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Comment résoudre une théorie de jauge 

en dimension 4?
�

�

✓ Surface de ‘t Hooft dans la limite 
de grand nombre de couleurs 

✓ Théorie des cordes 
hadroniques?

Nc ! 1

✓ Modèle simplifié : extension supersymétrique 
maximale de la théorie de Yang-Mills

L =
1

4g2YM

trFµ⌫F
µ⌫ + fermions + scalaires

✓  Beaucoup de symétries : invariance d’échelle, ...
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• Strings are two dimensional.


• 4D large N gauge theories are also string theories when properly thought of.


• Correlation functions of n single trace operators = n closed strings


• Flux tubes = open strings

Start in 2D

StringHolographic
direction

=
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At large ’t Hooft coupling  string tension is 
large and classical string surfaces dominate

λ

In these theories, life is simple(r) both at weak and strong 
coupling
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• Strings are two dimensional.


• 4D large N gauge theories are also string theories when properly thought of.


• Correlation functions of n single trace operators = n closed strings
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Start in 2D

��

����

������

����������
���	
���

From [Alday, Maldacena, Sever, Vieira’2010]

String minimal surface in 
Anti-de Sitter 
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Concrete realization

Maximal supersymmetric extension of Yang-Mills

L =
1

4g2YM

trFµ⌫F
µ⌫ + fermions + scalars

More symmetries than QCD
e.g. scale invariance…

 Super Yang-Mills𝒩 = 4 `
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Bonus
Conjecture of Maldacena (Gauge/Gravity duality or AdS/CFT)

Gauge theory (Feynman diagrams) Super String Theory in AdS5 x S5

4D

Holographic 
direction

h�(x1)�(x2)i

�(x1)

= =
�(x2)

weak coupling strong coupling

� ⌘ g2YMN

Integrability
The theory is solvable in the limit N → ∞

=
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Dilatation Operator
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String Hamiltonian
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Integrable Classical 
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Cylinder = Spectral problem

Other topologies?

Pair of pants Sphere with four punctures
hO1O2O3O4ihO1O2O3i

leading N
| {z }

General case: Arbitrary number of operators (>2) and beyond the large N limit

Standard 2D QFT (in finite volume)

⇠ 1/N8

e.g.

𝒪1

𝒪2

𝒪3

𝒪4

𝒪5

𝒪6

⟨𝒪1𝒪2𝒪3𝒪4𝒪5𝒪6⟩
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Complicated mess

Cylinder = Spectral problem

Cut open 
here

Space

Time

L

Off-shell edge 
very far away

Dilute gas approximation:  Complicated interactions replaced by 2 to 2 scattering events

Integrability: Correct description up to exponentially small corrections in system 
size  (also known as wrapping)e−LE ∼ 𝒪(λL)

Magnon/string  
2 body S-matrix�̂�
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Need to glue 
back

Glue back the cylinder

Asymptotic +…
More virtual 

particles being 
exchanged

+ Wrapping

Vacuum (in mirror theory = double 
Wick rotated theory)

 Virtual effect: exchange of 1 
particle in mirror channel

Gluing edges = insert complete 
basis of states on those edges

Wrapping corrections from ‘mirror’ 
excitations winding around the operators.

(Resummation of these corrections leads to 
TBA or Quantum spectral curve)

e−LE ∼ 𝒪(λL)

[Gromov, Kazakov, Leurent, Volin’2013]
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[Bargheer, JC, Fleury, Komatsu, Vieira’17 ’18]

Example:  Four point function on a torus ⟨𝒪1𝒪2𝒪3𝒪4⟩
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,
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Four-point function = Hexagons glued together

glue = insert (complete basis of states)1 =
X

 

| ih |

This decomposition extends for any topology

⟨𝒪1𝒪2𝒪3𝒪4⟩ ∼
1

N4 ∑ e−Eψℓ12+… ℋ1(…, ψ)ℋ2(ψ, …)…ℋ8(…)
complete
basis ψ

ℋ1

ℋ2
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✤ Constrained by (super)symmetries and integrability, similar to 
form-factor bootstrap

✤ Explicit non-perturbative solution:

