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n(t.x)

B(x)

d
INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for (x,z) e{ (x2) RO xR }

B=<z=<n

Otw+u-Vw+wiw=-0p—g

VERTICALLY INTEGRATED MODEL: #yp: 0zu <1 [Fernandez-Nieto, Parisot, Penel, Sainte-Marie'18]
dth+V-(hi) =0 (with h=n-B)
(and@=} [Rudz)
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n(t.x)

B(x)

d
INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for (x,z) e{ (x2) RO xR }

B=<z=<n
0tn+up-Vn—wy=0 V-u+0,w=0
Otu+u-Vu+wizu=-Vp =-gVn-Vgq ug-VB-wg=0
Otw+u-Vw+ wdzw=—01p— with q(t,x,z) :=p—(Pa+g(n-2z))

VERTICALLY INTEGRATED MODEL: #yp: 0zu <1 [Fernandez-Nieto, Parisot, Penel, Sainte-Marie'18]
0th+V-(hu)=0
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The Green-Naghdi equations Another derivation /formulation

n(t.x)

p(t,x,2)

w(t,x

u(t,x,z)

(x,z) eRI xR
B=<z=<n

& INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for (x,z) e{

otn+up-Vn—wy =0 V-u+0w=0

Otu+u-Vu+wozu=-gVn—-Vgq ug-VB-wpg=0

otw+u-Vw+wiw=-0-q

@ VERTICALLY INTEGRATED MODEL: #yp: 0zu<1 @ [Fernandez-Nieto, Parisot, Penel, Sainte-Marie'18]

d¢h+V-(ht) =0 withg = } [p qdz)
9¢ (HT) + V- (hT&T) = ~ghV (h+ B) -V (hg) - q5VB  (and qp =q|,_p)
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The Green-Naghdi equations Another derivation /formulation

n(t.x)

p(t,x,2)

w(t,x
w(t,x)

u(t,x,z)

(x,z) eRI xR
B=<z=<n

& INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for (x,z) e{
otn+up-Vn—wy =0 V-u+0zw=0
Otu+u-Vu+widzu=-gVn-Vq ug-VB-wg=0

‘6tw+u~Vw+ Wézwz—ﬁzq‘

33 VERTICALLY INTEGRATED MODEL: ﬂypi 6zll «<1 @ [Fernandez-Nieto, Parisot, Penel, Sainte-Marie'18]

d¢h+V-(hT)=0
0¢ (W) + V- (hteT) = -ghV (h+ B) -V (hg) - qgV B

1rn
3¢ (W) +V-(hw T) = qg (wnhwzsz udz)
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The Green-Naghdi equations Another derivation /formulation

w(t,x)

n(t,x)
X etz
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u(t,x,z)

z B(x)

X

(x,z) eRI xR
@ INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for (x,z) € ’
B=<z=<n
D [Fernandez-Nieto, Parisot, Penel, Sainte-Marie'18]

otw+u-Vw+wozw=-0zq

& VERTICALLY INTEGRATED MODEL: #yp: 0zu << 1

d¢h+V-(ht)=0
0¢ (W) + V- (ht®T) = —ghV (h+ B) -V (hg) - qgVB

at(hW) +V~(hW U) =dqB
On the “projection” structure
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The Green-Naghdi equations Another derivation /formulation

n(t,x)

p(t,x,z)

w(t,x

u(t,x,z)

B(x)

(x,z) eRI xR }
B=z=<n

@ INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for (x,z) e{

0tn+uy-Vn—wy =0 V-u+d,w=0
Otu+u-Vu+wozu=-gVn-Vq ug-VB-wg=0

Otw+u-Vw+wozw=-0zq

& GREEN-NAGHDI MODEL (GN): #yp: 0;u<1 [5] [Fernandez-Nieto, Parisot, Penel, Sainte-Marie' 18]
0th+V-(hu)=0
0t (ht)+V-(hueu)=-ghV(h+B)-V(hq)-qgVB
8t (hw)+V-(hw T) = qp w=u-VB-4v.u

0t (ho)+V-(ho T) = V3(2G-qg) o=--b_v.g
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The Green-Naghdi equations Another derivation /formulation

n(t.x)

p(t,x,z)

w(t,x,z)

u(t,x,z) q(t,x)

