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The Nonlinear Schrödinger/Gross-Pitaevskii
equation

i∂tΨ + ∆Ψ = Ψ(|Ψ|2 − 1) in R2

• with |Ψ| → 1 at spatial in�nity.

• Bose-Einstein condensate, super�uidity, Nonlinear Optics, etc.

• Energy

E(Ψ) =
1

2

∫
R2
|∇Ψ|2 +

1

2
(1− |Ψ|2)2 dx

• Momentum

~P (Ψ) =
1

2

∫
R2
〈∇Ψ|iΨ〉 dx
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Hydrodynamical formulation

• Madelung's transform Ψ = Aeiϕ =
√
ρeiϕ

∂tρ+ 2∇ · (ρ∇ϕ) = 0

∂tϕ+ |∇ϕ|2 + (ρ− 1) =
∆
√
ρ

√
ρ

 free wave equation of speed cs =
√

2
∂tρ̃+ 2∇ · (∇ϕ̃) = 0

∂tϕ̃+ ρ̃ = 0

• the momentum

~P (Ψ) =
1

2

∫
R2
〈∇Ψ|iΨ〉 dx =

1

2

∫
R2
ρ∇ϕdx
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Travelling waves

Ψ
(
t, (x1, x2)

)
= u(x1 − ct, x2), speed c

l

ic∂x1u−∆u+ u(|u|2 − 1) = 0 (TWc).

Numerical study of Jones-Roberts in 2D and 3D axi. (1982).

4



Travelling waves: the Jones-Roberts branch

Energy E vs momentum P diagrams

Hamilton group relation c = dE
dP
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Travelling waves: the Jones-Roberts branch

c = 0.2� 1
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Travelling waves: the Jones-Roberts branch

c = 1.35 ≈
√

2
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Travelling waves: the Jones-Roberts branch

c = 1 ≈
√

2
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Existence results for the travelling waves

• Béthuel-Saut (1999): existence (2D) for small c (mountain

pass lemma).

• Béthuel-Gravejat-Saut (2009): existence for GP in 2D and 3D

(minE at �xed P ).

• C.-Mari³ (2017): compactness of minimizing sequences for

NLS in 2D and 3D (minE at �xed P and ...)  orbital stability.

• Bellazini-Ruiz (2019): existence for almost all speed c ∈]0,
√

2[.
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Open questions

• Uniqueness of minimizers of E at �xed P (up to the natural

invariances)?

• Are the correspondances c ↔ P ↔ E bijective? Smooth? Can

we parametrize the branches by the speed c?

• Do the di�erent variational methods yield the same solutions?

⇒ two existence results of smooth branches for c� 1 and c ≈
√

2
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Vortex branch: statement of the main results

Theorem 1 C.-Pacherie (2021) There exists c0 > 0 such that

(i) for 0 < c < c0, ∃ travelling wave Uc such that

Uc(x) = V1(x1, x2 − dc)V−1(x1, x2 + dc) + o(1)

where ‖o(1)‖L2+0∩L∞ → 0, ‖∇o(1)‖L1+0∩L∞ → 0 and

dc ∼ 1/c;

(ii) for 2 < p 6∞, the mapping

]0, c0(p)[3 c 7→ Uc − 1 ∈ {h ∈ Lp, ∇h ∈ Lp−1}

is of class C1.
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Vortex branch: statement of the main results

(iii) for c ∈]0, c′0[, we have the Hamilton group relation

d

dc
E(Uc) = c

d

dc
P (Uc);

(iv) when c→ 0, there holds

E(Uc) ∼ −2π ln c and P (Uc) ∼
2π

c
.

 Existence result in Liu-Wei (2020) without smoothness in c

with several vortices and in Wei et al. for many other models.
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Vortex branch: statement of the main results

Theorem 2 C.-Pacherie (2020) There exists 0 < c′0 6 c0 s. t.

- the mapping ]0, c′0] 3 c 7→ P (Uc) ∈ [P (Uc′0
),+∞[ is a smooth

di�eomorphism;

- for 0 < c < c′0, the set of minimizer for

Emin(P (Uc)) = inf{E(u)|P (u) = P (Uc)}
is exactly the orbit

{eiαUc(· −X)|X ