On the projection structure of the time-discrete Green-Naghdi model

Martin Parisot - CARDAMOM Inria Bordeaux

Coastal flow models and boundary conditions October 24-27th 2022

INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for $(x,z) \in \begin{cases} (x,z) \in \mathbb{R}^d \times \mathbb{R} \\ B \le z \le \eta \end{cases}$ $\boxed{\partial_t \eta + u_\eta \cdot \nabla \eta - w_\eta = 0}$ $\boxed{\partial_t u + u \cdot \nabla u + w \partial_z u = -\nabla p}$ $\boxed{u_B \cdot \nabla B - w_B = 0}$

$$\begin{array}{l} \hline \textbf{Incompressible FREE SURFACE EULER MODEL } (E): \text{ for } (x,z) \in \left\{ \begin{array}{c} (x,z) \in \mathbb{R}^d \times \mathbb{R} \\ B \leq z \leq \eta \end{array} \right\} \\ \hline \partial_t \eta + u_\eta \cdot \nabla \eta - w_\eta = 0 & \nabla \cdot u + \partial_z w = 0 \\ \hline \partial_t u + u \cdot \nabla u + w \partial_z u = -\nabla p \boxed{= -g \nabla \eta - \nabla q} & u_B \cdot \nabla B - w_B = 0 \\ \hline \partial_t w + u \cdot \nabla w + w \partial_z w = -\partial_z p - g \boxed{= -\partial_z q} & \text{with } q(t, x, z) := p - (P_a + g(\eta - z)) \end{array}$$

VERTICALLY INTEGRATED MODEL: \mathcal{H}_{yp} : $\partial_z u \ll 1$ $\partial_t h + \nabla \cdot (h\overline{u}) = 0$ [Fernández-Nieto, Parisot, Penel, Sainte-Marie'18]

The Green-Naghdi equations Another derivation/formulation

$$\begin{array}{c} \hline \text{Incompressible Free surface Euler model } (E): \text{ for } (x,z) \in \left\{ \begin{array}{c} (x,z) \in \mathbb{R}^d \times \mathbb{R} \\ B \leq z \leq \eta \end{array} \right\} \\ \hline \partial_t \eta + u_\eta \cdot \nabla \eta - w_\eta = 0 & \nabla \cdot u + \partial_z w = 0 \\ \hline \partial_t u + u \cdot \nabla u + w \partial_z u = -g \nabla \eta - \nabla q & u_B \cdot \nabla B - w_B = 0 \\ \hline \partial_t w + u \cdot \nabla w + w \partial_z w = -\partial_z q \end{array}$$

VERTICALLY INTEGRATED MODEL:
$$\mathcal{H}_{yp}: \partial_z u \ll 1$$

 $\partial_t h + \nabla \cdot (h\overline{u}) = 0$
 $\partial_t (h\overline{u}) + \nabla \cdot (h\overline{u} \otimes \overline{u}) = -gh\nabla (h+B) - \nabla (h\overline{q}) - q_B \nabla B$ (with $\overline{q} = \frac{1}{h} \int_B^{\eta} q \, dz$)
(and $q_B = q_{|_{z=B}}$)

The Green-Naghdi equations Another derivation/formulation

 $\begin{array}{c} \hline \mathbf{INCOMPRESSIBLE FREE SURFACE EULER MODEL}(E): \text{ for } (x,z) \in \left\{ \begin{array}{c} (x,z) \in \mathbb{R}^d \times \mathbb{R} \\ B \leq z \leq \eta \end{array} \right\} \\ \hline \partial_t \eta + u_\eta \cdot \nabla \eta - w_\eta = 0 & \nabla \cdot u + \partial_z w = 0 \\ \partial_t u + u \cdot \nabla u + w \partial_z u = -g \nabla \eta - \nabla q & u_B \cdot \nabla B - w_B = 0 \\ \hline \partial_t w + u \cdot \nabla w + w \partial_z w = -\partial_z q \end{array}$

VERTICALLY INTEGRATED MODEL:
$$\mathscr{H}_{yp}$$
: $\partial_z u \ll 1$
 $\partial_t h + \nabla \cdot (h\overline{u}) = 0$
 $\partial_t (h\overline{u}) + \nabla \cdot (h\overline{u} \otimes \overline{u}) = -gh\nabla (h+B) - \nabla (h\overline{q}) - q_B\nabla B$
 $\partial_t (h\overline{w}) + \nabla \cdot (h\overline{w} \ \overline{u}) = q_B$
(with $\overline{w} = \frac{1}{h} \int_B^{\eta} u \, dz$)

The Green-Naghdi equations Another derivation/formulation

 $\begin{array}{c} \hline \text{Incompressible Free surface Euler MODEL } (E): \text{ for } (x,z) \in \left\{ \begin{array}{c} (x,z) \in \mathbb{R}^d \times \mathbb{R} \\ B \leq z \leq \eta \end{array} \right\} \\ \hline \partial_t \eta + u_\eta \cdot \nabla \eta - w_\eta = 0 & \hline \nabla \cdot u + \partial_z w = 0 \\ \hline \partial_t u + u \cdot \nabla u + w \partial_z u = -g \nabla \eta - \nabla q & u_B \cdot \nabla B - w_B = 0 \\ \hline \partial_t w + u \cdot \nabla w + w \partial_z w = -\partial_z q \end{array}$

 $\begin{array}{c|c} \hline & \mathbb{V} \text{ERTICALLY INTEGRATED MODEL}: \ \mathscr{H}_{yp}: \ \partial_z u \ll 1 \\ \hline & \partial_t h + \nabla \cdot (h\overline{u}) = 0 \\ \partial_t (h\overline{u}) + \nabla \cdot (h\overline{u} \otimes \overline{u}) = -gh\nabla (h+B) - \nabla (h\overline{q}) - q_B\nabla B \\ \partial_t (h\overline{w}) + \nabla \cdot (h\overline{w} \ \overline{u}) = q_B \\ \hline & \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2}\nabla \cdot \overline{u} \end{array}$

