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The Green-Naghdi equations Another derivation/formulation
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Incompressible free surface Euler model (E): for (x ,z) ∈
{

(x ,z) ∈Rd ×R
B ≤ z ≤ η

}
∂tη+uη ·∇η−wη = 0 ∇·u+∂zw = 0
∂tu+u ·∇u+w∂zu =−∇p uB ·∇B−wB = 0
∂tw +u ·∇w +w∂zw =−∂zp−g

with q (t ,x ,z) := p−(Pa +g (η−z))

Vertically integrated model: Hyp : ∂zu¿ 1 [Fernández-Nieto, Parisot, Penel, Sainte-Marie’18]

∂th+∇·(hu)= 0

∂t (hw)+∇·(hw u)= qB w = u ·∇B− h
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The Green-Naghdi equations The “projection” structure

Correction step (CS): in a splitting (SW ) + (CS)
Find U ∈Ah, q and qB such that for δt > 0 we have

U =U∗−δtΨh (q,qB) with Ψh (Q1,Q2)= 1
h

∇(hQ1)+Q2∇B
−Q2

−p3(2Q1−Q2)


with the set of admissible functions: Ah =

V =
 u
w
σ

 | w = u ·∇B− h
2∇·u

σ=− h
2
p
3
∇·u



We define the scalar product 〈a,b〉h :=
∫
Ω
ab hdx (Ω=Rd for unbounded domains)

and the associated norm ‖a‖h =√〈a,a〉h.
We define the spaces L2h = {

a | ‖a‖h <∞}
and H1

h =
{
f
h ∈L2h | ∇(hf )

h ∈L2h
}
.

Hyp : Assume that B is Lipschitz and for any t ≥ 0, h(t ,•) is a measure (see as a parameter).

Proprosition: The “projection” structure [Noelle, Parisot, Tscherpel’22]
For any U∗ (t ,•) ∈L2h, there exist a unique U ∈Ah, q ∈H1

h and qB ∈L2 solution of (CS)
defined by

U =Πh [Ah](U∗) and

(
q
qB

)
=Ψ−1

h

(
U∗−U
δt

)
with Πh [E ] :

(
L2h

)d+2 7→ E the 〈•,•〉h-orthogonal projection on the linear subspace E .

Lemma: Regularity
For any V = (u,w ,σ)⊥ ∈Ah, we have u ∈H (div) actually h∇·u ∈L2h
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The Green-Naghdi equations The “projection” structure

Green-Naghdi model (GN): “Variational” formulation

Find (h,U) ∈L2×Ah such that for any (ζ,V ) ∈L2×Ah we have∫
R

(ζ∂th+∇·(hζ u)) dx =
∫
R
hu ·∇ζdx∫

R
V (∂t (hU)+∇·(hU u)) dx = −

∫
R
hu ·∇φ(h) dx

with the potential of the conservative forces φ(h)= g (h+B).

Proprosition: Energy conservation
For smooth enough solution, the mechanical energy is preserved, i.e.

∂t

(∫
R

E (h) dx +
‖U‖2h
2

)
= 0 with ∂hE =φ(h) .

Proof: Corollary of the energy conservation of (SW ) + “projection” property.
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The Green-Naghdi equations The “projection” structure

What is the use?

1 The use for a robust and efficient approximation
High order schemes
Entropy-satisfying scheme

2 The use for the modeling of boundary conditions
Boundary condition of the time-discrete model
Well-balanced scheme
Adaptive scheme

3 The hyperbolic “projection” model for free surface flows
General framework
Coupling of reduced models
Improvement of the dispersion relation
Perspectives
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The use for a robust and efficient approximation High order schemes

High order schemes for (GN): [Guermond, Minev, Shen’06]
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The use for a robust and efficient approximation Entropy-satisfying scheme

Proprosition: Entropy-satisfying scheme [Parisot’19]
Assume we have an entropy-satisfying scheme (SW δ) of (SW ),

ex: HLLC[Bouchut’04] + Improved hydrostatic reconstruction[Berthon&al’19]
〈a? ,b?〉δh? =∑

k ak bk hkmk

E (h?)= g∑
k hk

( hk
2 +Bk

)
E (h?)+

∣∣∣∥∥U∗
?

∥∥δ
h?

∣∣∣2
2 ≤ E (hn?)+

∣∣∣∥∥Un
?

∥∥δ
h?

∣∣∣2
2 .

Then any projection scheme with the same scalar product satisfies the following entropy
dissipation law(

‖U?‖δh?
)2−(∥∥U∗

?

∥∥δ
h?

)2
δt

≤−δt
(
‖Ψ?‖δh?

)2
with Ψ? = U∗

?−U?
δt

.
Proof: Pythagorean theorem.

How to build a projection scheme?

