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A brief history of black holes

Black holes are regions of space-time from which
nothing can escape.

Mathematically, they are solutions to Einstein’s field
equation

Gµν + Λgµν = κTµν

with Gµν the Einstein tensor constructed from the
metric gµν , Λ the cosmological constant, Tµν the
stress-energy tensor and κ is Einstein’s gravitational
constant.

Black holes come with their own set of mathematical
tools and astonishing effects.
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A brief history of black holes

Black holes are the perfect systems to look for new physics.

• Gravitational wave astronomy.

The LISA mission will be able to probe
Extreme-Mass Ratio Inspirals (EMRIs),
which will probe the vicinity of the black
hole geometry.
Theoretical challenge: Self-Force calculation.

• Effect of the drastic geometry on field
propagation.

Hawking Radiation: Hawking predicted that
quantum effects will lead black holes to emit
particles and evaporate
Superradiance: Extraction of energy from a
rotating black hole.
Challenges: Experimental detection.
Hawking Radiation for astrophysical black
hole ≈ 10−8K. Difficult to test the
theoretical predictions.
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Analogue Gravity - Introduction

Figure: Illustration of the analogy. Credits:
W.G. Unruh.

Fish swimming in a waterfall and talking to
each other via sound waves, which propagate
with speed csound .

• When cwaterfall < csound , waves can
propagate in all directions.

• When cwaterfall > csound , waves are
dragged down the waterfall

cwaterfall = csound defines the analogue
horizon.
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Derivation of the analogy

We consider here an irrotational
and inviscid fluid with velocity v⃗ ,
pressure p and density ρ. We define
the material derivative operator
Dt = ∂t + v⃗ .∇.

Fluid equations{
∇.v⃗ = 0

Dt v⃗ = −∇pρ + g⃗ + F⃗

Irrotational
v⃗ = ∇ϕ

Boundary conditions
p|z=h = 0

vz
∣∣
z=0

= ∂ϕ
∂z

∣∣
z=0

= 0

vz
∣∣
z=h

= ∂ϕ
∂z

∣∣
z=h

= Dth
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Derivation of the analogy

Linearization: We then look at small displacements of the water surface h = h0 + δh
which correspond to small changes in the velocity potential ϕ = ϕ0 + δϕ.

Linearized governing equations

∆δϕ = 0, (1)

Dtδϕ = −gδh, (2)

∂δϕ

∂z

∣∣
z=h0

= Dtδh, (3)

∂δϕ

∂z

∣∣
z=0

= 0, (4)

with Dt = ∂t + v⃗0.∇.

We then integrate Eq.(1) through the
bulk to relate the bottom of the tank to
the free surface.

∆δϕ =
(
∆|| + ∂2z

)
δϕ = 0,

δϕ =
∞∑
n=0

δϕn(x , y)
zn

n!

= cosh(iz∇||)δϕ0
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Derivation of the analogy

We finally obtain the wave equation for surface gravity waves propagating in a flowing
fluid with velocity v⃗0:

D2
t δϕ− ig∇|| tanh(ih0∇||)δϕ = 0.

In the long-wavelength limit, it reduces to:

D2
t δϕ− c2∆||δϕ = 0, with c2 =

√
gh0.
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Derivation of the analogy

Statement of the analogy

The wave equation describing surface gravity waves of small amplitudes in shallow water
reduces to the Klein-Gordon equation for a massless scalar field on a curved spacetime
with (inverse) metric gµν :

D2
t ϕ− c2∆||ϕ = 0 ⇐⇒ 1√

−g
∂µ

(√
−ggµν∂νϕ

)
= 0,

where the effective metric is given by:

gµν =
1

c2

−(c2 − v⃗20 ) −v x0 −v y0
−v x0 1 0
−v y0 0 1

 .
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Remarks on the analogy

• For superfluid/optics described by a wave function ψ obeying the Non-Linear
Schrodinger Equation, one can obtain a similar derivation by performing the
Madelung transform: ψ =

√
ρe iS and linearizing around a background phase/density

profile (S0, ρ0).

• We are not mimicking the dynamical aspects of gravity (Einstein equations), instead
we are focusing on the kinematics.

Analogue gravity allows for the identification of universal and robust features of
fundamental effects.