 $\begin{array}{c} \hline \mathbf{INCOMPRESSIBLE \ FREE \ SURFACE \ EULER \ MODEL \ (E)}: \ \text{for} \ (x,z) \in \left\{ \begin{array}{c} (x,z) \in \mathbb{R}^d \times \mathbb{R} \\ B \leq z \leq \eta \end{array} \right\} \\ \hline \partial_t \eta + u_\eta \cdot \nabla \eta - w_\eta = 0 & \nabla \cdot u + \partial_z w = 0 \\ \partial_t u + u \cdot \nabla u + w \partial_z u = -g \nabla \eta - \nabla q & u_B \cdot \nabla B - w_B = 0 \\ \partial_t w + u \cdot \nabla w + w \partial_z w = -\partial_z q \end{array}$

$$\begin{array}{c|c} \hline & \mathbf{GREEN-NAGHDI \ MODEL \ }(GN): \ \mathcal{H}_{yp}: \ \partial_z u \ll 1 \\ \hline & \mathbf{a}_t h + \nabla \cdot (h\overline{u}) = 0 \\ \partial_t (h\overline{u}) + \nabla \cdot (h\overline{u} \otimes \overline{u}) = -gh\nabla (h+B) - \nabla (h\overline{q}) - q_B\nabla B \\ \partial_t (h\overline{w}) + \nabla \cdot (h\overline{w} \ \overline{u}) = q_B \\ \hline & \mathbf{w} = \overline{u} \cdot \nabla B - \frac{h}{2}\nabla \cdot \overline{u} \\ \partial_t (h\sigma) + \nabla \cdot (h\sigma \ \overline{u}) = \sqrt{3}(2\overline{q} - q_B) \\ \hline & \sigma = -\frac{h}{2\sqrt{3}}\nabla \cdot \overline{u} \left(= \pm \left(\frac{1}{h} \int_B^{\eta} (w - \overline{w})^2 \, \mathrm{d}z\right)^{\frac{1}{2}} \end{array}\right)$$

ĺnaía_

INCOMPRESSIBLE FREE SURFACE EULER MODEL (E): for $(x, z) \in \begin{cases} (x, z) \in \mathbb{R}^d \times \mathbb{R} \\ B \le z \le \eta \end{cases}$ $\partial_t \eta + u_\eta \cdot \nabla \eta - w_\eta = 0$ $\nabla \cdot u + \partial_z w = 0$ $\partial_t u + u \cdot \nabla u + w \partial_z u = -\nabla p$ $u_B \cdot \nabla B - w_B = 0$ $\partial_t w + u \cdot \nabla w + w \partial_z w + g = -\partial_z p$

 $\begin{array}{c} \hline \textbf{CORRECTION STEP} \ (\textbf{CS}): \text{ in a splitting } (SW) + (\textbf{CS}) \\ \hline \textbf{Find } \textbf{U} \in \mathbb{A}_h, \ \overline{q} \text{ and } q_B \text{ such that for } \delta_t > 0 \text{ we have} \\ \textbf{U} = U^* - \delta_t \Psi_h(\overline{q}, q_B) \quad \text{with} \quad \Psi_h(Q_1, Q_2) = \frac{1}{h} \begin{pmatrix} \nabla(hQ_1) + Q_2 \nabla B \\ -Q_2 \\ -\sqrt{3}(2Q_1 - Q_2) \end{pmatrix} \\ \text{with the set of admissible functions:} \ \mathbb{A}_h = \begin{cases} V = \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix} | & \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{cases} \end{cases}$

 $\frac{\mathbb{C} \text{ORRECTION STEP }(CS)}{\text{Find } U \in \mathbb{A}_{h}, \ \overline{q} \text{ and } q_{B} \text{ such that for } \delta_{t} > 0 \text{ we have}} U = U^{*} - \delta_{t} \Psi_{h}(\overline{q}, q_{B}) \text{ with } \Psi_{h}(Q_{1}, Q_{2}) = \frac{1}{h} \begin{pmatrix} \nabla(hQ_{1}) + Q_{2}\nabla B \\ -Q_{2} \\ -\sqrt{3}(2Q_{1} - Q_{2}) \end{pmatrix}$ with the set of admissible functions: $\mathbb{A}_{h} = \begin{cases} V = \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix} | & \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{cases}$

► We define the scalar product $\langle a, b \rangle_h := \int_{\Omega} ab \ hdx$ $(\Omega = \mathbb{R}^d$ for unbounded domains) and the associated norm $\|a\|_h = \sqrt{\langle a, a \rangle_h}$.

 $\blacktriangleright \text{ We define the spaces } L_h^2 = \left\{ a \mid \|a\|_h < \infty \right\} \text{ and } H_h^1 = \left\{ \frac{f}{h} \in L_h^2 \mid \frac{\nabla(hf)}{h} \in L_h^2 \right\}.$

 $\frac{\mathcal{C} \text{ CORRECTION STEP } (CS): \text{ in a splitting } (SW) + (CS)}{\text{Find } U \in \mathbb{A}_h, \ \overline{q} \text{ and } q_B \text{ such that for } \delta_t > 0 \text{ we have}} \\ U = U^* - \delta_t \Psi_h(\overline{q}, q_B) \text{ with } \Psi_h(Q_1, Q_2) = \frac{1}{h} \begin{pmatrix} \nabla(hQ_1) + Q_2 \nabla B \\ -Q_2 \\ -\sqrt{3}(2Q_1 - Q_2) \end{pmatrix} \\ \text{with the set of admissible functions: } \mathbb{A}_h = \begin{cases} V = \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix} | & \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{cases}$

- ► We define the scalar product $\langle a, b \rangle_h := \int_{\Omega} ab h dx$ ($\Omega = \mathbb{R}^d$ for unbounded domains) and the associated norm $\|a\|_h = \sqrt{\langle a, a \rangle_h}$.
- $\blacktriangleright \text{ We define the spaces } L_h^2 = \left\{ a \mid \|a\|_h < \infty \right\} \text{ and } H_h^1 = \left\{ \frac{f}{h} \in L_h^2 \mid \frac{\nabla(hf)}{h} \in L_h^2 \right\}.$

 \mathcal{H}_{yp} : Assume that B is Lipschitz and for any $t \ge 0$, $h(t, \bullet)$ is a measure (see as a parameter).