B(x)

d
& INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for (x,z) e{ (x2) RO xR }
B=<z=<n

otn+uy-Vn—wy =0 V-u+0ozw=0

Otu+u-Vu+woyu = —-Vp ug-VB-wg=0
Otw+u-Vw+wiw+g = —0zp
& GREEN-NAGHDI MODEL (GN): #yp: 0,u<1 @ [Fernandez-Nieto, Parisot, Penel, Sainte-Marie'18]
0th+V-(hu) =0
0t (hu)+V-(hueu)+ghV(h+B) = -V(hq)—qgVB
0t (hw)+V-(hw 1) = g
0t (ho)+V-(ho T) = V3(2G-qg)
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The Green-Naghdi equations = The “projection” structure

& CORRECTION STEP (CS): in a splitting (SW) + (CS)
Find Ue Ay, g and gg such that for 5+ >0 we have

V(th)+Q2VB
U= U*—(St\Ph(a,qB) with ‘Ph(Ql,Qg):}’( -Q2 )
-v3(2Q1 - @)
) o . Y1) w=uvB-4v.u
with the set of admissible functions: A=< V= w || oe—h_v.g
o 2V3
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The Green-Naghdi equations = The “projection” structure

& CORRECTION STEP (CS): in a splitting (SW) + (CS)
Find Ue Ay, g and gg such that for 5+ >0 we have (V(h01)+ QZVB)

U=U"-6:¥4(q,9B) with ¥, (Q. Q) =1 -Q
-V3(2Q1- Q)

) . ] u) w=m.vB-ivz
with the set of admissible functions: A, ={V=| w || h o=
g

» We define the scalar product (a,byp :=f ab hdx Q= RY for unbounded domains)

Q
and the associated norm llallp =+/<a a)p.
» We define the spaces L% ={alllalp < oo} and H,% = {% € L%I w € L%}
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The Green-Naghdi equations = The “projection” structure

CORRECTION STEP (CS): in a splitting (SW) + (CS)
Find U€ Ay, q and gg such that for 5 >0 we have

V(h@)+QVB
U=U"-6:¥4(q,98)  with \Ph(leQZ):;l,( -Q )
-v3(2Q1 - @)
_ o . YY) w=uvB-4va
with the set of admissible functions: A, =<V =| w || o=——h_v.g
o 2V3

» We define the scalar product (a,byp ::f ab hdx (Q= RY for unbounded domains)
Q
and the associated norm llallp =+/<a a)p.
» We define the spaces L% ={alllalp < oo} and H/% = {% € L% w € L%}

Hyp: Assume that B is Lipschitz and for any t =0, h(t,e) is a measure (see as a parameter).

The “projection” structure [Noelle, Parisot, Tscherpel’22]

For any U* (t,e) € L%, there exist a unique U€ Ay, g€ H% and gpg € L* solution of (CS)
defined by

U=Ti,[A,](U")  and (an] - w1 (LY)

d+
with I, [8] : (L%) — & the (s, ¢),-orthogonal projection on the linear subspace &.

B The mapping ¥, : H’11 x L% — Qp, is invertible.

B For any VEAh and PeQp we have (V,d))h:O
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The Green-Naghdi equations = The “projection” structure

& CORRECTION STEP (CS): in a splitting (SW) + (CS)
Find Ue Ay, g and gg such that for 5+ >0 we have

V(th)+Q2VB
U= U*—(St\Ph(a,qB) with ‘Ph(Ql,Qg):}’( -Q2 )
-v3(2Q1 - @)
_ o . 4 w=uvB-4v.u
with the set of admissible functions: A=< V= w || oe—h_v.g
o 2V3

» We define the scalar product (a,byp :=f ab hdx Q= RY for unbounded domains)
Q
and the associated norm llallp =+/<a a)p.
2
€ Lh}.

. V(hf
» We define the spaces L% ={alllalp < oo} and H,% = {% el? (hf)
yp: Assume that B is Lipschitz and for any t =0, h(t,s) is a measure (see as a parameter).

hlh

The “projection” structure [Noelle, Parisot, Tscherpel’22]

For any U* (t,e)€ L%, there exist a unique Ue A, g€ H,l7 and gpg € L* solution of (CS)
defined by

U=T1,[A,](U")  and (an] -y (LY)

d+2
with I, [6] : (L%J — & the (s, ¢),-orthogonal projection on the linear subspace &.