“It would seem that the physical intuition ought not only provide the mathematician with
interesting and challenging conjectures, but also show him the way toward a proof and
toward possible generalisation.” Kac
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A JOURNEY THROUGH AN ANALOGUE ROTATING BLACK HOLE.
From superradiance to quasi-normal modes.



Analogue rotating black hole

To mimick a rotating black hole, we study a rotating and draining fluid, i.e. a vortex. An
irrotational vortex flow is described by the DBT model:

v⃗0 = −D
r e⃗r +

C
r e⃗θ. We define re =

√
C2+D2

c and rh = D
c .

Line elements:

ds2DBT = −
(
1− r2e

r2

)
dt2 +

(
1−

r2h
r2

)−1
dr2 − 2C

r2e
r2
dtdθ +

(
r2 +

C 2

c2
− C 2r2e

c2r2

)
dθ2

ds2Kerr = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M/r + a2/r2
− 4Ma

r
dtdθ +

[
r2 + a2 +

2Ma2

r
]

]
dθ2
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Scattering with a vortex flow
After separation of variables, ϕ(t, θ, r) = e−iωt+imθf (r), the scattering of waves with a
DBT is governed by the wave equation:

d2R
dr2∗
− V (r)R = 0, with V (r) = −

[
(ω − Cm

r2
)2 −

(
c2 − D2

r2

)(
m2−1/4

r2
+ 5D2

4r2

)]
.

Note that r(r∗), where dr∗/dr =
(
1− D2

c2r2

)−1
defines the tortoise coordinate.
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Scattering with a vortex flow - superradiance
Physical boundary conditions: No outgoing mode at the horizon.

Conservation of the Wronskian W = f ˙f ∗ − f ∗ḟ , implies the following energy conservation
condition:

|R|2 = 1− ω̃

ω
|T |2

If ω̃ = ω −mΩh < 0, then |R|2 > 1. This amplification
process is known as superradiance.
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Scattering with a vortex flow - superradiance
Typical behaviour
• Counter rotating waves (m’s negative) are absorbed
• Co-rotating waves (m’s positive) are amplified
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Observation of superradiance scattering

Superradiance was an effect known since the 70’s but it had never been observed
experimentally.
Analogue gravity offered a new platform to investigate this scattering effect.

Experimental and technical details
can be found in:
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Observation of superradiance scattering

Experimental data from scattering of a plane wave incident on a vortex flow (rotating
counterclockwise).

We extract the azimuthal modes by angular
Fourier transform and then compute the
ratio of the energy current going away/inside
the vortex.
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Observation of superradiance scattering
Repeat the experiment for various
frequencies

We have a successful observation of
superradiant scattering!
However we do not have a theoretical model
because the experiment was conducted in a
non-trivial regime:

• Dispersion

• Vorticity

• Water height non constant in the centre

Question: How can we built a mathematical
model capturing the key features of our
observations?
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Eikonal description

• Wave, ϕ = e iS , is considered as a collection of rays (xµ(τ), kµ(τ)).

• Rays are the characteristic curves of the Hamilton-Jacobi equation
(∂tS + v⃗0.∇S)2 − F (∇S) = 0.

• The characteristics can be interpreted as the trajectories of fictitious particles. Their
momentum is given as the gradient of the eikonal phase k⃗ = ∇S and ω = −∂tS .
• Their dynamics is governed by a Hamiltonian, H = −1

2(ω − v⃗0.k⃗)
2 + 1

2F (k).

• From the rays, we can reconstruct the eikonal wavefronts by looking for constant
phase surfaces.

In the shallow water limit, F (k) = c2k2, and Hamilton’s equation reduces to the geodesic
equation of massless particles, photons, in the effective geometry.
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Eikonal description - Rays

From Dolan et al. Phys. Rev. D 87,

124038 (2013).

Corotating
escaping rays

Falling rays

Counter-rotating
escaping rays

From Torres et al. J. Fluid Mech. 857,

291–311 (2018).
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Eikonal description - Waves
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Good agreement between the
eikonal wavefronts and the data.

Can we explain the observed
reflection spectrum with this
description?
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WKB estimate
ϕ = Ae iS : S is found from the rays and A obeys a conservation equation div(J⃗A2) = 0.