PROPROSITION: The "projection" structure For any $U^*(t, \bullet) \in L_h^2$, there exist a unique $U \in \mathbb{A}_h$, $\overline{q} \in H_h^1$ and $q_B \in L^2$ solution of (CS) defined by

$$\boldsymbol{U} = \Pi_h [\mathbb{A}_h] (U^*) \quad \text{and} \quad \begin{pmatrix} \boldsymbol{q} \\ \boldsymbol{q}_B \end{pmatrix} = \Psi_h^{-1} \left(\frac{U^* - \boldsymbol{U}}{\delta_t} \right)$$

with $\Pi_h[\mathscr{E}]: (L_h^2)^{d+2} \mapsto \mathscr{E}$ the $\langle \bullet, \bullet \rangle_h$ -orthogonal projection on the linear subspace \mathscr{E} .

▶ The mapping $\Psi_h : H_h^1 \times L_h^2 \mapsto \mathbb{Q}_h$ is invertible. ▶ For any $V \in \mathbb{A}_h$ and $\Phi \in \mathbb{Q}_h$ we have $\langle V, \Phi \rangle_h = 0$ $\mathbb{Q}_h = \mathbb{A}_h^\perp$

lnnín_

CORRECTION STEP (CS): in a splitting (SW) + (CS)Find $U \in \mathbb{A}_h$, \overline{q} and q_B such that for $\delta_t > 0$ we have $U = U^* - \delta_t \Psi_h(\bar{q}, q_B) \quad \text{with} \quad \Psi_h(Q_1, Q_2) = \frac{1}{h} \begin{pmatrix} v_1(HQ_1) + Q_2 VB \\ -Q_2 \\ -\sqrt{3}(2Q_1 - Q_2) \end{pmatrix}$ with the set of admissible functions: $A_h = \left\{ V = \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix} \mid \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{2}} \nabla \cdot \overline{u} \end{array} \right\}$ ▶ We define the scalar product $\langle a, b \rangle_h := \int_{\Omega} ab \ hdx$ $(\Omega = \mathbb{R}^d \text{ for unbounded domains})$ and the associated **norm** $||a||_{h} = \sqrt{\langle a, a \rangle_{h}}$. ▶ We define the spaces $L_h^2 = \{a \mid ||a||_h < \infty\}$ and $H_h^1 = \{\frac{f}{h} \in L_h^2 \mid \frac{\nabla(hf)}{h} \in L_h^2\}$ $\mathcal{H}_{\gamma p}$: Assume that B is Lipschitz and for any $t \ge 0$, $h(t, \bullet)$ is a measure (see as a parameter). **PROPROSITION:** The "projection" structure **PROPROSITION:** The "projection" structure For any $U^*(t, \bullet) \in L_h^2$, there exist a unique $U \in \mathbb{A}_h$, $\overline{q} \in H_h^1$ and $q_B \in L^2$ solution of (CS) defined by $\boldsymbol{U} = \Pi_h [\mathbb{A}_h] (\boldsymbol{U}^*)$ and $\begin{pmatrix} \overline{\boldsymbol{q}} \\ \boldsymbol{q}_{\mathcal{D}} \end{pmatrix} = \Psi_h^{-1} \left(\frac{\boldsymbol{U}^* - \boldsymbol{U}}{\delta_t} \right)$

with $\Pi_h[\mathscr{E}]: (L_h^2)^{d+2} \to \mathscr{E}$ the $\langle \bullet, \bullet \rangle_h$ -orthogonal projection on the linear subspace \mathscr{E} .

 $\underbrace{\text{Lemma: } Regularity}_{\text{For any } V = (\overline{u}, \overline{w}, \sigma)^{\perp} \in \mathbb{A}_h, \text{ we have } \overline{u} \in H(div) \qquad \text{actually } h \nabla \cdot \overline{u} \in L^2_h$

lnnín_

GREEN-NAGHDI MODEL (GN): "Variational" formulation Find $(h, U) \in L^2 \times \mathbb{A}_h$ such that for any $(\zeta, V) \in L^2 \times \mathbb{A}_h$ we have $\int_{\mathbb{R}} (\zeta \partial_t h + \nabla \cdot (h\zeta \ \overline{u})) \, dx = \int_{\mathbb{R}} h \overline{u} \cdot \nabla \zeta \, dx$ $\int_{\mathbb{R}} V (\partial_t (hU) + \nabla \cdot (hU \ \overline{u})) \, dx = -\int_{\mathbb{R}} h \overline{u} \cdot \nabla \phi(h) \, dx$ with the potential of the conservative forces $\phi(h) = g(h+B)$.

PROPROSITION: Energy conservation

For smooth enough solution, the mechanical energy is preserved, i.e.

$$\partial_t \left(\int_{\mathbb{R}} \mathscr{E}(h) \, \mathrm{d}x + \frac{\|U\|_h^2}{2} \right) = 0 \quad \text{with} \quad \partial_h \mathscr{E} = \phi(h).$$

<u>PROOF</u>: Corollary of the energy conservation of (SW) + "projection" property.

