_{\lambda}(h_n).$$