Stability analysis of high order discrete boundary condition

Pierre Le Barbenchon

PhD thesis supervised by Benjamin Boutin and Nicolas Seguin

Université de Rennes 1, IRMAR

Coastal flow models and boundary conditions

27 octobre 2022

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
00000000	00000	000000000	000	000000	0000
Content	s				

- PDE and discretization
- GKS Theory

2 Main result

- Kreiss-Lopatinskii determinant
 Interior equation
 Boundary equation
- 4 Sketch of the proof
- 5 Numerical algorithms

6 Conclusion

Framework	Main result		Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Advectio	on equa	tion			

We want to approximate the solution $u : \mathbb{R}^+ \times [0,1] \to \mathbb{R}$ of the advection equation (a > 0):

$$\begin{cases} \frac{\partial_t u + a \partial_x u = 0 \quad (t, x) \in \mathbb{R}^+ \times [0, 1] \\ u(t, 0) = g(t) \quad g : \mathbb{R}^+ \to \mathbb{R} \\ u(0, x) = f(x) \quad f : [0, 1] \to \mathbb{R}. \end{cases}$$
(1)

The finite difference scheme we used are the following.

$$\begin{cases} U_{j}^{n+1} = \sum_{k=-r}^{p} a_{k} U_{j+k}^{n} & n \in \mathbb{N}, j \in [[0; J]] \\ U_{j}^{n} + \sum_{i=0}^{m-1} b_{i,j} U_{i}^{n} = g_{j}^{n} & n \in \mathbb{N}, j \in [[-r; -1]] \\ U_{j}^{n} + \sum_{i=0}^{m-1} c_{i,j} U_{J-i}^{n} = g_{j}^{n} & n \in \mathbb{N}, j \in [[J+1; J+p]] \\ U_{j}^{0} = f(x_{j}) & j \in [[0; J]]. \end{cases}$$
(2)

with $J \in \mathbb{N}^*$, $\Delta x = \frac{1}{J}$ and $x_j = j\Delta x$ for $j \in [0; J]$ and $\Delta t \in]0, 1[$ and $t^n = n\Delta t$ for $n \in \mathbb{N}$ satisfying the Courant number $\lambda := \frac{a\Delta t}{\Delta x}$ fixed.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Discreti	ation				

Discretization

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Converg	ence				

Consistency the exact solution of the PDE is almost a solution of the scheme the solution is continuous with respect to the initial

Stability the solution is continuous with respect to the initial data, the boundary data and a source term F

Theorem (Lax)

A linear scheme is convergent if and only if it is consistent and stable.

Consistency

Study $u(t^{n+1}, x_j) - \sum_{k=-r}^{p} a_k u(t^n, x_{j+k})$ for the interior and $u(t^n, x_j) + \sum_{i=0}^{m-1} b_{i,j} u(t^n, x_i) - g_j^n$ for the boundary

Stability

Find an inequality of the form $||U|| \lesssim ||f|| + ||g|| + ||F||$

Strategy to prove stability ?

Framework ○○○○●○○○○	Main result 00000	Kreiss-Lopatinskii determinant 0000000000	Sketch of the proof	Numerical algorithms	Conclusion 0000
GKS Th	eory				

GKS theory (Gustafsson, Kreiss and Sundström) is introduced in the article [GKS72] and gives the following proposition.

Proposition

To have the stability of the problem with two boundaries, it is sufficient to prove :

- (a) the Cauchy-stability of the problem without boundary (on \mathbb{Z}),
- (b) the stability of the problem with only a left boundary (on \mathbb{N}),
- (c) the stability of the problem with only a right boundary (on $-\mathbb{N}$).

Points (b) and (c) can be handled in the same way.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
○○○○○●○○○	00000	0000000000		000000	0000
Cauchy-	Stability				

Definition (Symbol)

The symbol of the scheme is defined, for $\xi \in \mathbb{R}$, by

$$\gamma(\xi) = \sum_{j=-r}^{p} a_j e^{ij\xi}$$

We have $\widehat{U^{n+1}}(\xi) = \gamma(\xi)\widehat{U^n}(\xi)$ for all $\xi \in \mathbb{R}$.

