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Advection equation

We want to approximate the solution u : R+ × [0, 1]→ R of the
advection equation (a > 0):

∂tu + a∂xu = 0 (t, x) ∈ R+ × [0, 1]
u(t, 0) = g(t) g : R+ → R
u(0, x) = f (x) f : [0, 1]→ R.

(1)

The finite difference scheme we used are the following.
Un+1

j =
∑p

k=−r akUn
j+k n ∈ N, j ∈ J0; JK

Un
j +

∑m−1
i=0 bi,jUn

i = gn
j n ∈ N, j ∈ J−r ;−1K

Un
j +

∑m−1
i=0 ci,jUn

J−i = gn
j n ∈ N, j ∈ JJ + 1; J + pK

U0
j = f (xj) j ∈ J0; JK.

(2)

with J ∈ N∗, ∆x = 1
J and xj = j∆x for j ∈ J0; JK and ∆t ∈]0, 1[ and

tn = n∆t for n ∈ N satisfying the Courant number λ := a∆t
∆x fixed.
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Discretization

x

t

J J + p0 j

n + 1
n

j − r j + p−r

r + 1 + p
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Convergence

Consistency the exact solution of the PDE is almost a solution
of the scheme

Stability the solution is continuous with respect to the initial
data, the boundary data and a source term F

Theorem (Lax)
A linear scheme is convergent if and only if it is consistent and stable.

Consistency
Study u(tn+1, xj)−

∑p
k=−r aku(tn, xj+k) for the interior

and u(tn, xj) +
∑m−1

i=0 bi,ju(tn, xi )− gn
j for the boundary

Stability
Find an inequality of the form ‖U‖ . ‖f ‖+ ‖g‖+ ‖F‖

Strategy to prove stability ?
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GKS Theory

GKS theory (Gustafsson, Kreiss and Sundström) is introduced in the
article [GKS72] and gives the following proposition.

Proposition
To have the stability of the problem with two boundaries, it is sufficient
to prove :
(a) the Cauchy-stability of the problem without boundary (on Z),

(b) the stability of the problem with only a left boundary (on N),

(c) the stability of the problem with only a right boundary (on −N).

Points (b) and (c) can be handled in the same way.
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Cauchy-Stability

Definition (Symbol)
The symbol of the scheme is defined, for ξ ∈ R, by

γ(ξ) =
p∑

j=−r
aje ijξ

We have Ûn+1(ξ) = γ(ξ)Ûn(ξ) for all ξ ∈ R.

Definition (Cauchy-stability)
The scheme is Cauchy-stable if

∀ξ ∈ R, |γ(ξ)| 6 1

‖Un‖∆x 6 sup
ξ
|γ(ξ)|n‖U0‖∆x
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Cauchy-Stability
Beam-Warming

For example, the Beam-Warming scheme is given by

Un+1
j = λ(λ− 1)

2 Un
j−2 + λ(2− λ)Un

j−1 + (λ− 1)(λ− 2)
2 Un

j

Figure: Symbol of Beam-Warming for λ = 1.8.
Cauchy-stable for the CFL condition given by: 0 < λ 6 2.
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Cauchy-Stability
Third Order

For example, let us take the Third Order scheme (O3) given by

Un+1
j =

(
λ3

6 −
λ
6

)
Un

j−2+
(
λ+ λ2

2 −
λ3

2

)
Un

j−1+
(
1− λ

2 −λ
2+ λ3

2

)
Un

j +
(
λ2

2 −
λ3

6 −
λ
3

)
Un

j+1

Figure: Symbol of Third Order for λ = 0.35.
Cauchy-stable for the CFL condition given by: 0 < λ 6 1.
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Stablity of the scheme with only one boundary
We study the following problem:

Un+1
j =

∑p
k=−r akUn

j+k , n ∈ N, j ∈ N
Un

j +
∑m−1

i=0 bi,jUn
i = gn

j , n ∈ N, j ∈ J−r ;−1K
(Un

j )j ∈ `2(N)
(3)

GKS-Stability: for f = 0 and F = 0, there exist K , α0 such that for all
α > α0, we have
−1∑

j=−r
‖e−αn∆tUj‖2∆t+

(
α− α0
α∆t + 1

)
‖e−αn∆tU‖2∆x ,∆t 6 K 2

−1∑
j=−r
‖e−αn∆tgj‖2∆t

Theorem (Kreiss)
The following assertions are equivalent:
• the scheme with only one boundary is stable
• the Kreiss-Lopatinskii determinant ∆(z) doesn’t vanish on {|z | > 1}.
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Main theorem 1
Case p = 0 (where p is the number of right points in the scheme)

We draw ∆(S).

