Integrability in and

beyond AdS/CFT

João Caetano CERN

Integrability in $_{\text {fist }}$ part and

Scoond part beyond AdS/CFT

João Caetano CERN

Gauge Theory with (large) N colors
 Interplay between 4D and 2D

Gauge Theory with (large) N colors

Interplay between 4D and 2D

Gauge Theory with (large) N colors

Interplay between 4D and 2D

$$
\begin{aligned}
& \left(\ldots+\lambda^{2}+\lambda^{3}+\lambda^{4}+\ldots\right)+\frac{1}{N^{2}}\left(\ldots+\lambda^{3}+\ldots\right) \quad \lambda \equiv g_{\mathrm{YM}}^{2} N
\end{aligned}
$$

Gauge Theory with (large) N colors
 ['t Hooft' 1974]

Interplay between 4D and 2D

Gauge Theory with (large) N colors

Gauge Theory with (large) N colors
 ['t Hooft' 1974]

Gauge Theory with (large) N colors
 ['t Hooft' 1974]

string tension $=\sqrt{\lambda}$
string coupling $=1 / N$

At large 't Hooft coupling λ string tension is large and classical string surfaces dominate

\(\left\{\begin{array}{l}AdS radial
direction\end{array}\right.\)

String minimal surface in
Anti-de Sitter

In these theories, life is simple(r) both at weak and strong coupling

Concrete realization

Concrete realization

$\mathcal{N}=4$ Super Yang-Mills

Maximal supersymmetric extension of Yang-Mills

Concrete realization

$\mathcal{N}=4$ Super Yang-Mills

Maximal supersymmetric extension of Yang-Mills

$$
\mathcal{L}=\frac{1}{4 g_{\mathrm{YM}}^{2}} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\text { fermions }+ \text { scalars }
$$

Concrete realization

$\mathcal{N}=4$ Super Yang-Mills

Maximal supersymmetric extension of Yang-Mills

$$
\mathcal{L}=\frac{1}{4 g_{\mathrm{YM}}^{2}} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\text { fermions }+ \text { scalars }
$$

More symmetries than QCD
e.g. scale invariance...

Conjecture of Maldacena (Gauge/Gravity duality or AdS/CFT)

Conjecture of Maldacena (Gauge/Gravity duality or AdS/CFT)
Gauge theory (Feynman diagrams) = Super String Theory in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Conjecture of Maldacena (Gauge/Gravity duality or AdS/CFT)

Gauge theory (Feynman diagrams) = Super String Theory in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Conjecture of Maldacena (Gauge/Gravity duality or AdS/CFT)

Gauge theory (Feynman diagrams) = Super String Theory in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Conjecture of Maldacena (Gauge/Gravity duality or AdS/CFT)
Gauge theory (Feynman diagrams) = Super String Theory in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Bonus

Conjecture of Maldacena (Gauge/Gravity duality or AdS/CFT)
Gauge theory (Feynman diagrams) = Super String Theory in AdS $_{5} \times \mathrm{S}^{5}$

The theory is solvable in the limit $N \rightarrow \infty$

Integrability in $\mathrm{N}=4 \mathrm{SYM}$

Integrability in N=4 SYM

Hamiltonian is Integrable!

$$
\mathbb{H} \psi=\Delta \psi
$$

Dual String state

Energy of the string
String Hamiltonian

Integrable Classical String!

Integrability in N=4 SYM

Cylinder $=$ Spectral problem

Other topologies?

Standard 2D QFT (in finite volume)

Pair of pants
$\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle$

Sphere with four punctures $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle$

Other topologies?

Cylinder $=$ Spectral problem Standard 2D QFT (in finite volume).

Pair of pants

Sphere with four punctures $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle$

General case: Arbitrary number of operators (>2) and beyond the large \mathbf{N} limit

Cylinder $=$ Spectral problem

Dilute gas approximation: Complicated interactions replaced by 2 to 2 scattering events

Cylinder $=$ Spectral problem

Dilute gas approximation: Complicated interactions replaced by 2 to 2 scattering events
Integrability: Correct description up to exponentially small corrections in system size $e^{-L E} \sim \mathcal{O}\left(\lambda^{L}\right)$ (also known as wrapping)

Glue back the cylinder

Glue back the cylinder

Need to glue
back

Glue back the cylinder

Need to glue

Vacuum (in mirror theory = double Wick rotated theory)

Virtual effect: exchange of I particle in mirror channel

Glue back the cylinder

Need to glue

Vacuum (in mirror theory = double Wick rotated theory)

More virtual particles being exchanged

Glue back the cylinder

Need to glue

Vacuum (in mirror theory = double Wick rotated theory)

More virtual particles being exchanged
particle in mirror channel $e^{\sim O\left(\lambda^{L}\right)}$
Wrapping corrections from 'mirror' excitations winding around the operators. (Resummation of these corrections leads to

Glue back the cylinder

Vacuum (in mirror theory = double Wick rotated theory)

Gluing edges = insert complete basis of states on those edges

More virtual
particles being
exchanged
More virtual
particles being
exchanged
More virtual
particles bein
exchanged

Wrapping corrections from 'mirror' excitations winding around the operators. (Resummation of these corrections leads to

Decompose the string into

Decompose the string into

 world-sheet patchesExample: Four point function on a torus $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle$

Decompose the string into

 world-sheet patchesExample: Four point function on a torus $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle$

Decompose the string into

Example: Four point function on a torus $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle$