- High order schemes
- Entropy-satisfying scheme

2 The use for the modeling of boundary conditions

- Boundary condition of the time-discrete model
- Well-balanced scheme
- Adaptive scheme

The hyperbolic "projection" model for free surface flows

- General framework
- Coupling of reduced models
- Improvement of the dispersion relation
- Perspectives

The use for a robust and efficient approximation High order schemes

(naío Martin PARISOT

COASTAL FLOW MODELS

PROPROSITION: Entropy-satisfying scheme Assume we have an entropy-satisfying scheme (SW^{δ}) of (SW),

ex: HLLC[Bouchut'04] + Improved hydrostatic reconstruction[Berthon&al'19]

Then any projection scheme with the same scalar product satisfies the following $entropy\ dissipation\ law$

$$\frac{\left(\|\boldsymbol{U}_{\star}\|_{h_{\star}}^{\delta}\right)^{2} - \left(\|\boldsymbol{U}_{\star}^{*}\|_{h_{\star}}^{\delta}\right)^{2}}{\delta_{t}} \leq -\delta_{t} \left(\|\boldsymbol{\Psi}_{\star}\|_{h_{\star}}^{\delta}\right)^{2} \quad \text{with} \quad \boldsymbol{\Psi}_{\star} = \frac{U_{\star}^{*} - U_{\star}}{\delta_{t}}$$

PROOF: Pythagorean theorem.

How to build a projection scheme?

PROPROSITION: Entropy-satisfying scheme Assume we have an entropy-satisfying scheme (SW^{δ}) of (SW),

ex: HLLC[Bouchut'04] + Improved hydrostatic reconstruction[Berthon&al'19]

Then any projection scheme with the same scalar product satisfies the following $\ensuremath{\mathsf{entropy}}$ dissipation law

$$\frac{\left(\left\|\boldsymbol{U}_{\star}\right\|_{h_{\star}}^{\delta}\right)^{2} - \left(\left\|\boldsymbol{U}_{\star}^{*}\right\|_{h_{\star}}^{\delta}\right)^{2}}{\delta_{t}} \leq -\delta_{t} \left(\left\|\boldsymbol{\Psi}_{\star}\right\|_{h_{\star}}^{\delta}\right)^{2} \qquad \text{with} \qquad \boldsymbol{\Psi}_{\star} = \frac{\boldsymbol{U}_{\star}^{*} - \boldsymbol{U}_{\star}}{\delta_{t}}$$

PROOF: Pythagorean theorem.

How to build a projection scheme?

- ▶ Choose a discretization of the L_h^2 -scalar product $\langle a_\star, b_\star \rangle_{h_\star}^{\delta}$,
- Choose a discretization of the set of admissible functions \mathbb{A}_{h}^{δ} ,

$$\begin{aligned} & \text{ex: } \mathbb{A}_{h_{\star}}^{\delta} := \left\{ \overline{w}_{k} = \overline{u}_{k} \cdot \nabla_{k}^{\delta} B_{\star} - \frac{h_{k}}{2} \nabla_{k}^{\delta} \cdot \overline{u}_{\star} \right\}, \quad \sigma_{k} = -\frac{h_{k}}{2\sqrt{3}} \nabla_{k}^{\delta} \cdot \overline{u}_{\star} \\ & \text{with } (\text{in } 1D) \nabla_{k}^{\delta} \phi_{\star} := \frac{\phi_{k+1} - \phi_{k-1}}{2\delta_{k}} \end{aligned}$$

$$& \text{Determine } \mathbb{Q}_{h_{\star}}^{\delta} := \left(\mathbb{A}_{h_{\star}}^{\delta}\right)^{\perp}, \qquad \mathbb{Q}_{h_{\star}}^{\delta} = \left\{ \psi_{1k} = -\frac{1}{h_{k}} \nabla_{k}^{\delta} \left(\frac{h_{\star}^{2}}{2} \left(\psi_{2\star} + \frac{\psi_{3\star}}{\sqrt{3}}\right)\right) - \psi_{2k} \nabla_{k}^{\delta} B_{\star} \right\} \end{aligned}$$

$$& \text{From } \mathbb{A}_{h_{\star}}^{\delta} \text{ and } \mathbb{Q}_{h_{\star}}^{\delta} \text{ we deduce the projection scheme.} \end{aligned}$$

$$\begin{aligned} \alpha_{k}\overline{u}_{k} + \nabla_{k}^{\delta}(\mu_{\star}\overline{u}_{\star}) - \mu_{k}\nabla_{k}^{\delta} \cdot \overline{u}_{\star} - \nabla_{k}^{\delta}(\kappa_{\star}\nabla_{\star}^{\delta} \cdot \overline{u}_{\star}) &= \beta_{k} \\ \text{with } \alpha_{\star}, \ \mu_{\star}, \ \kappa_{\star} \ \text{and } \beta_{k} \ \text{functions of } h_{\star} \ \text{and } B_{\star} \end{aligned}$$

What about bounded domains?

with $\Gamma_h = \{\chi \in \partial \Omega_w \mid h = 0\}$, and we want to impose for given functions $\widetilde{u}(\Gamma_{\overline{u}})$ and $\widetilde{hq}(\Gamma_{\overline{q}})$.