[Basso, Komatsu, Vieira. ’2015]
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✤ Elementary building block (2-particle state)
p1 p2

Integrable Bootstrap for the Hexagons

✤ Constrained by (super)symmetries and integrability, similar to 
form-factor bootstrap

✤ Explicit non-perturbative solution:

First Test: Large k: Match and Prediction

We are Done:
Sum over graph topologies and labelings (with bridge sum factors),
Sum over one-particle excitations of all octagons.
∆ Result matches data and produces prediction for higher loops!
Summing all octagons gives:

F
U
k,m(z, z̄)

--
torus

= ≠
2k6

N4c

;

g2# 17
6 r4

≠
7
4 r2 + 11

32
$
F (1) X match

≠ 2g4
Ë# 17

6 r4
≠

7
4 r2 + 11

32
$
F (2) +

# 29
6 r4

≠
11
4 r2 + 15

32
$ t

4
!
F (1)"2

È
X match

+ g6
Ë#

. . .
$
F (3) +

#
. . .

$!
F (2)"!

F (1)" +
#
. . .

$!
F (1)"3

È
prediction!

+ O(g8) + O(1/k)
<

.
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[Basso, Komatsu, Vieira. ’2015]hO1 . . .O4i|torus

} Perfect match 
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known data!
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[Bargheer, JC, Fleury, Komatsu, Vieira’17 ’18]
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Strong coupling correlation 
functions

coupling

AdS space

Correlation functions 
= 

Area of the minimal 
surface in AdS

3 pt functions: [Janik, Wereszczynski ’11
Kazama, Komatsu’11,12,13]

4 pt and higher: [JC, Toledo’12]

From Hexagons: 

- Four point functions for 1/2 BPS operators in a 
special polarization

- Three point functions near the BMN limit

- Partial resummation of mirror excitations for 3 
heavy operators 

- Hexagons for Fishnets and resummation

[Coronado’18; Kostov, Petkova Serban’19; 
Belitsky, Korchemsky’19 ’20; Bargheer Coronado, Vieira’19]

[Basso, Zhong’19]

[Jiang, Komatsu, Kostov, Serban’16]

[Basso, JC, Fleury ’18]
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- marginal deformations:  Leigh-Strassler, -deformed YM, 
Fishnet theories 

γ

Deform away from =4 SYM𝒩
Less supersymmetry:

- massive deformations:  𝒩 = 1* SYM,  𝒩 = 2* SYM

- irrelevant deformations:  δO = F4 + … [JC, Peelaers, Rastelli ’20]

- Coulomb branch:    ⟨ϕi⟩ = mi ≠ 0

Less supersymmetry, conformal symmetry breaking:

- Defects:   D3/D5 system etc.

=4 SYM on 𝒩 ℝℙ4 [JC, Rastelli, to appear]
[JC, Komatsu, Rastelli, in 

progress]
[JC, Komatsu’21]

[Gurdogan,Kazakov’15; JC, Gurdogan, Kazakov ’16]
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 ℝℙ4 = S4/{Xμ ∼ − Xμ}

Real projective space

(simplest unorientable 
4-manifold)

CFT  on d ℝℙd 𝔰𝔬(d + 1,1) → 𝔰𝔬(d + 1) : Kμ − Pμ , Mμν

• Locally conformally flat, but not globally

• Same OPE structure as in flat space

(Euclidean)



Why to study gauge theories on ?ℝℙ4

• New setup of AdS/CFT, with exactly solvable tools like 

localization, integrability and bootstrap. New ingredients in 

holography.

• QFTs on unorientable manifolds: insight on time-reversal 

anomalies 

• CFT on : conformal symmetry breaking 

• new observables  satisfying bootstrap constraints

• similar to the boundary setup but much more rigid.

ℝℙd

⟨𝒪⟩

[Witten’16]
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Figure 1. (a) A leading diagram in double line notation contributing to the one-point

function of a single trace operator of length L = 6 in the large N limit of N = 4 SYM on

RP4 without the gauging of charge conjugation. The pre-factor ensures the UV limit of

the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the

four faces of the figure (a), hence producing a di↵erent large N scaling.
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norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion

3We thank Shota Komatsu for many ideas and discussions leading to this setup.
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the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation
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When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.