Regularity
For any V = (G, w,0)* €A, we have Te H(div) actually hV-ue L%
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The Green-Naghdi equations = The “projection” structure

3° GREEN-NAGHDI MODEL (GN): “Variational” formulation

Find (h, U) € L2 x Ay, such that for any ({, V)€ L2 x A, we have
j (C0ph+V-(h{ T)) dx = f H-V{dx
R R

f V(8¢ (hU)+V-(hU T)) dx = _f K-V (h) dx
R R
with the potential of the conservative forces ¢(h) =g (h+ B).

Energy conservation

For smooth enough solution, the mechanical energy is preserved, i.e.
2

at(fg h) dx + ):o with 8,8 =¢(h).

Corollary of the energy conservation of (SW) + * prOJection” property.
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The Green-Naghdi equations = The “projection” structure

What is the use?

o The use for a robust and efficient approximation
@ High order schemes
@ Entropy-satisfying scheme

e The use for the modeling of boundary conditions
@ Boundary condition of the time-discrete model
@ Well-balanced scheme
@ Adaptive scheme

e The hyperbolic "“projection” model for free surface flows
@ General framework
@ Coupling of reduced models
@ Improvement of the dispersion relation
@ Perspectives

Martin PARISOT 8 . 4 i the “projection” structure



The use for a robust and efficient approximation High order schemes
‘/ﬁ HIGH ORDER SCHEMES FOR (GN) Ij [Guermond, Minev, Shen'06]
First order: um™ Second order: 5 Fourth order:
) - W
oV (cs) RPNC

g () WL
A A A,

un Un+l uyn Un+l h uyn Un+1

0.056

analytic
0.055 {e—e (41)d: =102
=8 (A1) 6 =103
0.054 00 (A1), =107 4.4 (GN*)d, =102
Aok (A1) 8 =107 4w (GN)6,=10"° 204,

2ra

0.053

0.052

water depth

10751

1079

1074 1073 1072
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The use for a robust and efficient approximation Entropy-satisfying scheme

Entropy-satisfying scheme @ [Parisot'19]
Assume we have an entropy-satisfying scheme (5W5) of (SW),
ex: HLLC[Bouchut'04] + Improved hydrostatic reconstruction[Berthon&al’19]
) ) {a*,b*\z* :Xkakbkhk‘“k
9 5 h
oz s, | vz, | JESEE WAL SN
* n * hy Glhx)=gLihi| = k
e =8 (h))

E(hx)+
Then any projection scheme with the same scalar product satisfies the following entropy
dissipation law

(roeig, -(1uz13, )?

_ U:—U*
ot -

2
<=6 (148, )" with W=

Pythagorean theorem.

sl
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The use for a robust and efficient approximation Entropy-satisfying scheme

PROPROSITION: Entropy-satisfying scheme @ [Parisot'19]
Assume we have an entropy-satisfying scheme (SW?%) of (SW),
ex: HLLC[Bouchut'04] + Improved hydrostatic reconstruction[Berthon&al’19]
s s 12 \'a*yb*\z*zxkak:khkmk
oz s, | vz, | JESEE WAL SN
% n * Iy &(hx)=gXphic| 5 +Bi
& (hy)+ —5"=<&(h)) + —%".

Then any projection scheme with the same scalar product satisfies the following entropy

dissipation law
2 8 \2

(1o ) =(luz,) 2 U-u

5 . *

*5—t5*5t(ll‘l’*llh*) with Wy = 5

PProor: Pythagorean theorem.

1Mz | How to build a projection scheme?

sl —~
"

» Choose a discretization of the L%—scalar product (a*,b*)‘;*,
» Choose a discretization of the set of admissible functions AZ*,

AR Ve hie g6 & __ iy 4
ex Ap 7{V\/k7uk-\k5,( SV Ux o= g\ig\(k'“*}
N ) Dle—
with (in 1D) \im = M
26y
) 1 ' h - ;
» Determine @fZ* = (Ai*) . o, :Jlu/lk =5 TZ(T* ('/’2* ; "isg )) w2kTiB*}