Definition (Cauchy-stability)

The scheme is Cauchy-stable if

$$\forall \xi \in \mathbb{R}, |\gamma(\xi)| \leqslant 1$$

$$\|U^n\|_{\Delta x} \leqslant \sup_{\xi} |\gamma(\xi)|^n \|U^0\|_{\Delta x}$$

Framework	Main result		Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Cauchy-S Beam-Warmin	Stability				

For example, the Beam-Warming scheme is given by

$$U_j^{n+1}=rac{\lambda(\lambda-1)}{2}U_{j-2}^n+\lambda(2-\lambda)U_{j-1}^n+rac{(\lambda-1)(\lambda-2)}{2}U_j^n$$

Cauchy-stable for the CFL condition given by: $0 < \lambda \leq 2$.

8/34

Framework	Main result		Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Cauchy-S	Stability				

For example, let us take the Third Order scheme (O3) given by

$$U_j^{n+1} = \left(\frac{\lambda^3}{6} - \frac{\lambda}{6}\right)U_{j-2}^n + \left(\lambda + \frac{\lambda^2}{2} - \frac{\lambda^3}{2}\right)U_{j-1}^n + \left(1 - \frac{\lambda}{2} - \lambda^2 + \frac{\lambda^3}{2}\right)U_j^n + \left(\frac{\lambda^2}{2} - \frac{\lambda^3}{6} - \frac{\lambda}{3}\right)U_{j+1}^n$$

Figure: Symbol of Third Order for $\lambda = 0.35$. Cauchy-stable for the CFL condition given by: $0 < \lambda \leqslant 1$.

Framework	Main result		Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Stablity	of the s	cheme with on	ly one boui	ndary	

We study the following problem:

$$\begin{cases} U_{j}^{n+1} = \sum_{k=-r}^{p} a_{k} U_{j+k}^{n}, & n \in \mathbb{N}, j \in \mathbb{N} \\ U_{j}^{n} + \sum_{i=0}^{m-1} b_{i,j} U_{i}^{n} = g_{j}^{n}, & n \in \mathbb{N}, j \in [-r; -1] \\ (U_{j}^{n})_{j} \in \ell^{2}(\mathbb{N}) \end{cases}$$
(3)

Framework	Main result		Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000	000	000000	0000
Stablity	of the so	cheme with only	y one boun	dary	

We study the following problem:

$$\begin{cases} U_{j}^{n+1} = \sum_{k=-r}^{p} a_{k} U_{j+k}^{n}, & n \in \mathbb{N}, j \in \mathbb{N} \\ U_{j}^{n} + \sum_{i=0}^{m-1} b_{i,j} U_{i}^{n} = g_{j}^{n}, & n \in \mathbb{N}, j \in [-r; -1] \\ (U_{j}^{n})_{j} \in \ell^{2}(\mathbb{N}) \end{cases}$$
(3)

GKS-Stability: for f = 0 and F = 0, there exist K, α_0 such that for all $\alpha > \alpha_0$, we have

$$\sum_{j=-r}^{-1} \|e^{-\alpha n\Delta t} U_j\|_{\Delta t}^2 + \left(\frac{\alpha - \alpha_0}{\alpha \Delta t + 1}\right) \|e^{-\alpha n\Delta t} U\|_{\Delta x, \Delta t}^2 \leqslant \kappa^2 \sum_{j=-r}^{-1} \|e^{-\alpha n\Delta t} g_j\|_{\Delta t}^2$$

Stablity	of the	scheme with on	ly one hou	ndarv	
000000000	00000	000000000	000	000000	0000
Framework	Main result		Sketch of the proof	Numerical algorithms	Conclusion

We study the following problem:

$$\begin{cases} U_{j}^{n+1} = \sum_{k=-r}^{p} a_{k} U_{j+k}^{n}, & n \in \mathbb{N}, j \in \mathbb{N} \\ U_{j}^{n} + \sum_{i=0}^{m-1} b_{i,j} U_{i}^{n} = g_{j}^{n}, & n \in \mathbb{N}, j \in [-r; -1] \\ (U_{j}^{n})_{j} \in \ell^{2}(\mathbb{N}) \end{cases}$$
(3)

GKS-Stability: for f = 0 and F = 0, there exist K, α_0 such that for all $\alpha > \alpha_0$, we have

$$\sum_{j=-r}^{-1} \|e^{-\alpha n\Delta t} U_j\|_{\Delta t}^2 + \left(\frac{\alpha - \alpha_0}{\alpha \Delta t + 1}\right) \|e^{-\alpha n\Delta t} U\|_{\Delta x, \Delta t}^2 \leqslant \kappa^2 \sum_{j=-r}^{-1} \|e^{-\alpha n\Delta t} g_j\|_{\Delta t}^2$$