Decompose the string into

Example: Four point function on a torus $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle$

Decompose the string into

Example: Four point function on a torus $\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle$

Four-point function $=$ Hexagons glued together

Four-point function $=$ Hexagons glued together

Four-point function $=$ Hexagons glued together

$$
\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle \sim \frac{1}{N_{\substack{4}}^{\text {complete }} \begin{array}{l}
\text { basis } \psi
\end{array}} e^{-E_{\psi} \ell_{12}+\ldots} \mathscr{H}_{1}(\ldots, \psi) \mathscr{H}_{2}(\psi, \ldots) \ldots \mathscr{H}_{8}(\ldots)
$$

This decomposition extends for any topology

Integrable Bootstrap for the Hexagons

Integrable Bootstrap for the Hexagons

$\%$ Elementary building block (2-particle state)

Integrable Bootstrap for the Hexagons

$\%$ Elementary building block (2-particle state)

Integrable Bootstrap for the Hexagons

Elementary building block (2-particle state)

Integrable Bootstrap for the Hexagons

Elementary building block (2-particle state)

Integrable Bootstrap for the Hexagons

Elementary building block (2-particle state)

$\%$ Constrained by (super)symmetries and integrability, similar to form-factor bootstrap
[Smirnov; Cardy, Castro-Alvaredo, Doyon,...]

$$
\text { e.g.Watson equation: } \mathscr{H}\left(p_{1}, p_{2}\right)=S\left(p_{1}, p_{2}\right) \mathscr{H}\left(p_{2}, p_{1}\right)
$$

Integrable Bootstrap for the Hexagons

\% Elementary building block (2-particle state)

\% Constrained by (super)symmetries and integrability, similar to form-factor bootstrap
[Smirnov; Cardy, Castro-Alvaredo, Doyon,...]

$$
\text { e.g.Watson equation: } \mathscr{H}\left(p_{1}, p_{2}\right)=S\left(p_{1}, p_{2}\right) \mathscr{H}\left(p_{2}, p_{1}\right)
$$

$\&$ Explicit non-perturbative solution: $\mathscr{H}\left(p_{1}, p_{2}\right)=\frac{x_{1}^{-}-x_{2}^{-}}{x_{1}^{-}-x_{2}^{+}} \frac{1-1 / x_{1}^{-} x_{2}^{+}}{1-1 / x_{1}^{+} x_{2}^{+}} \frac{1}{\sigma_{12}}$

$$
x_{i}=x_{i}(\lambda), \sigma_{12}=\sigma_{12}(\lambda)
$$

[Basso, Komatsu,Vieira. '2015]

Integrable Bootstrap for the Hexagons

Elementary building block (2-particle state)

\% Constrained by (super)symmetries and integrability, similar to form-factor bootstrap
[Smirnov; Cardy, Castro-Alvaredo, Doyon,...]
e.g.Watson equation: $\mathscr{H}\left(p_{1}, p_{2}\right)=S\left(p_{1}, p_{2}\right) \mathscr{H}\left(p_{2}, p_{1}\right)$
\& Explicit non-perturbative solution: $\mathscr{H}\left(p_{1}, p_{2}\right)=\frac{x_{1}^{-}-x_{2}^{-}}{x_{1}^{-}-x_{2}^{+}} \frac{1-1 / x_{1}^{-} x_{2}^{+}}{1-1 / x_{1}^{+} x_{2}^{+}} \frac{1}{\sigma_{12}}$

$$
\left.\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{4}\right\rangle\right|_{\text {torus }}
$$

$$
x_{i}=x_{i}(\lambda), \sigma_{12}=\sigma_{12}(\lambda)
$$

[Basso, Komatsu,Vieira. '2015]

Integrable Bootstrap for the Hexagons

Elementary building block (2-particle state)

\% Constrained by (super)symmetries and integrability, similar to form-factor bootstrap
[Smirnov; Cardy, Castro-Alvaredo, Doyon,...]
e.g.Watson equation: $\mathscr{H}\left(p_{1}, p_{2}\right)=S\left(p_{1}, p_{2}\right) \mathscr{H}\left(p_{2}, p_{1}\right)$
$\%$ Explicit non-perturbative solution: $\mathscr{H}\left(p_{1}, p_{2}\right)=\frac{x_{1}^{-}-x_{2}^{-}}{x_{1}^{-}-x_{2}^{+}} \frac{1-1 / x_{1}^{-} x_{2}^{+}}{1-1 / x_{1}^{+} x_{2}^{+}} \frac{1}{\sigma_{12}}$

$$
\begin{aligned}
& \left.\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{4}\right\rangle\right|_{\text {torus }}=-\frac{2 k^{6}}{N_{c}^{4}}\{ \\
& x_{i}=x_{i}(\lambda), \sigma_{12}=\sigma_{12}(\lambda) \\
& \text { [Basso, Komatsu, Vieira. '2015] } \\
& g^{2}\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] F^{(1)} \quad \checkmark \text { match } \quad \text { Perfect match } \\
& -2 g^{4}\left[\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] F^{(2)}+\left[\frac{29}{6} r^{4}-\frac{11}{4} r^{2}+\frac{15}{32}\right] \frac{t}{4}\left(F^{(1)}\right)^{2}\right] \quad \checkmark \text { match } \\
& \left.+g^{6}\left[[\ldots] F^{(3)}+[\ldots]\left(F^{(2)}\right)\left(F^{(1)}\right)+[\ldots]\left(F^{(1)}\right)^{3}\right] \text { prediction! }\right\} \\
& \text { with } \\
& \text { known data! } \\
& \left.+\mathcal{O}\left(g^{8}\right)+\mathcal{O}(1 / k)\right\} \cdot[\text { Bargheer, JC, Fleury, Komatsu,Vieira' } 17 \text { ' } 18 \text {] }
\end{aligned}
$$