Asymptotic behaviour: a←L e−iω̃r∗ + a→L e+iω̃r∗ ←− ϕ −→ a←R e−iωr∗ + a→R e+iωr∗

We solve the wave equation exactly
in the vicinity of the maximum in
terms of parabolic cylinder
functions and match the
asymptotics to connect the
coefficients (a↔L ) to (a↔R ).
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WKB estimate - Tunneling through a saddle point

We apply the same approach to the
dispersive case.

We expand the Hamiltonian in the
vicinity of the saddle point and lift
it to an operator to connect rays on
each side of the saddle point.

(Torres - Phil. Trans. R. Soc. A.

37820190236)
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WKB estimate - Tunneling through a saddle point

Boundary condition:
(a→L
a←L

)
=

(Z
T

)
= M

(R
1

)
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Summary on superradiance

• We have a successful observation of superradiance (R > 1).

• A geometrical description allows us to understand the wave pattern (interferences
and AB effet)

• The WKB estimate indicates that the vortex is not purely absorbing.

• We are operating in a regime well oustide the analogy, however the superradiance
effect persists.

Question: Are there other effects associated with the geometrical description?
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Analogue light-rings

The light-rings are critical points of the Hamiltonian,
ṙ = k̇r = 0.
They can be linked to the resonances of the systems,
that is modes which are purely outgoing at the
boundaries.
The resonances, quasinormal modes, have a complex
frequency ωQNM which can be approximated by the
light-rings.

ωQNM(m) ≈ ωLR(m) = ω⋆(m)− iΛ(m)

(
n +

1

2

)
,

where ω⋆ is the angular frequency of the orbit and Λ
the Lyapunov exponent.
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Analogue light-rings

Experimental realisation: We observe the
emission of waves from a perturbed vortex
flow.

• Oscillation spectrum agrees with the
light rings prediction, where the flow
parameters have been measured
independently.

• The LR spectrum allows for the
identification of the flow parameters:
Analogue Black Hole Spectroscopy.
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Carnet de voyage

• We started from the analogy which motivated us to observe the superradiance effect.

• Successful observation but in a regime where the analogy breaks down (dispersion,
vorticity, etc...)

• We investigated the effect of dispersion in wave propagation over vortices →
Robustness of the superradiance effect, identification of analogue light-rings and new
predictions for QNMs frequencies in dispersive systems.

• We conducted an experiment to validate our prediction.

• Development of the Analogue Black Hole Spectroscopy method as a non-invasive
flow measurement method.

28 / 43



Caustics in an analogue neutron star
We mimic gravitational
lensing using surface waves
over an submerged island.

Our system reveals the
presence of a caustic with
a shape that depends on
the island parameters.

This caustic will lead to
amplification of the wave
behind the obstacle.

(Torres et al,
arXiv:2202.05926)

Neutron

star

A

C

B
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Caustics in an analogue neutron star

Using the analogy, we can use the
Raychauduri equation to compute
the shape of the caustic.

dϑ

dλ
= −ϑ2 − Rµνk

µkν ,

ϑ is the expansion scalar, Rµν the
Ricci tensor and kµ the tangent
vector.

Intricate structure of the caustic.
How can we understand it?
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Catastrophe theory in a nutshell

Definitions

Let C be an n-dimensional space, called the control space. Elements in C correspond to
points which may be reached by rays, they are given by the control parameters
(c1, c2, ...cn).
Let S be an m-dimensional space, called the state space. Elements in S characterise the
various rays and are given by the state variables (s1, s2, ..., sm).

If different rays reach the same point, then the eikonal phase, S : C → R is a multivalued
function (value depends on the ray one follows to reach an element in C ).
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Catastrophe theory in a nutshell
We define the single-valued function, called
the generating function:

Φ : S × C → R
(s, c) → S(c) from s ray.

Physical rays minimize the ”optical
distance”: ∂Φ

∂si
= 0. These provides m

relations which define a submanifold
M ⊂ S × C . The branches of S corresponds
to the folding of M and caustics are the
”folding lines” of M.

Adapted from Kravtsov’s “Caustics, Catastrophes

and Wave Fields”.

Caustic are singularities of the gradient
maps: ∂2Φ/∂si∂sj = 0
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Catastrophe theory in a nutshell

Thom’s theorem

There exists a finite number of equivalence classes of structurally stable caustic for each
codimension K = dim(C ).
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Caustics in an analogue neutron star

Butterfly caustic:

Φ =
s6

6
+ C4

s4

4
+ C3

s3

3
+ C2

s2

2
+ C1s

• The symmetry of the system sets
C3 = 0.