» From A‘; and @z we deduce the projection scheme.
* * N N N N
g+ V8 (e lix) ~ V9 T = V9 (kx99 Tk ) = B
with @y, fix, K« and B functions of hy and By

the “projection” structure

Martin PARISOT



The use for the modeling of boundary conditions Boundary co time-discrete model

| What about bounded domains? y

o5

NI
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains? y Qu
\

32 » The L%-scalar product can only be
defined on the wet domain,
Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

X

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains? y
\
32 » The L2-scalar product can only be

defined on the wet domain,
Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

X

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}

The “projection” structure on a bounded domain B [Noelle, Parisot, Tscherpel'22]
For any I'; =0Q -1/, with finitely many connected components (Ig:=0Q-1,-Tg),

any U*(t,*)e L2, any Gi€ H-2 (0Q) and any hqe H'/2 (Fa),
there exist a unique UeAyr_(T), g€ H,l7 . (1,177) and gg € L% sol. of (CS) defined by
g

U=Ur+11, [/\h’lvﬂ(O)] (U*=U"-6:¥,(q",0))  and (q‘;) =w;1(42Y)

for any reference functions U" € Ay (@) and §" € Hllr,l'a (hq).
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains? y

» The L2-scalar product can only be
defined on the wet domain,

Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

X

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}

@ DISCRETE BOUNDARY CONDITIONS: for the simple scheme given as an example

» Boundary condition to ensure the projection: (h;ﬁ?ﬂg +hgﬁgﬂ?) n=0

> Required data for (CS): hgqg, Ug n
the scheme (SW): hg, hgig-n, and if F5q-n<0 then Tg-nt and Wy
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains? y

» The L2-scalar product can only be
defined on the wet domain,

Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

X

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}

@ DISCRETE BOUNDARY CONDITIONS: for the simple scheme given as an example

» Boundary condition to ensure the projection: (h;ﬁ?ﬂg +hgﬁgﬂ?) n=0

> Required data for (CS): hgqg, Ug n
the scheme (SW): hg, hgig-n, and if F5q-n<0 then Tg-nt and Wy

case 1 dry front: We have h, =0, then U, =0
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains? y

» The L2-scalar product can only be
defined on the wet domain,

Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

X

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}

@ DISCRETE BOUNDARY CONDITIONS: for the simple scheme given as an example

» Boundary condition to ensure the projection: (h;ﬁ?ﬂg +hgﬁgﬂ?) n=0

> Required data for (CS): hgqg, Ug n
the scheme (SW): hg, hgig-n, and if F5q-n<0 then Tg-nt and Wy

case 1 dry front: We have h, =0, then U, =0
case 2: We set hg, Tg-n, (Ug~nl and wg)

Martin PARISOT 8 AL FLOW MODELS On the “projection” structure



The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains? y

» The L2-scalar product can only be
defined on the wet domain,

Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

X

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}

@ DISCRETE BOUNDARY CONDITIONS: for the simple scheme given as an example

» Boundary condition to ensure the projection: (h;ﬁ?ﬂg +hgﬁgﬂ?) n=0

> Required data for (CS): hgqg, Ug n
the scheme (SW): hg, hgig-n, and if F5q-n<0 then Tg-nt and Wy
case 1 dry front: We have h, =0, then U, =0
case 2: We set hg, Tg-n, (Ug~nl and wg)
bis wall: hg = h; and Ug-n=-1u;-n and tg-n~=wg =0
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains?

» The L%-scalar product can only be
defined on the wet domain,
Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have X

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}

@ DISCRETE BOUNDARY CONDITIONS: for the simple scheme given as an example

» Boundary condition to ensure the projection: (h;ﬁ?ﬂg +hgﬁgﬂ?) n=0
> Required data for (CS): hgqg, Ug n
the scheme (SW): hg, hgig-n, and if F5q-n<0 then Tg-nt and Wy

case 1 dry front: We have h, =0, then U, =0

case 2: We set hg, Tg-n, (Ug~nl and wg)
bis wall: hg = h; and Ug-n=-0;-n and Eg~nl =wg=0
ter transparent: hg = h; and Ug-n=1u7-n

D [Kazakova, Noble'20]

Martin PARISOT
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The use for the modeling of boundary conditions Boundary condition of the time-discrete model

r/y‘/’ | What about bounded domains?