This the standard scaling expected from a classical gravitational background and the
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the
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function of a single trace operator of length L = 6 in the large N limit of N = 4 SYM on

RP4 without the gauging of charge conjugation. The pre-factor ensures the UV limit of

the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the

four faces of the figure (a), hence producing a di↵erent large N scaling.

When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.

This the standard scaling expected from a classical gravitational background and the

goal of this paper is to determine a new solution of type IIB supergravity dual to
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion
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Figure 1. (a) A leading diagram in double line notation contributing to the one-point

function of a single trace operator of length L = 6 in the large N limit of N = 4 SYM on

RP4 without the gauging of charge conjugation. The pre-factor ensures the UV limit of

the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the

four faces of the figure (a), hence producing a di↵erent large N scaling.

When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.

This the standard scaling expected from a classical gravitational background and the

goal of this paper is to determine a new solution of type IIB supergravity dual to

this setup.
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion

3We thank Shota Komatsu for many ideas and discussions leading to this setup.
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Figure 1. (a) A leading diagram in double line notation contributing to the one-point

function of a single trace operator of length L = 6 in the large N limit of N = 4 SYM on

RP4 without the gauging of charge conjugation. The pre-factor ensures the UV limit of

the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the

four faces of the figure (a), hence producing a di↵erent large N scaling.

When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.

This the standard scaling expected from a classical gravitational background and the

goal of this paper is to determine a new solution of type IIB supergravity dual to

this setup.
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The transposition of the SU(N) generators changes the large N scaling of the one-
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion
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When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.
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The transposition of the SU(N) generators changes the large N scaling of the one-
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion
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Crosscap states in Integrable Theories 
(2d)

2 Exact p-Function

In this section, we generalize the derivation of exact g-functions in integrable field theories to
overlaps between the crosscap state and arbitrary excited states. In subsection 2.1, we discuss
general properties of the crosscap state and the partition function on the Klein bottle. We
also give a definition of the crosscap entropy and explain its relation to the crosscap overlap.
In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.

(a) (b)

Figure 1: Definitions of the crosscap (a) and the Klein bottle (b).

2.1 Klein bottle and crosscap entropy

To define crosscaps, we cut out a disk from a two-dimensional surface and identify antipodal
points on the boundary of the disk (see figure 1-(a)). This manipulation makes the surface
non-orientable and the state created by this procedure is called the crosscap state. Two
commonly-studied closed non-orientable surfaces are RP2 and the Klein bottle. They can
be obtained by inserting one or two crosscap states on S2 respectively. The crosscap states
were studied extensively in 2d CFT, where part of the motivation came from the analysis of
string theory in orientifold spacetimes [39–42].

To compute the crosscap overlaps, we consider a cylinder of length R and circumference
L and contract the two ends with the crosscap states (see figure 1-(b)). This makes the
surface topologically equivalent to the Klein bottle. As mentioned above, the Klein bottle
can also be obtained by inserting two crosscaps on S2, but here it is important to start with
the cylinder, which is locally flat, since our interest is in massive QFT, not CFT.

The partition function of this Klein bottle ZK(R,L) can be expanded in two di↵erent
channels, depending on either we view R or L as the (imaginary) time direction. If we take
R as the time direction, we obtain an expansion

ZK(R,L) =
X

 L

e�E L
R |hC| Li|2

R!1
= e�E⌦L

R |hC|⌦Li|2 + · · · . (2.1)

Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
(see figure 2). Owing to the antipodal identification at the boundary of the cylinder, the
Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen

5

z ∼ − 1/z̄

[JC, Komatsu’21]
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The state created by this procedure is the crosscap state

Cut out a disk from a 2d surface + identify points at the boundary of the disk

[JC, Komatsu’21]
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• A crosscap preserves integrability of the bulk theory.