Theorem (B.Boutin, PLB, N.Seguin[BLBS22])
Assume that the scheme is Cauchy-stable and consistent. If 0 /∈ ∆(S)
then the equation ∆(z) = 0 has r − Ind∆(S)(0) solutions in {|z | > 1}.
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
Un+1

j = λ(λ− 1)
2 Un

j−2 + λ(2− λ)Un
j−1 + (λ− 1)(λ− 2)

2 Un
j ,

Un
−1 = 1

2(Un
2 − 2Un

1 + Un
0 ) + gn

−1,

Un
−2 = 2(Un

2 − 2Un
1 + Un

0 ) + gn
−2.

(4)

Figure: Kreiss-Lopatinskii determinant for the Beam-Warming scheme (4)
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λ = 0.7 λ = 1

λ = 1.4 λ = 1.9
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Main theorem 2
General case (for any p)

Theorem (B.Boutin, PLB, N.Seguin (in preparation))
Assume that the scheme is Cauchy-stable and consistent. If 0 /∈ ∆(S)
then the equation ∆(z) = 0 has r − Ind∆(S)(0) solutions in {|z | > 1}.

Figure: Kreiss-Lopatinskii determinant for the ThirdOrder scheme with SILW3.
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Assume that the scheme is Cauchy-stable and consistent. If 0 /∈ ∆(S)
then the equation ∆(z) = 0 has r − Ind∆(S)(0) solutions in {|z | > 1}.

Third Order scheme with S1ILW3

Un+1
j =

(
λ3

6 − λ

6

)
Un

j−2 +
(
λ+ λ2

2 − λ3

2

)
Un

j−1

+
(

1 − λ

2 − λ2 + λ3

2

)
Un

j +
(
λ2

2 − λ3

6 − λ

3

)
Un

j+1,

Un
−1 = −(U1 − U0) + 1

2(Un
2 − 2Un

1 + Un
0 ) + gn

−1,

Un
−2 = −2(U1 − U0) + 2(Un

2 − 2Un
1 + Un

0 ) + gn
−2

(5)

Figure: Kreiss-Lopatinskii determinant for the ThirdOrder scheme with SILW3.
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Z-transform and characteristic equation

We recall the interior equation of the scheme

Un+1
j =

p∑
k=−r

akUn
j+k ∀j ∈ N,∀n ∈ N.

We use the Z-transform and obtain the following recursive sequence

zŨj(z) =
p∑

k=−r
ak Ũj+k(z) ∀j ∈ N,∀|z | > 1,

whose characteristic equation is

zκr =
p∑

j=−r
ajκ

r+j
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Hersh lemma

Characteristic equation

zκr =
p∑

j=−r
ajκ

r+j (5)

Lemma (Hersh)
If the scheme is Cauchy-stable and if |z | > 1, then the characteristic
equation (5):
• has no root on the unit circle S,
• has r roots (with multiplicity) in D,
• has p roots (with multiplicity) in C \ D.

We select only the r roots (with multiplicity) in the unit disk to have the
solution (Ũj(z))j∈N in `2(N), i.e.

∑+∞
j=0 ∆x |Ũj(z)|2 <∞.
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Hersh lemma illustration

Where z lives Where κ lives

×z

symbol
curve

S

×κ
×κ

×κ
×
κ
×κ

r roots in D

×κ ×κ

×
κ

×
κ

×
κ

p roots
in C \ D
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Space of solutions in `2 in space
For the sake of simplicity, we suppose that the roots κ of the
characteristic equation from the unit disk are simple.
For |z | > 1, we denote Es(z) the space of solutions in `2 in space. By
Hersh lemma, its dimension is r because there are r roots κ inside the
unit disk.

Es(z) = Vect




1
κ1
κ21
κ31
...

 ,


1
κ2
κ22
κ32
...

 , . . . ,


1
κr
κ2r
κ3r
...




We denote Ki,j(z) ∈Mj−i+1,r (C) the extraction of the components
between row i and j included.

Ki,j(z) =


κi
1(z) κi

2(z) . . . κi
r (z)

κi+1
1 (z) κi+1

2 (z) . . . κi+1
r (z)

...
...