What about bounded domains?
What about bounded domains?
The
$$L_h^2$$
-scalar product can only be
defined on the wet domain,
 $\Omega_W = \{x \in \Omega \mid h > 0\}$.
For any $V \in \mathbb{A}_h$ and $\Phi \in \mathbb{Q}_h$, we have
 $\langle V, \Phi \rangle_h = \int_{\partial \Omega_W} h \overline{q} \ \overline{u} \cdot n d\chi = \int_{\Gamma_h} h \overline{q} \ \overline{u} \cdot n d\chi + \int_{\Gamma_{\overline{u}}} h \overline{q} \ \overline{u} \cdot n d\chi + \int_{\Gamma_{\overline{q}}} h \overline{q} \ \overline{u} \cdot n d\chi$
with $\Gamma_h = \{\chi \in \partial \Omega_W \mid h = 0\}$, and we want to impose for given functions $\widetilde{u}(\Gamma_{\overline{u}})$ and $h \widetilde{q}(\Gamma_{\overline{q}})$.
We define $\mathbb{A}_{h,\Gamma}(\widetilde{u}) = \{V \in \mathbb{A}_h \mid \overline{u}_{|_{\Gamma}} \cdot n = \widetilde{u}\}$ and $H_{h,\Gamma}^1(h \overline{q}) = \{\overline{q} \in H_h^1 \mid h \overline{q}_{|_{\Gamma}} = h \overline{q}\}$
Proprosition: The "projection" structure on a bounded domain
For any $\Gamma_{\overline{q}} \subset \partial \Omega - \Gamma_h$ with finitely many connected components $(\Gamma_{\overline{u}} := \partial \Omega - \Gamma_h - \Gamma_{\overline{q}})$,
any $U^*(t, \cdot) \in L_h^2$, any $\widetilde{u} \in H^{-1/2}(\partial \Omega)$ and any $h \overline{q} \in H^{1/2}(\Gamma_{\overline{q}})$,
there exist a unique $U \in \mathbb{A}_{h,\Gamma_{\overline{u}}}(\widetilde{u}), \ \overline{q} \in H_{h,\Gamma_{\overline{q}}}^1(h \overline{q})$ and $q_B \in L_h^2$ sol. of (CS) defined by
 $U = U^r + \Pi_h [\mathbb{A}_{h,\Gamma_{\overline{u}}}(0)](U^* - U^r - \delta_t \Psi_h(\overline{q}^r, 0))$ and $(\overline{q}_B) = \Psi_h^{-1}(\frac{U^* - U}{\delta_t})$
for any reference functions $U^r \in \mathbb{A}_{h,\Gamma_{\overline{u}}}(\widetilde{u})$ and $\overline{q}^r \in H_{h,\Gamma_{\overline{q}}}^1(h \overline{q})$.

Innía_

Innía_

Innía_

Innío-

$$\begin{array}{l} \textcircled{Proposition: Steady strong solutions on flat bottom $B=0$} \hline \left[\begin{array}{c} \left[Audusse, Parisot, Tscherpell \\ \hline Roman M, & K \geq \frac{3}{2}h_c, & H \in \left[\underline{h}, \frac{h_c^2}{\underline{h}^2} \right] \\ \text{with } h_c = \sqrt[3]{\frac{M^2}{g}}, & \underline{h} = \frac{h_c^3}{4h_r^2} \left(1 + \sqrt{1 + 8\left(\frac{h_r}{h_c}\right)^3} \right), & \chi = \log \left(\frac{\sqrt{h_c^3 - \underline{h}^2}H + \sqrt{h_c^3 - \underline{h}^3}}{\underline{h}\sqrt{H - \underline{h}}} \right) \\ \text{and } h_r = \frac{K}{3} \left(1 + 2\max_{k \in \{0, 1, 2\}} \left(\cos \left(\frac{1}{3} \arccos \left(1 - 2\left(\frac{3h_c}{2K}\right)^3 \right) + \frac{2k\pi}{3} \right) \right) \right) \\ \text{there exists a unique steady solution of the Green-Naghdi model such that} \\ & h\overline{u} = M, & h + \frac{\overline{u^2 + \overline{w^2 + \sigma^2 + 2q}}}{2g} = K, & h(0) = H & \text{and} & h'(0) = H'. \\ \hline \end{array} \end{array}$$

Steady undular wave https://www.youtube.com/watch?v=eDmoXkF-g9l&t=6s

Steady undular wave https://www.youtube.com/watch?v=eDmoXkF-g9l&t=6s

Steady undular wave https://www.youtube.com/watch?v=eDmoXkF-g9l&t=6s

COASTAL FLOW MODELS

The use for the modeling of boundary conditions Well-balanced scheme

The use for the modeling of boundary conditions Well-balanced scheme

The use for the modeling of boundary conditions Well-balanced scheme

<u>ADAPTIVE</u> (GN)/(SW): Apply the projection only where (and when) it is needed

▶ Estimate locally the error on the constrains after (*SW*).

$$\varepsilon := \sqrt{h\left(\left|\overline{w}^* + \frac{h}{2}\nabla \cdot \overline{u}^* - \overline{u}^* \cdot \nabla B\right|^2 + \left|\sigma^* + \frac{h}{2\sqrt{3}}\nabla \cdot \overline{u}^*\right|^2\right)}$$

Find the projection subdomain Ω_p as a function of ε , i.e.

$$\begin{split} \Omega_{p} &:= \{ x \in \Omega_{w} \mid \varepsilon > \overline{\varepsilon} \} \cup \Omega_{\varepsilon} \left(\varepsilon_{0}, x_{\varepsilon}, \sigma_{\varepsilon}, \ldots \right) & \text{ defined thanks to empirical laws} \\ \text{with } \varepsilon_{0} &:= \int_{\Omega} \varepsilon \, \mathrm{d}x, \; x_{\varepsilon} := \int_{\Omega} x \frac{\varepsilon}{\varepsilon_{0}} \, \mathrm{d}x, \; \sigma_{\varepsilon} := \left(\int_{\Omega} \left(x - x_{\varepsilon} \right)^{2} \frac{\varepsilon}{\varepsilon_{0}} \, \mathrm{d}x \right)^{1/2} \dots & \bullet \text{ Adaptive} \\ & ex : \; \Omega_{\varepsilon} := \left\{ x \in \mathbb{R}^{d} \; such \; that \; |x - x_{\varepsilon}| < C \sigma_{\varepsilon} \right\} \end{split}$$

M2 internship: with M. Kazolea and M. Chavent.