Theorem (Kreiss)

The following assertions are equivalent:

- the scheme with only one boundary is stable
- the Kreiss-Lopatinskii determinant $\Delta(z)$ doesn't vanish on $\{|z| \ge 1\}$.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Content	ts				

- PDE and discretization
- GKS Theory

2 Main result

Kreiss-Lopatinskii determinant
 Interior equation
 Boundary equation

4 Sketch of the proof

5 Numerical algorithms

6 Conclusion

	Main result		Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Main the	eorem 1				
Case $p = 0$ (v	where <i>p</i> is th	e number of right points	in the scheme)		

Theorem (B.Boutin, PLB, N.Seguin[BLBS22])

Assume that the scheme is Cauchy-stable and consistent. If $0 \notin \Delta(\mathbb{S})$ then the equation $\Delta(z) = 0$ has $r - \operatorname{Ind}_{\Delta(\mathbb{S})}(0)$ solutions in $\{|z| > 1\}$.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000		000000	0000

$$\begin{cases} U_{j}^{n+1} = \frac{\lambda(\lambda-1)}{2} U_{j-2}^{n} + \lambda(2-\lambda) U_{j-1}^{n} + \frac{(\lambda-1)(\lambda-2)}{2} U_{j}^{n}, \\ U_{-1}^{n} = \frac{1}{2} (U_{2}^{n} - 2U_{1}^{n} + U_{0}^{n}) + g_{-1}^{n}, \\ U_{-2}^{n} = 2 (U_{2}^{n} - 2U_{1}^{n} + U_{0}^{n}) + g_{-2}^{n}. \end{cases}$$
(4)

Figure: Kreiss-Lopatinskii determinant for the Beam-Warming scheme (4)

-0.75 -1.00 -100 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-0.75 -1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

	Main result		Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Main the General case (eorem 2 (for any <i>p</i>)				

Theorem (B.Boutin, PLB, N.Seguin (in preparation))

Assume that the scheme is Cauchy-stable and consistent. If $0 \notin \Delta(\mathbb{S})$ then the equation $\Delta(z) = 0$ has $r - \operatorname{Ind}_{\Delta(\mathbb{S})}(0)$ solutions in $\{|z| > 1\}$.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Main the General case	eorem 2 (for any <i>p</i>)				

Theorem (B.Boutin, PLB, N.Seguin (in preparation))

Assume that the scheme is Cauchy-stable and consistent. If $0 \notin \Delta(\mathbb{S})$ then the equation $\Delta(z) = 0$ has $r - \operatorname{Ind}_{\Delta(\mathbb{S})}(0)$ solutions in $\{|z| > 1\}$.

Third Order scheme with S1ILW3

$$\begin{cases} U_{j}^{n+1} = \left(\frac{\lambda^{3}}{6} - \frac{\lambda}{6}\right) U_{j-2}^{n} + \left(\lambda + \frac{\lambda^{2}}{2} - \frac{\lambda^{3}}{2}\right) U_{j-1}^{n} \\ + \left(1 - \frac{\lambda}{2} - \lambda^{2} + \frac{\lambda^{3}}{2}\right) U_{j}^{n} + \left(\frac{\lambda^{2}}{2} - \frac{\lambda^{3}}{6} - \frac{\lambda}{3}\right) U_{j+1}^{n}, \qquad (5) \\ U_{-1}^{n} = -(U_{1} - U_{0}) + \frac{1}{2}(U_{2}^{n} - 2U_{1}^{n} + U_{0}^{n}) + g_{-1}^{n}, \\ U_{-2}^{n} = -2(U_{1} - U_{0}) + 2(U_{2}^{n} - 2U_{1}^{n} + U_{0}^{n}) + g_{-2}^{n} \end{cases}$$

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Main the General case (eorem 2				

Theorem (B.Boutin, PLB, N.Seguin (in preparation))

Assume that the scheme is Cauchy-stable and consistent. If $0 \notin \Delta(\mathbb{S})$ then the equation $\Delta(z) = 0$ has $r - \operatorname{Ind}_{\Delta(\mathbb{S})}(0)$ solutions in $\{|z| > 1\}$.