Strong coupling correlation functions

Strong coupling correlation functions

Strong coupling correlation functions

Correlation functions

Area of the minimal surface in AdS
3 pt functions: [Janik,Wereszczynski 'II
Kazama, Komatsu'II,I2,I3]
4 pt and higher: [JC,Toledo'12]

Strong coupling correlation functions

From Hexagons:

- Four point functions for I/2 BPS operators in a special polarization [Coronado'।8; Kostov, Petkova Serban'। 9 ; Belitsky, Korchemsky'19 '20; Bargheer Coronado,Vieira'19]
- Three point functions near the BMN limit [Basso, Zhong' 19]
- Partial resummation of mirror excitations for 3 heavy operators [Jiang, Komatsu, Kostov, Serban' 16]
- Hexagons for Fishnets and resummation
[Basso, JC, Fleury 'I8]

Correlation functions
Area of the minimal surface in AdS
3 pt functions: [Janik,Wereszczynski 'II
Kazama, Komatsu'II,I2,I3]
4 pt and higher: [JC,Toledo'12]

Beyond AdS/CFT?

Deform away from $\mathcal{N}=4$ SYM

Deform away from $\mathcal{N}=4$ SYM

Less supersymmetry:

- marginal deformations: Leigh-Strassler, γ-deformed YM, Fishnet theories [Gurdogan,Kazakov'15; Jc, Gurdogan, Kazakov ${ }^{\prime}$ '6]

Deform away from $\mathcal{N}=4$ SYM

Less supersymmetry:

- marginal deformations: Leigh-Strassler, γ-deformed YM, Fishnet theories [Gurdogan,Kazakov'15; Jc, Gurdogan, Kazakov ${ }^{\prime}$ '6]

Less supersymmetry, conformal symmetry breaking:

- massive deformations: $\mathcal{N}=1^{*}$ SYM, $\mathcal{N}=2 *$ SYM

Deform away from $\mathcal{N}=4$ SYM

Less supersymmetry:

- marginal deformations: Leigh-Strassler, γ-deformed YM, Fishnet theories [Gurdogan,Kazakov' 15 ; Jc, Gurdogan, Kazakov ${ }^{\prime} 6$]

Less supersymmetry, conformal symmetry breaking:

- massive deformations: $\mathcal{N}=1 *$ SYM, $\mathcal{N}=2 *$ SYM
- irrelevant deformations: $\delta O=F^{4}+\ldots$ uc, Peelaers, Rastelli '20]

Deform away from $\mathcal{N}=4$ SYM

Less supersymmetry:

- marginal deformations: Leigh-Strassler, γ-deformed YM, Fishnet theories [Gurdogan,Kazakov' 15 ; Jc, Gurdogan, Kazakov ${ }^{\prime} 6$]

Less supersymmetry, conformal symmetry breaking:

- massive deformations: $\mathcal{N}=1 *$ SYM, $\mathcal{N}=2 *$ SYM
- irrelevant deformations: $\delta O=F^{4}+\ldots$ uc, Peelaers, Rastelli '20]
- Coulomb branch: $\left\langle\phi_{i}\right\rangle=m_{i} \neq 0$

Deform away from $\mathcal{N}=4$ SYM

Less supersymmetry:

- marginal deformations: Leigh-Strassler, γ-deformed YM, Fishnet theories [Gurdogan,Kazakov'15; Jc, Gurdogan, Kazakov ${ }^{\prime}$ '6]

Less supersymmetry, conformal symmetry breaking:

- massive deformations: $\mathcal{N}=1 *$ SYM, $\mathcal{N}=2 *$ SYM
- irrelevant deformations: $\delta O=F^{4}+\ldots$ נc, Peelaers, Rastelli '20]
- Coulomb branch: $\left\langle\phi_{i}\right\rangle=m_{i} \neq 0$
- Defects: D3/D5 system etc.

Deform away from $\mathcal{N}=4$ SYM

Less supersymmetry:

- marginal deformations: Leigh-Strassler, γ-deformed YM, Fishnet theories [Gurdogan,Kazakov'15; Jc, Gurdogan, Kazakov ${ }^{\prime}$ '6]

Less supersymmetry, conformal symmetry breaking:

- massive deformations: $\mathcal{N}=1 *$ SYM, $\mathcal{N}=2 *$ SYM
- irrelevant deformations: $\delta O=F^{4}+\ldots$ uc, Peelaers, Rastelli '20]
- Coulomb branch: $\left\langle\phi_{i}\right\rangle=m_{i} \neq 0$
- Defects: D3/D5 system etc.

$$
\mathcal{N}=4 \mathrm{SYM} \text { on } \mathbb{R} \mathbb{P}^{4}
$$

Real projective space

$$
\mathbb{R} \mathbb{P}^{4}=S^{4} /\left\{X^{\mu} \sim-X^{\mu}\right\}
$$

(simplest unorientable 4-manifold)

Real projective space

$$
\mathbb{R P}^{4}=S^{4} /\left\{X^{\mu} \sim-X^{\mu}\right\}
$$

(simplest unorientable 4-manifold)
CFT_{d} on $\mathbb{R P}^{d} \quad \mathfrak{\mathfrak { o }}(d+1,1) \rightarrow \mathfrak{\mathfrak { v }}(d+1): \quad K_{\mu}-P_{\mu}, M_{\mu \nu}$ (Euclidean)

- Locally conformally flat, but not globally
- Same OPE structure as in flat space

Why to study gauge theories on $\mathbb{R} \mathbb{P}^{4}$?