- deeper analysis of the empirical laws.
- domain decomposition for non-connexe projection with clustering methods.
 application to 2D/realistic cases.

Consider an hyperbolic model

$$\partial_t \left(\begin{array}{c} H \\ U \end{array} \right) + A \left(\begin{array}{c} H \\ U \end{array} \right) \nabla \left(\begin{array}{c} H \\ U \end{array} \right) = 0$$

with $H(t,x) \in \mathbb{R}^m_+$ and $U(t,x) \in \mathbb{R}^n_+$ with an underlying energy dissipation law: $\partial_t (\mathscr{E}(H) + \langle U, U \rangle_H) \leq 0.$

THE UNIFIED "PROJECTION" MODEL:

For a given set of admissible functions $\mathbb{A}_H \subset L^2_{\mu}$, find H, $U \in \mathbb{A}_H$ and $Q \in \mathbb{Q}_H$ $\partial_t \begin{pmatrix} H \\ U \end{pmatrix} + A \begin{pmatrix} H \\ U \end{pmatrix} \nabla \begin{pmatrix} H \\ U \end{pmatrix} = \begin{pmatrix} 0 \\ \Psi_H(Q) \end{pmatrix},$ with and the **duality property**: $\langle V, \Psi_H(Q) \rangle_H = 0$ for any $V \in \mathbb{A}_H$ and $Q \in \mathbb{Q}_H$.

Consider an hyperbolic model

$$\partial_t \left(\begin{array}{c} H \\ U \end{array} \right) + A \left(\begin{array}{c} H \\ U \end{array} \right) \nabla \left(\begin{array}{c} H \\ U \end{array} \right) = 0$$

with $H(t,x) \in \mathbb{R}^m_+$ and $U(t,x) \in \mathbb{R}^n_+$ with an underlying energy dissipation law:

 $\partial_t \left(\mathscr{E}(H) + \langle U, U \rangle_H \right) \leq 0.$

The unified "projection" model:

For a given set of admissible functions $\mathbb{A}_{H} \subset L_{H}^{2}$, find H, $U \in \mathbb{A}_{H}$ and $Q \in \mathbb{Q}_{H}$ $\partial_{t} \begin{pmatrix} H \\ U \end{pmatrix} + A \begin{pmatrix} H \\ U \end{pmatrix} \nabla \begin{pmatrix} H \\ U \end{pmatrix} = \begin{pmatrix} 0 \\ \Psi_{H}(Q) \end{pmatrix}$, with and the duality property: $\langle V, \Psi_{H}(Q) \rangle_{H} = 0$ for any $V \in \mathbb{A}_{H}$ and $Q \in \mathbb{Q}_{H}$.

Is the model well-posed for any subset $\mathbb{A}_H \subset L_H^2$?

- From a numerical point of view, there is no impact on the method.
- \blacktriangleright From a analytical point of view, it preserves the energy dissipation law
- From a modeling point of view, this opens the way to interesting possibilities.
 - H: variable density, multilayer...
 - U: layerwise, enstrophy, vorticity...

	Н, U		/	4		A _h
(<i>GN</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	h	0 0 <u>u</u> 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\text{GN}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{array} \right\}$

	H, U	A	\mathbb{A}_h
(<i>GN</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} & h & 0 & 0 \\ g & \overline{u} & 0 & 0 \\ 0 & 0 & \overline{u} & 0 \\ 0 & 0 & 0 & \overline{u} \end{pmatrix} $	$\mathbb{A}_{h}^{\text{GN}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{array} \right\}$
(<i>NH</i>) [BMSMS'15]	$h, \left(\frac{\overline{u}}{\overline{w}}\right)$	$ \left(\begin{array}{ccc} \overline{u} & h & 0\\ g & \overline{u} & 0\\ 0 & 0 & \overline{u} \end{array}\right) $	$\mathbb{A}_{h}^{\mathrm{NH}} = \left\{ \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \right\}$
(<i>SW</i>)	h, ū	$ \begin{pmatrix} \overline{u} & h \\ g & \overline{u} \end{pmatrix} $	L_h^2

The hyperbolic "projection" model for free surface flows Coupling of reduced models

	H, U	A			A _h
(<i>GN</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \left \begin{array}{c} \overline{u} \\ g \\ 0 \\ 0 \end{array} \right $	$ \begin{array}{ccc} h & 0\\ \overline{u} & 0\\ 0 & \overline{u}\\ 0 & 0 \end{array} $	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\text{GN}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{array} \right\}$
(<i>NH</i>) [BMS _M S'15]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	$ \begin{array}{ccc} h & 0\\ \overline{u} & 0\\ 0 & \overline{u}\\ 0 & 0 \end{array} $	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\mathrm{NH}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = 0 \end{array} \right\}$
(<i>SW</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	$ \begin{array}{ccc} h & 0\\ \overline{u} & 0\\ 0 & \overline{u}\\ 0 & 0 \end{array} $	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\mathrm{SW}} = \left\{ \begin{array}{c} \overline{w} = 0 \\ \sigma = 0 \end{array} \right\}$

The hyperbolic "projection" model for free surface flows	Coupling of reduced models
--	----------------------------