» The L%-scalar product can only be
defined on the wet domain,
Qy ={xeQ|h>0}
» For any VeAy and ® € Qp, we have X

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I?&(l‘a).
We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}

@ DISCRETE BOUNDARY CONDITIONS: for the simple scheme given as an example

» Boundary condition to ensure the projection: (h;ﬁ?ﬂg +hgﬁgﬂ?) n=0
> Required data for (CS): hgqg, Ug n
the scheme (SW): hg, hgig-n, and if F5q-n<0 then Tg-nt and Wy

case 1 dry front: We have h, =0, then U, =0

case 2: We set hg, Tg-n, (Ug~nl and wg)
bis wall: hg = h; and Ug-n=-0;-n and Eg~nl =wg=0
ter transparent: hg = h; and Ug-n=1u7-n

case 3: We set hglig, hgﬁg, (Ug-nl and wg)

Martin PARISOT S AL FLOW MODELS
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The use for the modeling of boundary conditions Boundary co of the time-discrete model

| What about bounded domains? y

o5

NI

» The L2-scalar product can only be
defined on the wet domain,

Qy ={xeQ|h>0}
» Forany VeA), and ®€Qy, we have

(V,d))h:f hq U~ndx:f haﬁ~nd)(+f hq U-ndx+f hq u-ndy
0Qu Ty Iz

X

with ', ={xy€dQ | h=0}, and we want to impose for given functions T(I';) and I,ﬁ(l'a).

We define Apr (@) ={VeAyT, n=1}  and  Hi (hg)={GeH}Ihg, = ha}
035 ‘ ‘ ‘ :

I& A hg,=—10"% > hg,=-610"" g.q hg,=-310"" gy hg,=-10" oo hq,=0 s--% hq,=3 10’5|

030 |+ - . - - d

\

’

+
&
1

water depth (h)
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The use for the modeling of boundary conditions = Well-balanced scheme

PROPOSITION: Steady strong solutions on flat bottom B=0 D [Audusse, Parisot, Tscherpel]

3

3_p3\2

For any M, K=3he, He and |H’|:\/§(%) sech? (y)tanh(y)
cd

wh hoo 32 g B[ a3 o[ VAR H Rk
with e =/ Tg A=z |1y (E) X =log INGES

h3
h%

3
and hy = % 1+2maxye0,1,2 (cos(% arccos (1 —2(%) ) + %)))
there exists a unique steady solution of the Green-Naghdi model such that
22, 2. 0%
hii=M, he SO i h(0)=H and W (0)=H'.

PROOT

2
H1“-1  3gh
h”:J—Lh—+ﬁ(K—h)

‘ Thanks to the Bernoulli's principle, we get the ODE:

On the “projection” structure
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dary conditions = Well-balanced scheme

Steady undular wave
https://www.youtube.com/watch?v=eDmoXkF-g9l&t=6s
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https://www.youtube.com/watch?v=eDmoXkF-g9I&t=6s

The use for the modeling of boundary conditions Well-balanced scheme

Steady undular wave
https://www.youtube.com/watch?v=eDmoXkF-g9|&t=6s
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The use for the modeling of boundary conditions Well-balanced scheme

Steady undular wave
https:/ /www.youtube.com/watch?v=eDmoXkF-g9|&t=6s
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The use for the modeling of boundary conditions = Well-balanced scheme

3@ WELL-BALANCED SCHEME: in 1D D [Audusse, Parisot, Tscherpel]
» Consider a scheme for the ODE to compute a face value in each cell.
» Use a well-balanced scheme for the hyperbolic part based on face reconstruction

n _ n 07[' o n n G n n dft n ) n
wir = w3t (#(wp owiy )= (wiy o ) gt (F(wg ) -F (v, )

» Construct the admissible functions so the solutions of the ODE scheme are inside.
B n n T - n
if Wk . VVkAlL' then Wk+1 ) 7&R and (7k+1 ) 71(}\)

» Adapte the scalar product to the face constraints.

Y

On the “projection” structure 11/
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The use for the modeling of boundary conditions = Well-balanced scheme

3@ WELL-BALANCED SCHEME: in 1D D [Audusse, Parisot, Tscherpel]
» Consider a scheme for the ODE to compute a face value in each cell.
» Use a well-balanced scheme for the hyperbolic part based on face reconstruction

n _ n 6[’ o n n n n Ot n ) n
W™ =W~ 5 (/ (WAR Wi 1L] (Wk 1R’ WkL)) bx ( (Wk RJ (Wk L))
» Construct the admissible functions so the solutions of the ODE scheme are inside.

if WLC VV/<7+1 then w

=wl! ando =0
k+12 kg k+12 _k

» Adapte the scalar product to the face constraTnts.