- New setup of AdS/CFT, with exactly solvable tools like localization, integrability and bootstrap. New ingredients in holography.
- QFTs on unorientable manifolds: insight on time-reversal anomalies [Witten'16]
- CFT on \mathbb{R}^{d} : conformal symmetry breaking
- new observables $\langle\mathcal{O}\rangle$ satisfying bootstrap constraints
- similar to the boundary setup but much more rigid.

$\mathcal{N}=4$ SYM on $\mathbb{R P}^{4}$

$\mathcal{N}=4 S Y M$ on $\mathbb{R} \mathbb{P}^{4}$

- $\mathcal{N}=4$ SYM: Antipodal map preserves 16 supercharges I/2-BPS configuration

$\mathcal{N}=4 \mathrm{SYM}$ on $\mathbb{R P}^{4}$

- $\mathcal{N}=4$ SYM: Antipodal map preserves 16 supercharges I/2-BPS configuration

$$
\mathfrak{o} \mathfrak{p} \mathfrak{p}\left(4^{*} \mid 4\right) \supset \underbrace{\mathfrak{B} \mathfrak{p}(5)}_{\text {spacetime }} \times \underbrace{\mathfrak{S} \mathfrak{v}(3) \times \mathfrak{\mathfrak { g } \mathfrak { v }}(2,1)}_{\text {R-symmetry }}
$$

$\mathcal{N}=4 \mathrm{SYM}$ on $\mathbb{R P}^{4}$

- $\mathcal{N}=4$ SYM: Antipodal map preserves 16 supercharges I/2-BPS configuration

$$
\mathfrak{o} \mathfrak{p} \mathfrak{p}\left(4^{*} \mid 4\right) \supset \underbrace{\mathfrak{B} \mathfrak{p}(5)}_{\text {spacetime }} \times \underbrace{\mathfrak{S} \mathfrak{v}(3) \times \mathfrak{\mathfrak { g } \mathfrak { v }}(2,1)}_{\text {R-symmetry }}
$$

- How do elementary fields transform under the antipodal map ? Spacetime and R-symmetry transformations fixed by SUSY

$\mathcal{N}=4 \mathrm{SYM}$ on $\mathbb{R P}^{4}$

- $\mathcal{N}=4$ SYM: Antipodal map preserves 16 supercharges I/2-BPS configuration

$$
\mathfrak{o} \mathfrak{p} \mathfrak{p}\left(4^{*} \mid 4\right) \supset \underbrace{\mathfrak{B} \mathfrak{p}(5)}_{\text {spacetime }} \times \underbrace{\mathfrak{S} \mathfrak{v}(3) \times \mathfrak{\mathfrak { g } \mathfrak { v }}(2,1)}_{\text {R-symmetry }}
$$

- How do elementary fields transform under the antipodal map? Spacetime and R-symmetry transformations fixed by SUSY
- Color part?

$\mathcal{N}=4$ SYM on $\mathbb{R P}^{4}$

- $\mathcal{N}=4$ SYM: Antipodal map preserves 16 supercharges I/2-BPS configuration

$$
\mathfrak{o} \mathfrak{p} \mathfrak{p}\left(4^{*} \mid 4\right) \supset \underbrace{\mathfrak{G} \mathfrak{v}(5)}_{\text {spacetime }} \times \underbrace{\mathfrak{S} \mathfrak{v}(3) \times \mathfrak{\mathfrak { j } (2 , 1)}}_{\text {R-symmetry }}
$$

- How do elementary fields transform under the antipodal map? Spacetime and R-symmetry transformations fixed by SUSY
- Color part?
$\mathrm{SU}(\mathrm{N})$ gauge group contains outer automorphism

$$
\tau: T_{b}^{a} \mapsto-T_{a}^{b} \quad \text { "Charge conjugation" }
$$

$\mathcal{N}=4 \mathrm{SYM}$ on $\mathbb{R P}^{4}$

- $\mathcal{N}=4$ SYM: Antipodal map preserves 16 supercharges I/2-BPS configuration

$$
\mathfrak{o} \mathfrak{p} \mathfrak{p}\left(4^{*} \mid 4\right) \supset \underbrace{\mathfrak{G} \mathfrak{p}(5)}_{\text {spacetime }} \times \underbrace{\mathfrak{S} \mathfrak{v}(3) \times \mathfrak{\mathfrak { v }}(2,1)}_{\text {R-symmetry }}
$$

- How do elementary fields transform under the antipodal map? Spacetime and R-symmetry transformations fixed by SUSY
- Color part?