Figure: Kreiss-Lopatinskii determinant for the ThirdOrder scheme with SILW3.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000	00000 0000	•••••	000	000000	0000
Cont	tents				

- PDE and discretization
- GKS Theory

Kreiss-Lopatinskii determinant
 Interior equation
 Boundary equation

4 Sketch of the proof

5 Numerical algorithms

6 Conclusion

\mathcal{Z} -transfo	orm and	characteristic	equation		
000000000	00000	000000000	000	000000	0000
Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion

We recall the interior equation of the scheme

$$U_j^{n+1} = \sum_{k=-r}^p a_k U_{j+k}^n \quad \forall j \in \mathbb{N}, \forall n \in \mathbb{N}.$$

We use the $\ensuremath{\mathcal{Z}}\xspace$ -transform and obtain the following recursive sequence

$$z \widetilde{U}_j(z) = \sum_{k=-r}^p a_k \widetilde{U_{j+k}}(z) \quad \forall j \in \mathbb{N}, \forall |z| > 1,$$

whose characteristic equation is

$$z\kappa^{r} = \sum_{j=-r}^{p} a_{j}\kappa^{r+j}$$

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	○0●0000000	000		0000
Hersh le	mma				

Characteristic equation

$$z\kappa^{r} = \sum_{j=-r}^{p} a_{j}\kappa^{r+j}$$
(5)

Lemma (Hersh)

If the scheme is Cauchy-stable and if |z| > 1, then the characteristic equation (5):

- $\bullet\,$ has no root on the unit circle $\mathbb{S},$
- has r roots (with multiplicity) in \mathbb{D} ,
- has p roots (with multiplicity) in $\mathbb{C} \setminus \overline{\mathbb{D}}$.

We select only the *r* roots (with multiplicity) in the unit disk to have the solution $(\widetilde{U}_j(z))_{j\in\mathbb{N}}$ in $\ell^2(\mathbb{N})$, *i.e.* $\sum_{j=0}^{+\infty} \Delta x |\widetilde{U}_j(z)|^2 < \infty$.

Framework 000000000	Main result 00000	Kreiss-Lopatinskii determinant	Sketch of the proof 000	Numerical algorithms	Conclusion 0000
Hersh le	mma ill	ustration			

For the sake of simplicity, we suppose that the roots κ of the characteristic equation from the unit disk are simple. For |z| > 1, we denote $\mathcal{E}_s(z)$ the space of solutions in ℓ^2 in space. By Hersh lemma, its dimension is r because there are r roots κ inside the unit disk.

$$\mathcal{E}_{s}(z) = \operatorname{Vect} \left\{ \begin{pmatrix} 1\\ \kappa_{1}\\ \kappa_{1}^{2}\\ \kappa_{1}^{3}\\ \vdots \end{pmatrix}, \begin{pmatrix} 1\\ \kappa_{2}\\ \kappa_{2}^{2}\\ \kappa_{2}^{3}\\ \vdots \end{pmatrix}, \dots, \begin{pmatrix} 1\\ \kappa_{r}\\ \kappa_{r}^{2}\\ \kappa_{r}^{3}\\ \vdots \end{pmatrix} \right\}$$

We denote $K_{i,j}(z) \in \mathcal{M}_{j-i+1,r}(\mathbb{C})$ the extraction of the components between row *i* and *j* included.

$$K_{i,j}(z) = \begin{pmatrix} \kappa_1^i(z) & \kappa_2^j(z) & \dots & \kappa_r^j(z) \\ \kappa_1^{i+1}(z) & \kappa_2^{i+1}(z) & \dots & \kappa_r^{i+1}(z) \\ \vdots & & \vdots \\ \kappa_1^j(z) & \kappa_2^j(z) & \dots & \kappa_r^j(z) \end{pmatrix}$$

We extend this space to the domain |z| = 1 ([Cou13]).