/4?-’:4 l How to impose the boundary conditions?
[}

N

b At the left we set hi= M >0, hg=hq and W= w

’7/5g+hgai ug+u
2 2

Thanks to the condition for the projection ¥

i
» At the right we impose K We consider the last cell in the domain and we replace q to impose K,

then we compute the ODE scheme to estimate the state in the ghost cell,

=0 | we have ug =u; hence hg =

finally, we use hg and tug as boundary condition.
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The use for the modeling of boundary conditions = Well-balanced scheme

@ WELL-BALANCED SCHEME: in 1D @ [Audusse, Parisot, Tscherpel]

N

» Consider a scheme for the ODE to compute a face value in each cell.
» Use a well-balanced scheme for the hyperbolic part based on face reconstruction

n¥ _ n 6[’ o n n n n Of n ) n
W =W 5 1T MWk g Wi ) =7 Wie1 Wi )| 6 WkRJ Wi,

» Construct the admissible functions so the solutions of the ODE scheme are inside.

if WLC VV/<7+1 then Wk+l'2 7W2R and O 1, =0

» Adapte the scalar product to the face constraints.

/4?-’:4 l How to impose the boundary conditions?

b At the left we set hi= M >0, hg=hq and W= w

hijqp+hgq; Ug+U;
Thanks to the condition for the projection M # ¥
i

» At the right we impose K We consider the last cell in the domain and we replace q to impose K,

=0 | we have ug =u; hence hg =

then we compute the ODE scheme to estimate the state in the ghost cell,

finally, we use hg and tug as boundary condition.

. 2
» We recover the parameters of the ODE. H sol. ofh3—(%W2AB(O)—K]h2+ hap, /\24? 0
H =2( 4 -6'(0)
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The use for the modeling of boundary conditions Adaptive scheme

@ ADAPTIVE (GN)/(SW): Apply the projection only where (and when) it is needed

» Estimate locally the error on the constrains after (SW). 5
* + h .7*
W 3V u

e:=¢h()w*+§v~a*—a*~v3)2+ b 2)

> Find the projection subdomain Qp as a function of ¢, i.e.

Qp:={xeQule>FtUQe (€0, Xe, 06, ...) defined thanks to empirical laws

1
with g0 := [oedx, xe ::fo% dx, o¢ = (fQ (x—x¢)? %dx) /2...

ex : Q¢ := {x e R such that Ix —xg| < C(n}

| M2 internship: with M. Kazolea and M. Chavent.

I » deeper analysis of the empirical laws.

. » domain decomposition for non-connexe projection with clustering methods.
» application to 2D /realistic cases.

Martin PARISOT

AL FLOW MODELS
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The hyperbolic “projection” model for free surface flows General framework

Consider an hyperbolic model at( Z )+A( U )v( U ]:0

U U
with H(t,x) eRT and U(t,x)eR?
with an underlying energy dissipation law: 0t (& (H)+(U,Uyy) <0.

G THE UNIFIED "PROJECTION" MODEL: D [Kazolea, Parisot]

For a given set of admissible functions Ay c L%_,,

find H, UeAy and Qe Qy
oo )+A ) 0)=[ wylo )

with and the duality property: (V,¥4(Q))y =0 for any VeAy and Qe Qy.

Martin PARISOT COASTAL FLOW MODELS On the “projection” structure 13/



The hyperbolic “projection” model for free surface flows General framework

Consider an hyperbolic model at( Z )+A( H )V( Z ]:0

U
with H(t,x) eRT and U(t,x)eR?
with an underlying energy dissipation law: 0t (&(H)+(U,Uyy) <0

G THE UNIFIED "PROJECTION" MODEL: D [Kazolea, Parisot]

For a given set of admissible functions Ay c L%_,,

find H, Ue Ay and Qe Qg
H H H 0
() A0 )7 0)= o)
with and the duality property: (V,¥4(Q))y =0 for any VeAy and Qe Qy.

gﬁg l Is the model well-posed for any subset Ay c L%—I ?