SU(N) gauge group contains outer automorphism

$$
\tau: T_{b}^{a} \mapsto-T_{a}^{b} \quad \text { "Charge conjugation" }
$$

(At least) two choices, for $\mathcal{N}=4$ SYM on $\mathbb{R} \mathbb{P}^{4}$ depending whether we gauge τ or not

No charge conjugation

No charge conjugation

$$
\Phi_{I}^{a}\left(x^{\prime}\right) T_{a}=\hat{\Phi}_{I}^{a}(x) T_{a}
$$

No charge conjugation

$$
\underbrace{\Phi_{I}^{a}\left(x^{\prime}\right)}_{\left(x^{\prime}\right)^{\mu}=-\frac{x^{\mu}}{x^{2}}} T_{a}={\underset{\sim}{\Phi}}_{\hat{\Phi}_{I}=(x)}^{a}\left(\Phi_{5}, \Phi_{6},-\Phi_{7}, \Phi_{8},-\Phi_{9},-\Phi_{0}\right)
$$

No charge conjugation

Stereographic projection

Remaining fields:

$$
A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=-I_{\mu}{ }_{\mu} A_{\nu}^{a}(x) T_{a}, \quad \underbrace{}_{\text {Inversion tensor }} \Psi^{a}\left(x^{\prime}\right) T_{a}=-i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a} .
$$

No charge conjugation

Remaining fields:

$$
A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=-I_{\mu}{ }_{\mu} A_{\nu}^{a}(x) T_{a}, \quad \Psi_{\text {Inversion tensor }} \Psi^{a}\left(x^{\prime}\right) T_{a}=-i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a} .
$$

E.g. Scalar propagator on $\mathbb{R} \mathbb{P}^{4}$

No charge conjugation

$$
\begin{aligned}
& \text { Remaining fields: } \\
& \qquad A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=-I_{\mu}{ }_{\mu} A_{\nu}^{a}(x) T_{a}, \quad \Psi^{a}\left(x^{\prime}\right) T_{a}=-i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a} . \\
& \underbrace{}_{\mathscr{R}}=-\Gamma_{790}
\end{aligned}
$$

E.g. Scalar propagator on $\mathbb{R} \mathbb{P}^{4}$

$$
\left\langle\left[\Phi_{I}\right]^{m}{ }_{n}(x)\left[\Phi_{J}\right]^{p}{ }_{q}(y)\right\rangle=\delta_{I J}\left(\frac{1}{\eta} \pm \frac{1}{1-\eta}\right)\left(\delta_{q}^{m} \delta_{n}^{p}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)
$$

No charge conjugation

$$
\begin{aligned}
& \text { Remaining fields: } \\
& \qquad A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=-I_{\mu}^{\nu} A_{\nu}^{a}(x) T_{a}, \quad \Psi^{a}\left(x^{\prime}\right) T_{a}=-i \underbrace{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}_{\text {Inversion tensor }} \overbrace{\mathscr{R}}^{|x|} \underbrace{\left(\Psi^{a}(x)\right.} T_{a}
\end{aligned}
$$

E.g. Scalar propagator on $\mathbb{R} \mathbb{P}^{4}$

$$
\left\langle\left[\Phi_{I}\right]^{m}{ }_{n}(x)\left[\Phi_{J}\right]^{p}{ }_{q}(y)\right\rangle=\delta_{I J}\left(\frac{1}{\eta} \pm \frac{1}{1-\eta}\right)\left(\delta_{q}^{m} \delta_{n}^{p}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)
$$

Chordal distance $\eta=\frac{(x-y)^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}$

No charge conjugation

$$
\left(x^{\prime}\right)^{\mu}=-\frac{x^{\mu}}{x^{2}} \quad \hat{\Phi}_{I}=\left(\Phi_{5}, \Phi_{6},-\Phi_{7}, \Phi_{8},-\Phi_{9},-\Phi_{0}\right)
$$

 projection

Remaining fields:

$$
A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=-I_{\mu}{ }^{\nu} A_{\nu}^{a}(x) T_{a}, \quad \Psi^{a}\left(x^{\prime}\right) T_{a}=-i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a}
$$

E.g. Scalar propagator on $\mathbb{R} \mathbb{P}^{4}$

$$
\left\langle\left[\Phi_{I}\right]^{m}{ }_{n}(x)\left[\Phi_{J}\right]^{p}{ }_{q}(y)\right\rangle=\delta_{I J}\left(\frac{1}{\eta} \pm \frac{1}{1-\eta}\right)\left(\delta_{q}^{m} \delta_{n}^{p}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)
$$

Chordal distance $\eta=\frac{(x-y)^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}$

No charge conjugation

$$
\overbrace{r^{\mu}}^{\Phi^{\mu}=-\frac{x^{\mu}}{x^{2}}}{ }_{\Phi_{x}^{\prime}}^{\Phi^{\prime}}) T_{a}=\underbrace{\hat{\Phi}_{I}^{a}(x) T_{a}}_{\hat{\Phi}_{I}=\left(\Phi_{5}, \Phi_{6},-\Phi_{7}, \Phi_{8},-\Phi_{9,},-\Phi_{0}\right)}
$$

Remaining fields:

$$
A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=-I_{\mu}{ }_{\mu} A_{\nu}^{a}(x) T_{a}, \quad \Psi^{a}\left(x^{\prime}\right) T_{a}=-i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a} .
$$

E.g. Scalar propagator on $\mathbb{R} \mathbb{P}^{4}$

$$
\begin{aligned}
& \left\langle\left[\Phi_{I}\right]^{m}{ }_{n}(x)\left[\Phi_{J}\right]^{p}{ }_{q}(y)\right\rangle=\delta_{I J}\left(\frac{1}{\eta} \pm \frac{1}{1-\eta}\right) \underbrace{\left(\delta_{q}^{m} \delta_{n}^{p}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)}_{\text {'Usual' color part }} \\
& \text { distance } \eta=\frac{(x-y)^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}
\end{aligned}
$$