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Extensio	on to $\mathbb{C} \setminus$	$\setminus \mathbb{D}$			

Roundan	, consid	eration		00000	0000
000000000	00000	0000000000	000	00000	0000
Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion

The scheme (with $g_j^n = 0$) can be seen as the following semi-infinite Quasi-Toeplitz matrix:

$$\mathbf{z} \begin{pmatrix} \widetilde{U_0}(z) \\ \widetilde{U_1}(z) \\ \widetilde{U_2}(z) \\ \widetilde{U_3}(z) \\ \vdots \end{pmatrix} = \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & \dots & \beta_{1,m} & \mathbf{0} & \dots & \mathbf{0} \\ \beta_{r,1} & \beta_{r,2} & \dots & \beta_{r,m} & \mathbf{0} & \dots & \mathbf{0} \\ a_{-r} & \dots & a_0 & \dots & a_p & \mathbf{0} \\ & \ddots & & \ddots & & \ddots & \end{pmatrix} \begin{pmatrix} \widetilde{U_0}(z) \\ \widetilde{U_1}(z) \\ \widetilde{U_2}(z) \\ \widetilde{U_3}(z) \\ \vdots \end{pmatrix}$$

The boundary is expressed in the following equality:

$$z\begin{pmatrix}\widetilde{U_{0}}(z)\\\widetilde{U_{1}}(z)\\\vdots\\\widetilde{U_{r-1}}(z)\end{pmatrix} = \underbrace{\begin{pmatrix}\beta_{1,1} & \beta_{1,2} & \dots & \beta_{1,m}\\\vdots & & & \vdots\\\beta_{r,1} & \beta_{r,2} & \dots & \beta_{r,m}\end{pmatrix}}_{B} \begin{pmatrix}\widetilde{U_{0}}(z)\\\widetilde{U_{1}}(z)\\\vdots\\\widetilde{U_{m-1}}(z)\end{pmatrix}$$

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	○○○○○○○●○○		000000	0000
Kreiss-Lo	opatinsl	kii determinant			

Writing $(\widetilde{U}_j(z))$ in the basis of $\mathcal{E}_s(z)$, to have uniqueness of solutions, the following determinant has to be non zero

$$\Delta_{\mathsf{KL}}(z) = \det(z\mathsf{K}_{0,r-1}(z) - \mathsf{B}\mathsf{K}_{0,m-1}(z)).$$

Definition (Intrinsic Kreiss-Lopatinskii determinant)

For all $|z| \ge 1$, we define *intrinsic Kreiss-Lopatinskii determinant* by

$$\Delta: z \mapsto \frac{\det(z \mathcal{K}_{0,r-1}(z) - B \mathcal{K}_{0,m-1}(z))}{\det \mathcal{K}_{0,r-1}(z)}$$

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000	000	000000	0000
Main res	ult 1				

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000	000	000000	0000
	sult 1				

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	000000	0000
Main res General case	sult 2				

	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
00000000	00000	000000000	00	000000	0000

- PDE and discretization
- GKS Theory

2 Main result

- 8 Kreiss-Lopatinskii determinant
 - Interior equation
 - Boundary equation
- 4 Sketch of the proof
- 5 Numerical algorithms

6 Conclusion

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000	○●○	000000	0000
Sketch o	of the p	roof			

We have

$$\begin{split} \Delta(z) &= \frac{\det(zK_{0,r-1}(z) - BK_{0,m-1}(z))}{\det(K_{0,r-1}(z))} \\ &= z^r \det\left(I_r - \frac{BK_{0,m-1}(z)K_{0,r-1}^{-1}(z)}{z}\right). \end{split}$$

The function $z \mapsto K_{0,m-1}(z)K_{0,r-1}^{-1}(z)$ is holomorphic on $\{|z| > 1\}$, continuous on $\{|z| \ge 1\}$ and bounded on $\{|z| \ge 1\}$ (technical proof).

Let us take the continuous function

$$\widetilde{\Delta}: egin{array}{ccc} \overline{\mathbb{D}}\setminus\{0\} & o & \mathbb{C} \ z & \mapsto & \Delta(1/z) \end{array}$$

meromorphic on \mathbb{D} with a pole at 0 of order r.