%

» From a numerical point of view, there is no impact on the method.

» From a analytical point of view, it preserves the energy dissipation law

» From a modeling point of view, this opens the way to interesting possibilities.
H': variable density, multilayer...
U': layerwise, enstrophy, vorticity...
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The hyperbolic “projection” model for free surface flows Coupling of reduced models

| HU | A 1 Aj
_ T h 0 0 77 o
- g u 0 0 en_ ) w=u VB-35V-u
(GN) MWl 110 o @ of | A = o=-3bV.7
o 0 0 0 @
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The hyperbolic “projection” model for free surface flows Coupling of reduced models

| HU | A | A
(¢ h 00 — —
(GN) h|w g u 00 ACN w=u-VB-5V-u
' 0 0 @ 0 h =) o=--hva
V1l 0 o w 23
- T h 0
(NH) 0 uoh g o
[ BMsus15] h\w A g Ay ={ w=7.vB-4v.7 |
= T h .
(SW) h 5 IF
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The hyperbolic “projection” model for free surface flows Coupling of reduced models

| HU | A | Ap
- T h 0 O — b
- g uw 0 0 oN w=u-VB-35V-u
(GN) PP o o @ of | AT o=-3bV.7
0 0 0 @
- T h 0 O
(NH) - g @ 0 0| \y_[ W=UuvVB-4V.u
[3) (BMS:S'15) | 0 0 w O h = o=0
0 0 0 =T
- T h 0 O
u g T 0 0 sw_ | w=0
(SW) h, “Ilo o @ o Ah =1 o=0
0 0 0 @
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The hyperbolic “projection” model for free surface flows Coupling of reduced models

| HU | A l An
- T h 0 O o ovB_hy.a
hl T 0 0 . w=u-VB-4V-u
(GN) m# 116 0 @ o AﬁN:{ o=—h g5 }
o 00 0 @ 2v3
_ T h 0 O
(NH) olal | e @ 0 0 ANH_{ w=u-vB-4v.u }
[3) (BMS:S'15) | 0 0 w O h = o=0
0 0 0 =T
- T h 0 O
— g u 0 O sw_ | w=0
(SW) h, “Ilo o @ o Ah ‘{ o=0 }
0 0 0 @
(@ h oo A ifxe 0% (x,h)
“coupled” model wlw g u 0 O ox . aN
8 0 0 @ 0 A} if x € Q%N (x, h)
o 0 0 0 @

Martin PARISOT
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The hyperbolic “projection” model for free surface flows Coupling of reduced models

| HU | A | Ap
(@ P 0o o vB_hvD
— u 0 O ; w=u- —aV-u
(GN) mwl 16 0 7 o AﬁN:{ oo—h v }
71\ o0 0o @ 2v3
_ u h 0 O
(NH) olal | e @ 0 0 ANH_{ w=u-vB-4v.u }
[3) (BMS:S'15) | 0 0 w O h = o=0
0 0 0 u
o u h 0 O
— g u 0 0 sw_ | w=0
(SW) h, “Ilo o @ o Ah ‘{ o=0 }
0 0 0 1w
(7 P00 [ (AY  itxea(uh)
“coupled” model wlw g u 0 O ox . aN
) 0 0 @ O A} if x € Q%N (x, h)
i 0 0 0 @
weakly non-linear u ; g g g
Boussinesq, Abbott | h|W AGN
Ij [Peregrine’'67] g (0) 8 8 g H
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The hyperbolic “projection” model for free surface flows Coupling of reduced models

| HU | A | An
(@ P 0o o vB_hvD
— u 0 O ; w=u- —aV-u
(GN) m@l g o 5 o AﬁN:{ - }
71\ o0 0o @ 2v3
_ u h 0 O
(NH) olal | e @ 0 0 ANH_{ w=u-vB-4v.u }
[3) (BMS:S'15) | 0 0 w O h = o=0
0 0 0 u
o u h 0 O
— g u 0 0 sw_ | w=0
(SW) MWl 1 1o o @ o Ah ‘{ o=0 }
7 00 0 @
7 u h 0 O AW if x € QSW (x, h)
“coupled” model wlw g u 0 0 . . ox
) 0 0 @ O A} if x € Q%N (x, h)
i 0 0 0 @
weakly non-linear u ; g g g
Boussinesq, Abbott | h|W AGN
Ij [Peregrine’'67] g (0) 8 8 g H
unidirection u u 0 W0
KdV, BBM (W) (0 u ) { W=-0xu }
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