No charge conjugation

No charge conjugation

Conformal symmetry breaking

Lorentz scalar and $\mathrm{SO}(3) \times \mathrm{SO}(3)$ singlet

No charge conjugation

Conformal symmetry breaking $\langle\widehat{O}\rangle \neq 0$

Lorentz scalar and $\mathrm{SO}(3) \times \mathrm{SO}(3)$ singlet

Take a single trace $\mathcal{O} \sim \operatorname{Tr}\left[\chi_{1} \ldots \chi_{L}\right]$
$\langle\mathcal{O}\rangle \sim$

$\sim N$

With charge conjugation

With charge conjugation

$$
\Phi_{I}^{a}\left(x^{\prime}\right) T_{a}=-\hat{\Phi}_{I}^{a}(x) T_{a}^{\top}
$$

With charge conjugation

$$
\Phi_{I}^{a}\left(x^{\prime}\right) T_{a}=-\hat{\Phi}_{I}^{a}(x) T_{a}^{\top}
$$

$$
\begin{aligned}
& \text { Remaining fields: } \\
& \qquad A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=I_{\mu}^{\nu} A_{\nu}^{a}(x) T_{a}^{\top}, \quad \Psi^{a}\left(x^{\prime}\right) T_{a}=i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a}^{\top}
\end{aligned}
$$

With charge conjugation

$$
\Phi_{I}^{a}\left(x^{\prime}\right) T_{a}=-\hat{\Phi}_{I}^{a}(x) T_{a}^{\top}
$$

$$
\begin{aligned}
& \text { Remaining fields: } \\
& \qquad A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=I_{\mu}{ }^{\nu} A_{\nu}^{a}(x) T_{a}^{\top}, \quad \Psi^{a}\left(x^{\prime}\right) T_{a}=i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a}^{\top}
\end{aligned}
$$

E.g. Scalar propagator on $\mathbb{R} \mathbb{P}^{4}$ w/ charge conjugation

$$
\left\langle\left[\Phi_{I}\right]^{m}{ }_{n}(x)\left[\Phi_{J}\right]^{p}{ }_{q}(y)\right\rangle=\delta_{I J}\left(\frac{\left(\delta_{q}^{m} \delta_{n}^{p}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)}{\eta} \mp \frac{\left(\delta^{m p} \delta_{n q}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)}{1-\eta}\right)
$$

With charge conjugation

$$
\Phi_{I}^{a}\left(x^{\prime}\right) T_{a}=-\hat{\Phi}_{I}^{a}(x) T_{a}^{\top}
$$

$$
\begin{aligned}
& \text { Remaining fields: } \\
& \qquad A_{\mu}^{a}\left(x^{\prime}\right) T_{a}=I_{\mu}{ }^{\nu} A_{\nu}^{a}(x) T_{a}^{\top}, \quad \Psi^{a}\left(x^{\prime}\right) T_{a}=i \frac{\tilde{\Gamma}_{\hat{\mu}} x^{\mu}}{|x|} \mathscr{R} \Psi^{a}(x) T_{a}^{\top} .
\end{aligned}
$$

E.g. Scalar propagator on $\mathbb{R} \mathbb{P}^{4}$ w/ charge conjugation

$$
\left\langle\left[\Phi_{I}\right]^{m}{ }_{n}(x)\left[\Phi_{J}\right]^{p}{ }_{q}(y)\right\rangle=\delta_{I J}\left(\frac{\left(\delta_{q}^{m} \delta_{n}^{p}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)}{\eta} \mp \frac{\left(\delta^{m p} \delta_{n q}-\frac{1}{N} \delta_{n}^{m} \delta_{q}^{p}\right)}{1-\eta}\right)
$$

With charge conjugation

With charge conjugation

Identification of antipodal points on the spin chain

With charge conjugation

Identification of antipodal points on the spin chain

No charge conjugation

With charge conjugation

Identification of antipodal points on the spin chain

Background unchanged to leading order (apart from orientifold projection). Integrable setup!

No charge conjugation

New classical background! Asymptotic to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
[JC, Rastelli, to appear]

$$
\mathcal{N}=4 \text { SYM on } \mathbb{R} \mathbb{P}^{4}
$$

$\mathcal{N}=4 \mathrm{SYM}$ on \mathbb{R}^{4}

(with charge conjugation)

$\mathcal{N}=4 S Y M$ on $\mathbb{R} \mathbb{P}^{4}$
(with charge conjugation)

Take a $\operatorname{SU}(2)$ spin chain state

$$
\mathcal{O}(x)=\sum_{\text {perms }} \psi \operatorname{tr}(Z Z X Z Z X)
$$

$\mathcal{N}=4 S Y M$ on $\mathbb{R} \mathbb{P}^{4}$
(with charge conjugation)

Take a SU(2) spin chain state

$$
\begin{aligned}
& \mathcal{O}(x)=\sum_{\text {perms }} \psi \operatorname{tr}(Z Z X Z Z X) \\
& \sim \sum_{\text {perms }} \psi|\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow\rangle \\
& \text { (Bethe state) }
\end{aligned}
$$

$\mathcal{N}=4$ SYM on $\mathbb{R P}^{4}$

(with charge conjugation)