• (C1,C2) are related to the Cartesian
coordinates

• C4 depends on the island parameter n.

Varying n allows us to slice through the
caustic surface.
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Caustics in an analogue neutron star

• Eikonal approximation:
diverges at the caustic.

• Gaussian beam: Derives a
local wave equation near along
a ray ⇐⇒ complex rays.
Allow to propagate rays
through caustics.

• CT estimates the factor of
focusing as Kfoc ≈ (kF )σ with
σ = 1/3 for the butterfly
caustic. We find Kfoc ≈ 2.9

Wave profile along y = 0 axis.
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Uniform approximation from CT

WKB gives an asymptotic solution to wave propagation.
On caustics, WKB fails and one usually turn to local solution (eg. Airy treatment of
rainbows).

Problem: The local solution and WKB modes match only asymptotically.
Solution: Build a uniform solution which reduces to the local solution in the vicinity of the
caustic and to WKB solutions far from the caustic.
Ingredients for the method:

• Geometrical quantities: phase S and amplitude A along rays.

• A local solution in the vicinity of the caustic: given by catastrophe theory

ϕ(C ) =
1

(2π)m/2

∫
...

∫
dms e iΦ(s,C).
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Example of uniform approximation

Cylindrical caustic

Exact solution: Bessel functions.
Fold caustic: Φ(s;C ) = s3/3 + Cs.

ϕ(C ) =
1√
2π

∫
ds e iΦ(s;C) =

√
2πAi(C ).

A change of coordinate allows to extend the local
solution far away from the caustic using geometrical
quantities (recipe in eg: Kravtsov).

Jn(r) ≈
(

4ξ

r2 − n2

)1/4

Ai(−ξ)

with ξ =
(
(r2 − n2)1/2 − n arccos(n/r)

)2/3
. (Langer)

CT can do even better by including derivative of the
Airy function (Berry, Chester)
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Imperfect vortex

Motivated by the WKB analysis, we study a
vortex with an extra structure located just
outside the analogue horizon.
New boundary condition:

ϕr (r∗ ≃ r∗0) ∼ Awall
(
e−iω̃r∗ +Ke−2iω̃r∗0e iω̃r∗

)
.

The presence of the wall allows for the
existence of resonances trapped between the
wall and the light-ring.
This leads to Breit-Wigner type lines in
absorption spectra.
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Imperfect vortex

Non-rotating vortex: Enhanced absorption.
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Rotating vortex: Enhanced superradiance.
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Imperfect vortex model

To describe the numerics we build two
analytical descriptions.

• A WKB approach

• A toy model where we approximate the
potential with 2 Poschl-Teller like
potential. We can solve this problem
exactly in terms of Legendre functions.
This gives an analytic expression for the
condition satisfied by the bound state.
For low frequencies:

ωmn =
πn

|r∗0|
+ σ + i

ln|K|
2|r∗0|
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Imperfect vortex model

To describe the numerics we build two
analytical descriptions.

• A WKB approach

• A toy model where we approximate the
potential with 2 Poschl-Teller like
potential. We can solve this problem
exactly in terms of Legendre functions.
This gives an analytic expression for the
condition satisfied by the bound state.
For low frequencies:

ωmn =
πn

|r∗0|
+ σ + i

ln|K|
2|r∗0|

.
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More on QNMs

QNMs of time-dependent systems

Time-dependent vortex flow:

Black hole surrounded by a collapsing
shell of matter.

QNMs emission in fibre optics

Light in fibre obeys the NLSE.
We can send a soliton in the fibre which creates
a background geometry for small amplitude
probe fields → Poschl-Teller potential.

• Stability of the QNM spectrum
(pseudospectrum).

• QNMs excitation factors

Bn

∫ +∞
−∞

I (ω,r∗)X̂ (r∗)
Aout

dr∗, with I a source and

X̂ the QNM radial function (divergent at
∞). Padé approximant?
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“It is probably true quite generally that in the
history of human thinking the most fruitful
developments frequently take place at those
points where two different lines of thought
meet. [...] (I)f they are at least so much
related to each other that a real interaction
can take place, then one may hope that new
and interesting developments will follow.”

Heisenberg.
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