Choose a discretization of the L2h-scalar product 〈a?,b?〉δh? ,
Choose a discretization of the set of admissible functions Aδh? ,

ex: Aδh?
:=

{
wk = uk ·∇δkB? − hk

2 ∇δk ·u? , σk =− hk
2
p
3
∇δk ·u?

}
with (in 1D) ∇δkφ? := φk+1 −φk−1

2δk

Determine Qδh? :=
(
Aδh?

)⊥
, Qδh?

=
{
ψ1k =− 1

hk
∇δk

(
h2?
2

(
ψ2? + ψ3?p

3

))
−ψ2k∇δkB?

}
From Aδh? and Qδh? we deduce the projection scheme.

αk uk +∇δk (µ?u?)−µk∇δk ·u? −∇δk
(
κ?∇δ? ·u?

)
=βk

with α?, µ?, κ? and βk functions of h? and B?
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Choose a discretization of the set of admissible functions Aδh? ,

ex: Aδh?
:=

{
wk = uk ·∇δkB? − hk

2 ∇δk ·u? , σk =− hk
2
p
3
∇δk ·u?

}
with (in 1D) ∇δkφ? := φk+1 −φk−1

2δk

Determine Qδh? :=
(
Aδh?

)⊥
, Qδh?

=
{
ψ1k =− 1

hk
∇δk

(
h2?
2

(
ψ2? + ψ3?p

3

))
−ψ2k∇δkB?

}
From Aδh? and Qδh? we deduce the projection scheme.

αk uk +∇δk (µ?u?)−µk∇δk ·u? −∇δk
(
κ?∇δ? ·u?

)
=βk

with α?, µ?, κ? and βk functions of h? and B?
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

Ω

x

yWhat about bounded domains?

The L2h-scalar product can only be
defined on the wet domain,

Ωw = {x ∈Ω | h> 0}.
For any V ∈Ah and Φ ∈Qh, we have

〈V ,Φ〉h =
∫
∂Ωw

hq u ·ndχ=
∫
Γh

hq u ·ndχ+
∫
Γu

hq u ·ndχ+
∫
Γq

hq u ·ndχ

with Γh = {
χ ∈ ∂Ωw | h= 0

}
, and we want to impose for given functions ũ (Γu) and h̃q

(
Γq

)
.

We define Ah,Γ (ũ)= {
V ∈Ah | u|Γ ·n= ũ

}
and H1

h,Γ

(
h̃q

)
=

{
q ∈H1

h | hq|Γ = h̃q
}
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Proprosition: The “projection” structure on a bounded domain [Noelle, Parisot, Tscherpel’22]
For any Γq ⊂ ∂Ω−Γh with finitely many connected components (Γu := ∂Ω−Γh−Γq),
any U∗ (t ,•) ∈L2h, any ũ ∈H−1/2 (∂Ω) and any h̃q ∈H1/2

(
Γq

)
,

there exist a unique U ∈Ah,Γu (ũ), q ∈H1
h,Γq

(
h̃q

)
and qB ∈L2h sol. of (CS) defined by

U =Ur +Πh
[
Ah,Γu (0)

]
(U∗−Ur −δtΨh (qr ,0)) and

(
q
qB

)
=Ψ−1

h

(
U∗−U
δt

)
for any reference functions Ur ∈Ah,Γu (ũ) and qr ∈H1

h,Γq

(
h̃q

)
.
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

Ω h= 0

h= 0

Ωw

x

yWhat about bounded domains?

The L2h-scalar product can only be
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We define Ah,Γ (ũ)= {
V ∈Ah | u|Γ ·n= ũ

}
and H1

h,Γ

(
h̃q

)
=

{
q ∈H1

h | hq|Γ = h̃q
}

Discrete boundary conditions: for the simple scheme given as an example

Boundary condition to ensure the projection:
(
hiq0i u

0
g +hgq0gu0i

)
·n= 0

Required data for (CS): hgqg , ug ·n
the scheme (SW ): hg , hgug ·n, and if F∂Ω ·n< 0 then ug ·n⊥ and wg

case 1 dry front: We have hk = 0, then uk = 0 Dry front

case 2: We set hg , ug ·n, (ug ·n⊥ and wg ) Soliton

bis wall: hg = hi and ug ·n=−ui ·n and ug ·n⊥ =wg = 0
ter transparent: hg = hi and ug ·n= u∗i ·n Outlet

case 3: We set hgug , hgqg , (ug ·n⊥ and wg )
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(
Γq

)
.