κj
1(z) κj

2(z) . . . κj
r (z)


We extend this space to the domain |z | = 1 ([Cou13]).
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Extension to C \ D

Where z lives Where κ lives

×zsymbol
curve

S ×
κ

×κ

×κ

×κ

×κ κ

×κ

×κ

×κ
×
κ

r roots in D
coming from D

p roots
in C \ D
coming

from C \ D
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Boundary consideration

The scheme (with gn
j = 0) can be seen as the following semi-infinite

Quasi-Toeplitz matrix:

z


Ũ0(z)
Ũ1(z)
Ũ2(z)
Ũ3(z)

...

 =


β1,1 β1,2 . . . β1,m 0 . . . 0
...

... 0 . . . 0
βr ,1 βr ,2 . . . βr ,m 0 . . . 0
a−r . . . a0 . . . ap 0

. . . . . . . . .




Ũ0(z)
Ũ1(z)
Ũ2(z)
Ũ3(z)

...


The boundary is expressed in the following equality:

z


Ũ0(z)
Ũ1(z)

...
Ũr−1(z)

 =

β1,1 β1,2 . . . β1,m
...

...
βr ,1 βr ,2 . . . βr ,m


︸ ︷︷ ︸

B


Ũ0(z)
Ũ1(z)

...
Ũm−1(z)


22/34
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Kreiss-Lopatinskii determinant

Writing (Ũj(z)) in the basis of Es(z), to have uniqueness of solutions, the
following determinant has to be non zero

∆KL(z) = det(zK0,r−1(z)− BK0,m−1(z)).

Definition (Intrinsic Kreiss-Lopatinskii determinant)
For all |z | > 1, we define intrinsic Kreiss-Lopatinskii determinant by

∆ : z 7→ det(zK0,r−1(z)− BK0,m−1(z))
detK0,r−1(z) .
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Main result 1
Case p = 0

Theorem (B.Boutin, PLB, N.Seguin [BLBS22])
Assume Cauchy-stability and consistency. We have

∀z ∈ C \ D, ∆(z) = (−1)r(m−r) detC(z)
(

a−r
a0−z

)m−r

where detC(z) is a constructible polynomial of z depending only on the
interior coefficients (aj)0j=−r and the boundary coefficients.

Theorem (B.Boutin, PLB, N.Seguin [BLBS22])
Assume that the scheme is Cauchy-stable and consistent. If 0 /∈ ∆(S)
then the equation ∆(z) = 0 has r − Ind∆(S)(0) solutions in {|z | > 1}.
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Main result 2
General case

Proposition (B.Boutin, PLB, N.Seguin (in preparation))
Assume that the scheme is Cauchy-stable and consistent. The intrinsic
Kreiss-Lopatinskii determinant is holomorphic on {|z | > 1} and
continuous on {|z | > 1}.

Theorem (B.Boutin, PLB, N.Seguin (in preparation))
Assume that the scheme is Cauchy-stable and consistent. If 0 /∈ ∆(S)
then the equation ∆(z) = 0 has r − Ind∆(S)(0) solutions in {|z | > 1}.

25/34



Framework Main result Kreiss-Lopatinskii determinant Sketch of the proof Numerical algorithms Conclusion

Main result 2
General case

Proposition (B.Boutin, PLB, N.Seguin (in preparation))
Assume that the scheme is Cauchy-stable and consistent. The intrinsic
Kreiss-Lopatinskii determinant is holomorphic on {|z | > 1} and
continuous on {|z | > 1}.

Theorem (B.Boutin, PLB, N.Seguin (in preparation))
Assume that the scheme is Cauchy-stable and consistent. If 0 /∈ ∆(S)
then the equation ∆(z) = 0 has r − Ind∆(S)(0) solutions in {|z | > 1}.

25/34



Framework Main result Kreiss-Lopatinskii determinant Sketch of the proof Numerical algorithms Conclusion

Main result 2
General case

Proposition (B.Boutin, PLB, N.Seguin (in preparation))
Assume that the scheme is Cauchy-stable and consistent. The intrinsic
Kreiss-Lopatinskii determinant is holomorphic on {|z | > 1} and
continuous on {|z | > 1}.

Theorem (B.Boutin, PLB, N.Seguin (in preparation))
Assume that the scheme is Cauchy-stable and consistent. If 0 /∈ ∆(S)
then the equation ∆(z) = 0 has r − Ind∆(S)(0) solutions in {|z | > 1}.