• Simplest integrable model: single type of particle (massive) (e.g sinh-
Gordon model)

Exact crosscap overlaps in Integrable 
Theories
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• Simplest integrable model: single type of particle (massive) (e.g sinh-
Gordon model)

Exact crosscap overlaps in Integrable 
Theories

|⟨𝒞 |Ψ⟩ | = 1 +
Y(0)

1 + Y(0)

det [1 − Ĝ∙
−]

det [1 − Ĝ∙
+]

Ĝ∙
± ⋅ f(u) = ∑

k

i𝒦±(u, uk)
∂u log Y(ũk)

f(ũk) + ∫
∞

0

dv
2π

𝒦±(u, v)
1 + 1/Y(v)

f(v)

Y-function 0 = LE(u) + log Y(u) − log(1 + Y ) ⋆ 𝒦+(u)

Dispersion relation
𝒦±(u, v) =

1
i

∂u [log S(u, v) ± log S(u, − v)]
S-matrix

[JC, Komatsu’21]

• A crosscap preserves integrability of the bulk theory.



Exact crosscap overlaps in Integrable 
Theories

• Simplest integrable model: single type of particle (massive) (e.g sinh-
Gordon model)

|⟨𝒞 |Ψ⟩ | = 1 +
Y(0)

1 + Y(0)

det [1 − Ĝ∙
−]

det [1 − Ĝ∙
+]



• In  SYM, the model is ‘’nested’’, i.e. several levels  several 

Y-functions

• The corresponding formula is a generalization of this one.

• We therefore compute the exact one-point functions !

𝒩 = 4 ⇔

⟨𝒪⟩

Exact crosscap overlaps in Integrable 
Theories

• Simplest integrable model: single type of particle (massive) (e.g sinh-
Gordon model)

|⟨𝒞 |Ψ⟩ | = 1 +
Y(0)

1 + Y(0)

det [1 − Ĝ∙
−]

det [1 − Ĝ∙
+]

[JC, Komatsu, Rastelli, in progress]



Quantum 
Spectral Curve

2
2n + 4g − 4

Unified picture emerging



Quantum 
Spectral Curve

2
2n + 4g − 4

Unified picture emerging

✤  Is there a quantum spectral curve for higher point correlation functions?

✤  Explore holography: bulk locality, Regge limit, compare with results from 
conformal bootstrap etc.

✤  Finite N physics (resummation in N)?



Conclusions
✤   SYM on  provides new rich setups of AdS/CFT

✤Without charge conjugation: new supergravity background. 

✤Matrix model from supersymmetric localization 

✤With charge conjugation: orientifold in AdS and integrable setup

✤New matrix model from supersymmetric localization

✤Studied crosscap states in integrable theories

✤Lessons for orientifolds in curved backgrounds? Non-perturbative 
definition?

𝒩 = 4 ℝℙ4



Conclusions
✤   SYM on  provides new rich setups of AdS/CFT

✤Without charge conjugation: new supergravity background. 

✤Matrix model from supersymmetric localization 

✤With charge conjugation: orientifold in AdS and integrable setup

✤New matrix model from supersymmetric localization

✤Studied crosscap states in integrable theories

✤Lessons for orientifolds in curved backgrounds? Non-perturbative 
definition?

𝒩 = 4 ℝℙ4

[Wang’ 20]

[JC, Komatsu, Rastelli, 
in progress]



Thank you!



Backup slides



Holographic Dual of  SYM 
on  (without charge conjugation)

𝒩 = 4
ℝℙ4

• New (euclidean) 1/2-BPS solution of 10D IIB supergravity 
(asymptotically AdS)

ds2
10D = Δ1/4 ds2

5D +
4
g2 (dθ2 +

cos2 θ
1 + 𝒦+ cos2 θ

dΩ2
S2 +

sin2 θ
1 + 𝒦− sin2 θ

dΩ2
dS2)

SO(3) SO(2,1)dr2 + e2Ads2
ℝℙ4

e2A =
𝒥3

4
sinh 2r +

1
4

(2 − 𝒥3)cosh 2r −
1
2

Explicit functions of  and r 𝒥

Parametric family of backgrounds. Needs to be 
fixed by comparison to the gauge theory.

• Solution contains explicit expressions for non-trivial dilaton,  
and 

B2, C2
C4

𝒥 → 0 Standard (euclidean) AdS S5× 5