We define Ah,Γ (ũ)= {
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case 3: We set hg ug , hg qg , (ug ·n⊥ and wg )
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The use for the modeling of boundary conditions Well-balanced scheme

Proposition: Steady strong solutions on flat bottom B = 0 [Audusse, Parisot, Tscherpel]

For any M, K ≥ 3
2hc , H ∈

[
h,

h3c
h2

]
and

∣∣H ′∣∣=p
3

(
h3c−h3
hch2

) 3
2
sech2 (χ)tanh(χ)

with hc = 3
√

M2
g , h= h3c

4h2r

(
1+

√
1+8

( hr
hc

)3)
, χ= log

( √
h3c−h2H+

√
h3c−h3

h
p
H−h

)
and hr = K

3

(
1+2maxk∈{0,1,2}

(
cos

(
1
3 arccos

(
1−2

( 3hc
2K

)3)
+ 2kπ

3

)))
there exists a unique steady solution of the Green-Naghdi model such that

hu =M, h+ u2+w2+σ2+2q
2g =K , h(0)=H and h′ (0)=H ′.

Proof:

Thanks to the Bernoulli’s principle, we get the ODE: h′′ =
∣∣h′∣∣2−1

2h + 3gh
M2 (K −h)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
h

3

2

1

0

1

2

3

h
'

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

h
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The use for the modeling of boundary conditions Well-balanced scheme

Steady undular wave
https://www.youtube.com/watch?v=eDmoXkF-g9I&t=6s
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The use for the modeling of boundary conditions Well-balanced scheme

Well-balanced scheme: in 1D [Audusse, Parisot, Tscherpel]
Consider a scheme for the ODE to compute a face value in each cell.
Use a well-balanced scheme for the hyperbolic part based on face reconstruction

Wn∗
k =Wn

k − δt
δx

(
F

(
Wn
k R

,Wn
k+1L

)
−F

(
Wn
k−1R

,Wn
k L

))
+ δt
δx

(
F

(
Wn
k R

)
−F

(
Wn
k L

))
Construct the admissible functions so the solutions of the ODE scheme are inside.

if Wn
k R

=Wn
k+1L

, then wk+1/2
=wn

kR
and σk+1/2

=σnkR
Adapte the scalar product to the face constraints.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

h

Head (K)
(GN) WB-scheme
ODE Euler
ODE RK2
ODE RK4

How to impose the boundary conditions?

At the left we set hu =M > 0, hq = h̃q and w = w̃

Thanks to the condition for the projection
hi qg+hg qi

2
ug+ui

2 = 0 , we have ug = ui hence hg = M
ui

.

At the right we impose K We consider the last cell in the domain and we replace q to impose K,
then we compute the ODE scheme to estimate the state in the ghost cell,

finally, we use hg and ug as boundary condition.

We recover the parameters of the ODE. H sol. of h3 +
( 2
3g w̃2 +B(0)−K

)
h2 + h̃q

g h+ M2
2g = 0

H′ = 2
(Hw̃
M −B′ (0)

)
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The use for the modeling of boundary conditions Adaptive scheme

h= 0

h= 0

Adaptive (GN)/(SW ): Apply the projection only where (and when) it is needed
Estimate locally the error on the constrains after (SW ).

ε :=
√
h

(∣∣∣w∗+ h
2∇·u∗−u∗ ·∇B

∣∣∣2+ ∣∣∣σ∗+ h
2
p
3
∇·u∗

∣∣∣2)
Find the projection subdomain Ωp as a function of ε, i.e.

Ωp := {
x ∈Ωw | ε> ε}∪Ωε (ε0,xε,σε, ...) defined thanks to empirical laws

with ε0 := ∫
Ω εdx , xε := ∫

Ω x ε
ε0

dx , σε :=
(∫
Ω (x −xε)2 ε

ε0
dx

)1/2 ... Adaptive

ex : Ωε :=
{
x ∈Rd such that |x −xε| <Cσε

}

M2 internship: with M. Kazolea and M. Chavent.

deeper analysis of the empirical laws.
domain decomposition for non-connexe projection with clustering methods.
application to 2D/realistic cases.
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The hyperbolic “projection” model for free surface flows General framework

Consider an hyperbolic model ∂t

(
H
U

)
+A

(
H
U

)
∇

(
H
U

)
= 0

with H (t ,x) ∈Rm+ and U (t ,x) ∈Rn+
with an underlying energy dissipation law: ∂t (E (H)+〈U ,U〉H )≤ 0.

The unified "projection" model: [Kazolea, Parisot]

For a given set of admissible functions AH ⊂L2H ,
find H, U ∈AH and Q ∈QH

∂t

(
H
U

)
+A

(
H
U

)
∇

(
H
U

)
=

(
0

ΨH (Q)

)
,

with and the duality property: 〈V ,ΨH (Q)〉H = 0 for any V ∈AH and Q ∈QH .

Is the model well-posed for any subset AH ⊂L2H ?

From a numerical point of view, there is no impact on the method.
From a analytical point of view, it preserves the energy dissipation law
From a modeling point of view, this opens the way to interesting possibilities.

H: variable density, multilayer...
U: layerwise, enstrophy, vorticity...
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The hyperbolic “projection” model for free surface flows Coupling of reduced models

H ,U A Ah

(GN) h,

uw
σ



u h 0 0
g u 0 0
0 0 u 0
0 0 0 u

 Agnh =
{

w = u ·∇B− h
2∇·u

σ=− h
2
p
3
∇·u

}

(NH)
[BMSmS’15]

h,

uw
σ



u h 0 0
g u 0 0
0 0 u 0
0 0 0 u

 Anhh =
{

w = u ·∇B− h
2∇·u

σ= 0

}

(SW ) h,

uw
σ



u h 0 0
g u 0 0
0 0 u 0
0 0 0 u

 Aswh =
{

w = 0
σ= 0

}

“coupled” model
Sinus h,

uw
σ



u h 0 0
g u 0 0
0 0 u 0
0 0 0 u



Aswh if x ∈Ωsw (x ,h)

Agnh if x ∈Ωgn (x ,h)
...

weakly non-linear
Boussinesq, Abbott

[Peregrine’67]
h,

uw
σ



u h 0 0
g u 0 0
0 0 0 0
0 0 0 0

 AgnH

unidirection
KdV, BBM ,

(
u
w

) (
u 0
0 u

) {
w =−∂xu

}
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

H ,U A Ah

high order dispersion
Taylor expansion
[Madsen, Sørensen’92]

h,


u
w0
...

wN


 u h

g u 0

0 u Id

{
w i = (−1)i αih2i+1∆i∇·u

}

0.0

0.2

0.4

0.6

0.8

1.0

cx
x √ g
H

0 1 2 3 4 5 6

kH

10-7

10-6
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10-4
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10-1

100

|cxx
−
cA
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y
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H
|

Airy (ikGN)
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

H ,U A Ah

high order dispersion
rational fraction h,


u

w−M
...

wN


 u h

g u 0

0 u Id

{
(−1)i βih2i∆iw−i =−h∇·u
w i = (−1)i αih2i+1∆i∇·u

}
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|
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

H ,U A Ah

fully dispersive
[Duchêne, Israwi, Talhouk’16]

h,

uw
σ



u h 0 0
g u 0 0
0 0 u 0
0 0 0 u

{
w =β(h)u ·∇B−α(h)h∇·u

σ=−γ(h)h∇·u
}

Proprosition: Fully dispersive model

Let α(h)= α̃(∣∣k̃H̃∣∣), β(h)= β̃(∣∣k̃H̃∣∣) and γ(h)= γ̃(∣∣k̃H̃∣∣) with k̃ (h) and H̃ (h).
Setting α̃2 (k)+ γ̃2 (k)= k−tanh(k)

k2 tanh(k) and β̃(k)= α̃(0)
α̃(k)

and if k̃H̃ correspond to the wave number,
the model exactly recover the Airy’s dispersion relation.

0 5 10 15 20

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(GN)

(SW)

k−tanh(k)

k2 tanh(k)
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α, β and γ are space functions, not of the wave number.
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

H ,U A Ah

fully dispersive
[Duchêne, Israwi, Talhouk’16]

h,

uw
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u h 0 0
g u 0 0
0 0 u 0
0 0 0 u

{
w =β(h)u ·∇B−α(h)h∇·u

σ=−γ(h)h∇·u
}

Proprosition: Fully dispersive model
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Setting α̃2 (k)+ γ̃2 (k)= k−tanh(k)

k2 tanh(k) and β̃(k)= α̃(0)
α̃(k)

and if k̃H̃ correspond to the wave number,
the model exactly recover the Airy’s dispersion relation.

α, β and γ are space functions, not of the wave number.

Use a local mean-square approximation, i.e.
h̃(t , x̃ ,x) := H̃ (t , x̃)+ η̃(t , x̃)cos

(
ψ̃(t , x̃)− k̃ (t , x̃) ·x)

with H̃ (t , x̃), η̃(t , x̃), ψ̃(t , x̃) and k̃ (t , x̃) minimizing the error∫
Ω

∣∣h̃(t , x̃ ,x)−h(t ,x)
∣∣2µ(|x − x̃ |) dx

where µ(d) is a weight (typically Gaussian or Gate).
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Conclusion Perspectives

The advantage of using the “projection” formulation

From a numerical point of view, it produces schemes in bounded domains:
robust: entropy-satisfying or well-balanced

efficient: cheaps high order and adaptive.

From a modeling point of view, it opens the way to improved models
coupling: waves breaking and boundary condition

dispersion: fully dispersive model usable in the context of applications.

The need of the “projection” formulation

Establish a fully continuous justification.
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