25/34



Framework Main result Kreiss-Lopatinskii determinant Sketch of the proof Numerical algorithms Conclusion

1 Framework
PDE and discretization
GKS Theory

2 Main result

3 Kreiss-Lopatinskii determinant
Interior equation
Boundary equation

4 Sketch of the proof

5 Numerical algorithms

6 Conclusion

26/34



Framework Main result Kreiss-Lopatinskii determinant Sketch of the proof Numerical algorithms Conclusion

Sketch of the proof

We have

∆(z) = det(zK0,r−1(z)− BK0,m−1(z))
det(K0,r−1(z))

= z r det
(
Ir −

BK0,m−1(z)K−10,r−1(z)
z

)
.

The function z 7→ K0,m−1(z)K−10,r−1(z) is holomorphic on {|z | > 1},
continuous on {|z | > 1} and bounded on {|z | > 1} (technical proof).

Let us take the continuous function

∆̃ : D \ {0} → C
z 7→ ∆(1/z)

meromorphic on D with a pole at 0 of order r .
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Sketch of the proof

∆̃ : D \ {0} → C
z 7→ ∆(1/z)

Use the Residue theorem on ∆̃ to get

Ind∆̃(S)(0) = #zeros∆̃(D)−#poles∆̃(D)

which leads to

#zeros∆(C \ D) = #poles∆̃(D)︸ ︷︷ ︸
r

−Ind∆(S)(0).

�
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How do we compute the Kreiss-Lopatinskii determinant ?

z


Ũ0(z)
Ũ1(z)

...
Ũr−1(z)

 =

β1,1 β1,2 . . . β1,m
...

...
βr ,1 βr ,2 . . . βr ,m


︸ ︷︷ ︸

B


Ũ0(z)
Ũ1(z)

...
Ũm−1(z)


But, for all j ∈ N, we have
apŨj+p+r (z) + · · ·+ a1Ũj+1+r (z) + (a0 − z)Ũj+r (z) + · · ·+ a−r Ũj(z) = 0.

We can express every Ũ0(z), Ũ1(z), . . . , Ũm−1(z) in terms of
Ũ0(z), Ũ1(z), . . . , Ũr+p−1(z). Hence,

z


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Ũr+p−1(z)

 with B(z) ∈Mr ,r+p(C)

30/34



Framework Main result Kreiss-Lopatinskii determinant Sketch of the proof Numerical algorithms Conclusion

How do we compute the Kreiss-Lopatinskii determinant ?

z


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Ũ0(z)
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Case p = 0

If p = 0 then the matrix B(z) is a square matrix.
We have

∆(z) = det(zK0,r−1(z)−B(z)K0,r−1(z))
detK0,r−1(z)

= det(zIr −B(z))

with B(z) easily computable and depending only on z , the coefficients
(aj)0j=−r and the matrix B.

Moreover, no need to compute the roots κ of the characteristic equation.
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General case

If p 6= 0 then the matrix B(z) is not a square matrix.
Let us take the polynomial of degree r whose roots are the κ from the
inside.

r∏
j=1

(X − κj(z)) = X r + σr−1(z)X r−1 + · · ·+ σ1(z)X + σ0(z)

symmetric functions of (κj(z))j

. . .

Then we can do the same transformation with this polynomial and obtain

∆(z) = det(zIr − B̃(σr−1(z), . . . , σ0(z)))
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Winding number

The curve we draw is a polygonal line. We count the number of loops
around the origin.

See [ZM13] for results of robustness.
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Beam-Warming example

S1ILW2

S1ILW3

S2ILW3

S1ILW4

S2ILW4

S3ILW4

λ

Number of zeros of Kreiss-Lopatinskii determinant for Beam-Warming
scheme with different SILW boundary with respect to λ.34/34
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Conclusion
Conclusion:
• Explicit use of the Kreiss-Lopatinskii determinant ([GKO13]) for one

time step explicit scheme.
• Numerical procedure to check the stability of a problem defined on

N with f = 0 and g 6= 0.

In prospect:
• Link with [CF21] where f 6= 0 and g = 0
• Find inequality of convergence for Simplified Inverse Lax-Wendroff

boundary condition ([BNS+21])
• Explicit the Kreiss-Lopatinskii determinant for multistep scheme

(Leapfrog) ([Tre84])
• Study implicit problem (Crank Nicolson)
• Study in higher dimension (dimension 2) ([DDJ18])
• Make rigourous the numerical computation (with interval arithmetics

for instance)
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