Framework 000000000	Main result 00000	Kreiss-Lopatinskii determinant 0000000000	Sketch of the proof	Numerical algorithms	Conclusion 0000
Sketch o	of the p	roof			

$$\widetilde{\Delta}: \begin{array}{ccc} \overline{\mathbb{D}}\setminus\{0\} & o & \mathbb{C} \\ z & \mapsto & \Delta(1/z) \end{array}$$

Use the Residue theorem on $\widetilde{\Delta}$ to get

$$\mathrm{Ind}_{\widetilde{\Delta}(\mathbb{S})}(0)=\#\mathrm{zeros}_{\widetilde{\Delta}}(\mathbb{D})-\#\mathrm{poles}_{\widetilde{\Delta}}(\mathbb{D})$$

which leads to

$$\#\operatorname{zeros}_{\Delta}(\mathbb{C}\setminus\overline{\mathbb{D}}) = \underbrace{\#\operatorname{poles}_{\widetilde{\Delta}}(\mathbb{D})}_{r} - \operatorname{Ind}_{\Delta(\mathbb{S})}(0).$$

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	000000000	000	00000	0000
Content	S				

- PDE and discretization
- GKS Theory

Kreiss-Lopatinskii determinant
 Interior equation
 Boundary equation

4 Sketch of the proof

5 Numerical algorithms

6 Conclusion

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000		000000	0000
How do	we com	pute the Kreiss	s-Lopatinsk	ii determina	nt?

$$z\begin{pmatrix}\widetilde{U_{0}}(z)\\\widetilde{U_{1}}(z)\\\vdots\\\widetilde{U_{r-1}}(z)\end{pmatrix} = \underbrace{\begin{pmatrix}\beta_{1,1} & \beta_{1,2} & \dots & \beta_{1,m}\\\vdots & & & \vdots\\\beta_{r,1} & \beta_{r,2} & \dots & \beta_{r,m}\end{pmatrix}}_{B} \begin{pmatrix}\widetilde{U_{0}}(z)\\\widetilde{U_{1}}(z)\\\vdots\\\widetilde{U_{m-1}}(z)\end{pmatrix}$$

But, for all $j \in \mathbb{N}$, we have $a_p \widetilde{U_{j+p+r}}(z) + \cdots + a_1 \widetilde{U_{j+1+r}}(z) + (a_0 - z) \widetilde{U_{j+r}}(z) + \cdots + a_{-r} \widetilde{U}_j(z) = 0.$

$$z\begin{pmatrix}\widetilde{U_{0}}(z)\\\widetilde{U_{1}}(z)\\\vdots\\\widetilde{U_{r-1}}(z)\end{pmatrix} = \underbrace{\begin{pmatrix}\beta_{1,1} & \beta_{1,2} & \dots & \beta_{1,m}\\\vdots & & & \vdots\\\beta_{r,1} & \beta_{r,2} & \dots & \beta_{r,m}\end{pmatrix}}_{B} \begin{pmatrix}\widetilde{U_{0}}(z)\\\widetilde{U_{1}}(z)\\\vdots\\\widetilde{U_{m-1}}(z)\end{pmatrix}$$

But, for all
$$j \in \mathbb{N}$$
, we have
 $a_p \widetilde{U_{j+p+r}}(z) + \cdots + a_1 \widetilde{U_{j+1+r}}(z) + (a_0 - z) \widetilde{U_{j+r}}(z) + \cdots + a_{-r} \widetilde{U_j}(z) = 0.$
We can express every $\widetilde{U_0}(z), \widetilde{U_1}(z), \ldots, \widetilde{U_{m-1}}(z)$ in terms of
 $\widetilde{U_0}(z), \widetilde{U_1}(z), \ldots, \widetilde{U_{r+p-1}}(z).$ Hence,

$$z \begin{pmatrix} \widetilde{U_0}(z) \\ \widetilde{U_1}(z) \\ \vdots \\ \widetilde{U_{r-1}}(z) \end{pmatrix} = \mathfrak{B}(z) \begin{pmatrix} \widetilde{U_0}(z) \\ \widetilde{U_1}(z) \\ \vdots \\ \widetilde{U_{r+p-1}}(z) \end{pmatrix} \text{ with } \mathfrak{B}(z) \in \mathcal{M}_{r,r+p}(\mathbb{C})$$

Framework 000000000	Main result 00000	Kreiss-Lopatinskii determinant 0000000000	Sketch of the proof	Numerical algorithms	Conclusion 0000
Case p =	= 0				

If p = 0 then the matrix $\mathfrak{B}(z)$ is a square matrix. We have

$$\Delta(z) = \frac{\det(zK_{0,r-1}(z) - \mathfrak{B}(z)K_{0,r-1}(z))}{\det K_{0,r-1}(z)}$$
$$= \det(zI_r - \mathfrak{B}(z))$$

with $\mathfrak{B}(z)$ easily computable and depending only on z, the coefficients $(a_j)_{i=-r}^0$ and the matrix B.