H,U A Ap,

high order dispersion| [ wj
Taylor expansion |h,
D [Madsen, Sgrensen’92]

wi=(-1) a;R2*1AIV. 7 }

10° ks /7, ]
I v /’
-6
45 10 0 - r—
1074’5 1 z/,?(// /? — Ay ke k (GN)
107, 1 2 3 4 5 6
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

Ap

high order dispersion
rational fraction

(-1) pih? AW _; = -hv-T
wi=(-1) a;R?*1AIV.T

0 1 2 3 4 5 6
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

| HU | A | Ap
o u h 0 O
fully dispersive wlte @ 0 O B(h)u-VB-a(h)hv-u
B [Duchéne, Israwi, Talhouk'16] ! o 0 0 ©w O o= f}/(h)hv- u
0 0 0 w

Fully dispersive model

Let a(h)=a(|kH|), B(h) =B |EH| and y(h) =7 (|kH|) with k(h) and H(h).
Setting ~2(k)+ (k)= 7’;22::(2 and  B(k)= g%

and if kH correspond to the wave number,
the model exactly recover the Airy’s dispersion relation.

(GN)
0.30 ** tanh(k)
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

| HU | A | Ap
o u h 0 O
fully dispersive b lwlile u 0 0 B(h)u-VB-a(h)hv-u
B [Duchéne, Israwi, Talhouk'16] ! 0 0 ©w O o= f}/(h)hv u
o he
0 0 0 w

Fully dispersive model

Let a(h)=a(|kH|), B(h) =B |EH| and y(h) =7 (|kH|) with k(h) and H(h).
Setting ~2(k)+ (k)= 7’;22::(2 and  B(k)= g%

and if kH correspond to the wave number,
the model exactly recover the Airy’s dispersion relation.

SN\L | a, B and y are space functions, not of the wave number.
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The hyperbolic “projection” model for free surface flows Improvement of the dispersion relation

| HU | A | Ap
o u h 0 O
fully dispersive b lwlile u 0 0 B(h)u-VB-a(h)hv-u
B [Duchéne, Israwi, Talhouk'16] ! 0 0 ©w O o= f}/(h)hv u
o he
0 0 0 w

Fully dispersive model

Let a(h)=a(|kH|), B(h) =B |EH| and y(h) =7 (|kH|) with k(h) and H(h).
Setting ~2(k)+ (k)= 7:22::(2 and  B(k)= g%

and if kH correspond to the wave number,
the model exactly recover the Airy’s dispersion relation.

1772,
7~

;l a, B and y are space functions, not of the wave number.

» Use a local mean-square approximation, i.e.
h(t,%,x) = H(t,X)+7(t,X)cos (¥ (t,X) -k (t,X) -x)
o T U7 with A(£,%), 7i(t,%), ¥ (t,%) and k(t,%) mlnlmlzmg the error
fQ|h(t,x,x)— t,x)| u(lx—x|) dx
where u(d) is a weight (typically Gaussian or Gate).
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Conclusion Perspectives

\l/‘/!’Ll THE ADVANTAGE OF USING THE “PROJECTION” FORMULATION
N =
LA]
\&) » From a numerical point of view, it produces schemes in bounded domains:
robust: entropy-satisfying or well-balanced

efficient: cheaps high order and adaptive.

» From a modeling point of view, it opens the way to improved models
coupling: waves breaking and boundary condition
dispersion: fully dispersive model usable in the context of applications.
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Conclusion Perspectives

~| THE ADVANTAGE OF USING THE “PROJECTION” FORMULATION

]
\&) » From a numerical point of view, it produces schemes in bounded domains:
robust: entropy-satisfying or well-balanced

— efficient: cheaps high order and adaptive.
» From a modeling point of view, it opens the way to improved models
coupling: waves breaking and boundary condition
dispersion: fully dispersive model usable in the context of applications.
\\W\\ | THE NEED OF THE “PROJECTION” FORMULATION
S0

» Establish a fully continuous justification.
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Conclusion Perspectives
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THANK YOU
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