Take a SU(2) spin chain state

$$
\begin{aligned}
& \mathcal{O}(x)=\sum_{\text {perms }} \psi \operatorname{tr}(Z Z X Z Z X) \\
& \sim \sum_{\text {perms }} \psi|\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow\rangle \\
& \text { (Bethe state) }
\end{aligned}
$$

$\mathcal{N}=4 \mathrm{SYM}$ on $\mathbb{R P}^{4}$

(with charge conjugation)

Take a SU(2) spin chain state

$$
\begin{aligned}
& \mathcal{O}(x)=\sum_{\text {perms }} \psi \operatorname{tr}(Z Z X Z Z X) \\
& \sim \sum_{\text {perms }} \psi|\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow\rangle \\
& \text { (Bethe state) }
\end{aligned}
$$

$$
|c\rangle\rangle_{j} \equiv|\uparrow\rangle_{j} \otimes|\uparrow\rangle_{j+\frac{L}{2}}+|\downarrow\rangle_{j} \otimes|\downarrow\rangle_{j+\frac{L}{2}}
$$

$$
\left.|\mathscr{C}\rangle \equiv \prod_{j=1}^{\frac{L}{2}}(|c\rangle\rangle_{j}\right)^{\otimes}
$$

Crosscap state

$\mathcal{N}=4 \mathrm{SYM}$ on $\mathbb{R P}^{4}$

(with charge conjugation)

Take a SU(2) spin chain state

$$
\mathcal{O}(x)=\sum_{\text {perms }} \psi \operatorname{tr}(Z Z X Z Z X)
$$

$$
\sim \sum_{\text {perms }} \psi|\uparrow \uparrow \downarrow \uparrow \uparrow \downarrow\rangle
$$

$$
\begin{gathered}
|c|\rangle_{j} \equiv|\uparrow\rangle_{j} \otimes|\uparrow\rangle_{j+\frac{L}{2}}+|\downarrow\rangle_{j} \otimes|\downarrow\rangle_{j+\frac{t}{2}} \\
\left.|\mathscr{C}\rangle \equiv \prod_{\substack{j=1 \\
\text { Crosscap state }}}^{\frac{L}{2}}(|c\rangle\rangle_{j}\right)^{\otimes}
\end{gathered}
$$

$$
\langle\mathcal{O}\rangle \Leftrightarrow\langle\mathscr{C} \mid \mathcal{O}\rangle
$$

Crosscap states in Integrable Theories (2d)

Crosscap states in Integrable Theories (2d)

Crosscap states in Integrable Theories (2d)

$z \sim-1 / \bar{z}$

\otimes

Cut out a disk from a 2 d surface + identify points at the boundary of the disk

The state created by this procedure is the crosscap state

Exact crosscap overlaps in Integrable Theories

Exact crosscap overlaps in Integrable Theories

- A crosscap preserves integrability of the bulk theory.

Exact crosscap overlaps in Integrable Theories

- A crosscap preserves integrability of the bulk theory.
- Simplest integrable model: single type of particle (massive) (e.g sinhGordon model)

$$
|\langle\mathscr{C} \mid \Psi\rangle|=\sqrt{\left(1+\sqrt{\frac{Y(0)}{1+Y(0)}}\right) \frac{\operatorname{det}\left[1-\hat{G}_{-}^{\circ}\right]}{\operatorname{det}\left[1-\hat{G}_{+}^{*}\right]}}
$$

Exact crosscap overlaps in Integrable Theories

- A crosscap preserves integrability of the bulk theory.
- Simplest integrable model: single type of particle (massive) (e.g sinhGordon model)

$$
|\langle\mathscr{C} \mid \Psi\rangle|=\sqrt{\left(1+\sqrt{\frac{Y(0)}{1+Y(0)}}\right) \frac{\operatorname{det}\left[1-\hat{G}_{-}^{\circ}\right]}{\operatorname{det}\left[1-\hat{G}_{+}^{\circ}\right]}}
$$

Y-function

$$
0=L E(u)+\log Y(u)-\log (1+Y) \star \mathscr{K}_{+}(u)
$$

Exact crosscap overlaps in Integrable Theories

- A crosscap preserves integrability of the bulk theory.
- Simplest integrable model: single type of particle (massive) (e.g sinhGordon model)

$$
|\langle\mathscr{C} \mid \Psi\rangle|=\sqrt{\left(1+\sqrt{\frac{Y(0)}{1+Y(0)}}\right) \frac{\operatorname{det}\left[1-\hat{G}_{-}^{\circ}\right]}{\operatorname{det}\left[1-\hat{G}_{+}^{\circ}\right]}}
$$

Y-function

$$
0=L E(u)+\log Y(u)-\log (1+Y) \star \mathscr{K}_{+}(u)
$$

Dispersion relation \downarrow

Exact crosscap overlaps in Integrable Theories

- A crosscap preserves integrability of the bulk theory.
- Simplest integrable model: single type of particle (massive) (e.g sinhGordon model)

$$
|\langle\mathscr{C} \mid \Psi\rangle|=\sqrt{\left(1+\sqrt{\left.\frac{Y(0)}{1+Y(0)}\right)}\right) \frac{\operatorname{det}\left[1-\hat{G}_{-}^{\circ}\right]}{\operatorname{det}\left[1-\hat{G}_{+}^{\circ}\right]}}
$$