	Н, U		Α		A _h
(<i>GN</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \left \begin{array}{cccc} \overline{u} & h \\ g & \overline{u} \\ 0 & 0 \\ 0 & 0 \end{array} \right $	n 0 i 0 i ū 0 ū	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\text{GN}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{array} \right\}$
(<i>NH</i>) [BMS _M S'15]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \left(\begin{array}{ccc} \overline{u} & h\\ g & \overline{u}\\ 0 & 0\\ 0 & 0 \end{array}\right) $	n 0 i 0 i ū 0 ū	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\mathrm{NH}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = 0 \end{array} \right\}$
(<i>SW</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \left(\begin{array}{ccc} \overline{u} & h\\ g & \overline{u}\\ 0 & 0\\ 0 & 0 \end{array}\right) $	n 0 i 0 i u) 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\mathrm{SW}} = \left\{ \begin{array}{c} \overline{w} = 0\\ \sigma = 0 \end{array} \right\}$
"coupled" model	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \left \begin{array}{cccc} \overline{u} & h \\ g & \overline{u} \\ 0 & 0 \\ 0 & 0 \end{array} \right $	n 0 1 0 1 0 0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$ \left\{ \begin{array}{ll} \mathbb{A}_{h}^{\mathrm{SW}} & \text{if } x \in \Omega^{\mathrm{SW}}\left(x,h\right) \\ \mathbb{A}_{h}^{\mathrm{GN}} & \text{if } x \in \Omega^{\mathrm{GN}}\left(x,h\right) \\ \dots \end{array} \right. $

	Н, U		/	4		\mathbb{A}_h
(<i>GN</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	h	0 0 <u>u</u> 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\mathrm{GN}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{array} \right\}$
(<i>NH</i>) [BMS _M S'15]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	h <u></u> 0 0	0 0 <i>ū</i> 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\mathrm{NH}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = 0 \end{array} \right\}$
(<i>SW</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	h <u></u> 0 0	0 0 <u>u</u> 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$\mathbb{A}_{h}^{\mathrm{SW}} = \left\{ \begin{array}{c} \overline{w} = 0\\ \sigma = 0 \end{array} \right\}$
"coupled" model	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	h <u></u> 0 0	0 0 <u>u</u> 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{u} \end{pmatrix}$	$ \left\{ \begin{array}{ll} \mathbb{A}_{h}^{\mathrm{SW}} & \text{if } x \in \Omega^{\mathrm{SW}}\left(x,h\right) \\ \mathbb{A}_{h}^{\mathrm{GN}} & \text{if } x \in \Omega^{\mathrm{GN}}\left(x,h\right) \\ \dots \end{array} \right. $
weakly non-linear Boussinesq, Abbott [Peregrine'67]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix} $	h	0 0 0 0	0 0 0 0	$\mathbb{A}_{H}^{\mathrm{GN}}$

	H, U	A	\mathbb{A}_h
(<i>GN</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} & h & 0 & 0 \\ g & \overline{u} & 0 & 0 \\ 0 & 0 & \overline{u} & 0 \\ 0 & 0 & 0 & \overline{u} \end{pmatrix} $	$\mathbb{A}_{h}^{\mathrm{GN}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \end{array} \right\}$
(<i>NH</i>) [BMS _M S'15]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} & h & 0 & 0 \\ g & \overline{u} & 0 & 0 \\ 0 & 0 & \overline{u} & 0 \\ 0 & 0 & 0 & \overline{u} \end{pmatrix} $	$\mathbb{A}_{h}^{\mathrm{NH}} = \left\{ \begin{array}{c} \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \\ \sigma = 0 \end{array} \right\}$
(<i>SW</i>)	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} & h & 0 & 0 \\ g & \overline{u} & 0 & 0 \\ 0 & 0 & \overline{u} & 0 \\ 0 & 0 & 0 & \overline{u} \end{pmatrix} $	$\mathbb{A}_{h}^{\mathrm{SW}} = \left\{ \begin{array}{c} \overline{w} = 0\\ \sigma = 0 \end{array} \right\}$
"coupled" model Sinus	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} & h & 0 & 0 \\ g & \overline{u} & 0 & 0 \\ 0 & 0 & \overline{u} & 0 \\ 0 & 0 & 0 & \overline{u} \end{pmatrix} $	$ \begin{cases} \mathbb{A}_{h}^{\mathrm{SW}} & \text{if } x \in \Omega^{\mathrm{SW}}\left(x,h\right) \\ \mathbb{A}_{h}^{\mathrm{GN}} & \text{if } x \in \Omega^{\mathrm{GN}}\left(x,h\right) \\ \dots \end{cases} \end{cases} $
weakly non-linear Boussinesq, Abbott [Peregrine'67]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix}$	$ \begin{pmatrix} \overline{u} & h & 0 & 0 \\ g & \overline{u} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\mathbb{A}_{H}^{\mathrm{GN}}$
unidirection KdV, BBM	$,\left(\frac{\overline{u}}{\overline{w}}\right)$	$ \left(\begin{array}{ccc} \overline{u} & 0\\ 0 & \overline{u} \end{array}\right) $	$\left\{ \overline{w} = -\partial_X \overline{u} \right\}$

	H, U	Α		\mathbb{A}_h
fully dispersive [Duchêne, Israwi, Talhouk'16]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix} \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{ccc} h & 0 \\ \overline{u} & 0 \\ 0 & \overline{u} \\ 0 & 0 \end{array} $	$ \begin{bmatrix} 0 \\ 0 \\ \overline{u} \end{bmatrix} \left\{ \right. $	$\overline{w} = \frac{\beta(h)\overline{u} \cdot \nabla B - \alpha(h)h\nabla \cdot \overline{u}}{\sigma = -\gamma(h)h\nabla \cdot \overline{u}}$

PROPROSITION: Fully dispersive model

Let
$$\alpha(h) = \tilde{\alpha}(|\tilde{k}\tilde{H}|)$$
, $\beta(h) = \tilde{\beta}(|\tilde{k}\tilde{H}|)$ and $\gamma(h) = \tilde{\gamma}(|\tilde{k}\tilde{H}|)$ with $\tilde{k}(h)$ and $\tilde{H}(h)$.
Setting $\tilde{\alpha}^{2}(k) + \tilde{\gamma}^{2}(k) = \frac{k-\tanh(k)}{k^{2}\tanh(k)}$ and $\tilde{\beta}(k) = \frac{\tilde{\alpha}(0)}{\tilde{\alpha}(k)}$

and **if** *kH* **correspond to the wave number**, the model **exactly** recover the Airy's dispersion relation.