Moreover, no need to compute the roots κ of the characteristic equation.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000	000		0000
General	case				

If $p \neq 0$ then the matrix $\mathfrak{B}(z)$ is not a square matrix.

Let us take the polynomial of degree r whose roots are the κ from the inside.

Then we can do the same transformation with this polynomial and obtain

$$\Delta(z) = \det(zl_r - \widetilde{\mathfrak{B}}(\sigma_{r-1}(z), \dots, \sigma_0(z)))$$

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000		000000	0000
Winding	number				

The curve we draw is a polygonal line. We count the number of loops around the origin.

See [ZM13] for results of robustness.

Deeres M/					
000000000	00000	000000000	000	000000	0000
	Main result		Sketch of the proof	Numerical algorithms	Conclusion

Beam-Warming example

Number of zeros of Kreiss-Lopatinskii determinant for Beam-Warming scheme with different SILW boundary with respect to λ .

34/34

Framework 000000000	Main result 00000	Kreiss-Lopatinskii determinant 0000000000	Sketch of the proof	Numerical algorithms	Conclusion •000
Conclusion					

Conclusion:

- Explicit use of the Kreiss-Lopatinskii determinant ([GKO13]) for one time step explicit scheme.
- Numerical procedure to check the stability of a problem defined on \mathbb{N} with f = 0 and $g \neq 0$.

In prospect:

- Link with [CF21] where $f \neq 0$ and g = 0
- Find inequality of convergence for Simplified Inverse Lax-Wendroff boundary condition ([BNS⁺21])
- Explicit the Kreiss-Lopatinskii determinant for multistep scheme (Leapfrog) ([Tre84])
- Study implicit problem (Crank Nicolson)
- Study in higher dimension (dimension 2) ([DDJ18])
- Make rigourous the numerical computation (with interval arithmetics for instance)

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion	
000000000	00000	0000000000		000000	OOOO	
Bibliographie I						

- Benjamin Boutin, Pierre Le Barbenchon, and Nicolas Seguin.
 On the stability of totally upwind schemes for the hyperbolic initial boundary value problem.
 2022

B. Boutin, T.H.T. Nguyen, A. Sylla, S. Tran-Tien, and J.-F. Coulombel.

High order numerical schemes for transport equations on bounded domains.

ESAIM: Proceedings and Surveys, 70:84–106, 2021.

Jean-François Coulombel and Grégory Faye.

Sharp stability for finite difference approximations of hyperbolic equations with boundary conditions, 2021.

Framework	Main result	Kreiss-Lopatinskii determinant	Sketch of the proof	Numerical algorithms	Conclusion
000000000	00000	0000000000		000000	OOOO
Bibliogra	aphie II				

Jean-François Coulombel.

Stability of finite difference schemes for hyperbolic initial boundary value problems.

In *HCDTE lecture notes. Part I. Nonlinear hyperbolic PDEs, dispersive and transport equations*, volume 6 of *AIMS Ser. Appl. Math.*, page 146. Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2013.

- Gautier Dakin, Bruno Després, and Stéphane Jaouen. Inverse Lax–Wendroff Boundary Treatment for Compressible Lagrange-Remap Hydrodynamics on Cartesian Grids. Journal of Computational Physics, 353:228–257, 2018.
- B. Gustafsson, H.O. Kreiss, and J. Oliger. *Time-Dependent Problems and Difference Methods.* Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2013.

Bibliographie III	Framework 000000000	Main result 00000	Kreiss-Lopatinskii determinant 0000000000	Sketch of the proof	Numerical algorithms	Conclusion O
	Bibliogra	phie III				

Bertil Gustafsson, Heinz-Otto Kreiss, and Arne Sundström. Stability theory of difference approximations for mixed initial boundary value problems. II.

Mathematics of Computation, 26(119):649–649, 1972.

Lloyd N. Trefethen.

Instability of difference models for hyperbolic initial boundary value problems.

Communications on Pure and Applied Mathematics, 37(3):329–367, 1984.

Juan Luis García Zapata and Juan Carlos Díaz Martín.

A geometrical root finding method for polynomials, with complexity analysis, 2013.