Y-function

$$
0=L E(u)+\log Y(u)-\log (1+Y) \star \mathscr{K}_{+}(u)
$$

Dispersion relation \downarrow

$$
\mathscr{K}_{ \pm}(u, v)=\frac{1}{i} \partial_{u}[\log S(u, v) \pm \log S(u,-v)]
$$

Exact crosscap overlaps in Integrable Theories
 [JC, Komatsu'2I]

- A crosscap preserves integrability of the bulk theory.
- Simplest integrable model: single type of particle (massive) (e.g sinhGordon model)

$$
|\langle\mathscr{C} \mid \Psi\rangle|=\sqrt{\left(1+\sqrt{\left.\frac{Y(0)}{1+Y(0)}\right)}\right) \frac{\operatorname{det}\left[1-\hat{G}_{-}^{\circ}\right]}{\operatorname{det}\left[1-\hat{G}_{+}^{\circ}\right]}}
$$

Y-function

$$
0=L E(u)+\log Y(u)-\log (1+Y) \star \mathscr{K}_{+}(u)
$$

Dispersion relation \downarrow

$$
\mathscr{K}_{ \pm}(u, v)=\frac{1}{i} \partial_{u}[\log S(u, v) \pm \log S(u,-v)]
$$

$$
\hat{G}_{ \pm}^{\bullet} \cdot f(u)=\sum_{k} \frac{i \mathscr{K}_{ \pm}\left(u, u_{k}\right)}{\partial_{u} \log Y\left(\tilde{u}_{k}\right)} f\left(\tilde{u}_{k}\right)+\int_{0}^{\infty} \frac{d v}{2 \pi} \frac{\mathscr{K}_{ \pm}(u, v)}{1+1 / Y(v)} f(v)
$$

Exact crosscap overlaps in Integrable Theories

- Simplest integrable model: single type of particle (massive) (e.g sinhGordon model)

$$
|\langle\mathscr{C} \mid \Psi\rangle|=\sqrt{\left(1+\sqrt{\frac{Y(0)}{1+Y(0)}}\right) \frac{\operatorname{det}\left[1-\hat{G}_{-}^{\circ}\right]}{\operatorname{det}\left[1-\hat{G}_{+}^{\circ}\right]}}
$$

Exact crosscap overlaps in Integrable Theories

- Simplest integrable model: single type of particle (massive) (e.g sinhGordon model)

$$
|\langle\mathscr{C} \mid \Psi\rangle|=\sqrt{\left(1+\sqrt{\frac{Y(0)}{1+Y(0)}}\right) \frac{\operatorname{det}\left[1-\hat{G}_{-}^{\circ}\right]}{\operatorname{det}\left[1-\hat{G}_{+}^{\circ}\right]}}
$$

- $\operatorname{In} \mathcal{N}=4$ SYM, the model is "'nested", i.e. several levels \Leftrightarrow several Y-functions
- The corresponding formula is a generalization of this one.
- We therefore compute the exact one-point functions $\langle\mathcal{O}\rangle$!

Unified picture emerging

Unified picture emerging

Quantum
Spectral Curve

$\%$ Is there a quantum spectral curve for higher point correlation functions?
\% Explore holography: bulk locality, Regge limit, compare with results from conformal bootstrap etc.
$\%$ Finite N physics (resummation in N)?

Conclusions

\% $\mathcal{N}=4$ SYM on $\mathbb{R P}^{4}$ provides new rich setups of AdS/CFT
$\%$ Without charge conjugation: new supergravity background.
$\%$ Matrix model from supersymmetric localization
$\%$ With charge conjugation: orientifold in AdS and integrable setup
$\%$ New matrix model from supersymmetric localization
\%Studied crosscap states in integrable theories
\because Lessons for orientifolds in curved backgrounds? Non-perturbative definition?

Conclusions

\% $\mathcal{N}=4$ SYM on $\mathbb{R P}^{4}$ provides new rich setups of AdS/CFT
$\%$ Without charge conjugation: new supergravity background.
\%Matrix model from supersymmetric localization [Wang' 20]
$\%$ With charge conjugation: orientifold in AdS and integrable setup
\%New matrix model from supersymmetric localization [Jc, Komatsu, Rastelli;
in progress]
\%Studied crosscap states in integrable theories
\because Lessons for orientifolds in curved backgrounds? Non-perturbative definition?

Thank you!

Backup slides

Holographic Dual of $\mathcal{N}=4$ SYM on $\mathbb{R} \mathbb{P}^{4}$ (without charge conjugation)

- New (euclidean) I/2-BPS solution of IOD IIB supergravity (asymptotically AdS)

$$
\left.\begin{array}{l}
d s_{\mathrm{IOD}}^{2}=\Delta^{1 / 4}(\underbrace{d s_{5 \mathrm{D}}^{2}}+\frac{4}{g^{2}}\left(d \theta^{2}+\frac{e^{2 A} d s_{\mathbb{R P}^{4}}^{2}}{1+\mathscr{K}_{+} \cos ^{2} \theta} \cos ^{2} \theta\right. \\
\underbrace{\Omega_{S^{2}}^{2}}_{S O(3)}
\end{array}\right) \frac{\sin ^{2} \theta}{1+\mathscr{K}^{2}-\sin ^{2} \theta} \underbrace{d \Omega_{d S_{2}}^{2}}_{\text {SO(2,1) }}))
$$

- Solution contains explicit expressions for non-trivial dilaton, B_{2}, C_{2} and C_{4}