	H, U	Α		Ah
fully dispersive [Duchêne, Israwi, Talhouk'16]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix} \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{ccc} h & 0 \\ \overline{u} & 0 \\ 0 & \overline{u} \\ 0 & 0 \end{array} $	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \overline{a} & 0 \\ 0 & \overline{a} \end{pmatrix} $	$\left\{\begin{array}{c} \overline{w} = \beta(h)\overline{u} \cdot \nabla B - \alpha(h)h\nabla \cdot \overline{u} \\ \sigma = -\gamma(h)h\nabla \cdot \overline{u} \end{array}\right\}$

PROPROSITION: Fully dispersive model

Let
$$\alpha(h) = \tilde{\alpha}(|\tilde{k}\tilde{H}|)$$
, $\beta(h) = \tilde{\beta}(|\tilde{k}\tilde{H}|)$ and $\gamma(h) = \tilde{\gamma}(|\tilde{k}\tilde{H}|)$ with $\tilde{k}(h)$ and $\tilde{H}(h)$
Setting $\tilde{\alpha}^{2}(k) + \tilde{\gamma}^{2}(k) = \frac{k-\tanh(k)}{k^{2}\tanh(k)}$ and $\tilde{\beta}(k) = \frac{\tilde{\alpha}(0)}{\tilde{\alpha}(k)}$
and if $\tilde{k}\tilde{H}$ correspond to the wave number,

the model exactly recover the Airy's dispersion relation.

 α , β and γ are space functions, not of the wave number.

	H, U	Α		\mathbb{A}_h
fully dispersive [Duchêne, Israwi, Talhouk'16]	$h, \begin{pmatrix} \overline{u} \\ \overline{w} \\ \sigma \end{pmatrix} \begin{pmatrix} \overline{u} \\ g \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{ccc} h & 0 \\ \overline{u} & 0 \\ 0 & \overline{u} \\ 0 & 0 \end{array} $	$ \begin{pmatrix} 0\\ 0\\ 0\\ \overline{u} \end{pmatrix} $	$\overline{w} = \frac{\beta(h)\overline{u} \cdot \nabla B - \alpha(h)h\nabla \cdot \overline{u}}{\sigma = -\gamma(h)h\nabla \cdot \overline{u}}$

<u> PROPROSITION</u>: Fully dispersive model

Let
$$\alpha(h) = \tilde{\alpha}(|\tilde{k}\tilde{H}|)$$
, $\beta(h) = \tilde{\beta}(|\tilde{k}\tilde{H}|)$ and $\gamma(h) = \tilde{\gamma}(|\tilde{k}\tilde{H}|)$ with $\tilde{k}(h)$ and $\tilde{H}(h)$
Setting $\tilde{\alpha}^2(k) + \tilde{\gamma}^2(k) = \frac{k-\tanh(k)}{k^2\tanh(k)}$ and $\tilde{\beta}(k) = \frac{\tilde{\alpha}(0)}{\tilde{\alpha}(k)}$ and if $\tilde{k}\tilde{H}$ correspond to the wave number,

the model exactly recover the Airy's dispersion relation.

The advantage of using the "projection" formulation

- From a numerical point of view, it produces schemes in bounded domains: robust: entropy-satisfying or well-balanced efficient: cheaps high order and adaptive.
- From a modeling point of view, it opens the way to improved models coupling: waves breaking and boundary condition dispersion: fully dispersive model usable in the context of applications.

The advantage of using the "projection" formulation

- From a numerical point of view, it produces schemes in bounded domains: robust: entropy-satisfying or well-balanced efficient: cheaps high order and adaptive.
- From a modeling point of view, it opens the way to improved models coupling: waves breaking and boundary condition dispersion: fully dispersive model usable in the context of applications.

The need of the "projection" formulation

▶ Establish a fully continuous justification.

[Peregrine'67] Long waves on a beach, Journal of Fluid Mechanics, 1967
[Madsen, Sørensen'92] A new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal
Engineering, 1992
[Isobé'94] Time-Dependent Mild-Slope Equations for Random Waves, Coastal Engineering, 1994
[Guermond, Minev, Shen'06] An overview of projection methods for incompressible flows, Computer Methods in Applied
Mechanics and Engineering, 2006
BMSMS'15] Bristeau, Mangeney, Sainte-Marie, Seguin, An energy-consistent depth-averaged Euler system: Derivation and
Properties, Discrete and Continuous Dynamical Systems - Series B, 2015
[Duchêne, Israwi, Talhouk'16] A new class of two-layer Green-Naghdi systems with improved frequency dispersion, Studies in
Applied Mathematics, 2016
[Fernández-Nieto, Parisot, Penel, Sainte-Marie'18] A hierarchy of dispersive layer-averaged approximations of Euler equations
for free surface flows, Communications in Mathematical Sciences, 2018
[Parisot'19] Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow. International Journal
for Numerical Methods in Fluids, 2019
[Kazakova Noble'20] Discrete Transparent Boundary Conditions for the Linearized Green-Naghdi System of Equations
SIAM Journal on Numerical Analysis. 2020
Noelle Parisot Tscherpel'221 A class of boundary conditions for time-discrete Green-Naghdi equations with hathymetry
State lournal on Numerical Analysis 2022
I Audure Design Trade and a local balanced ashare for the Case Nachdi succiona la margare
[Audusse, Fansol, Tscheipei] A wei-balanceu scheine for the Green-Naghul equations, in progress
📔 [Kazolea, Parisot] The unified "projection" model, In progress

THANK YOU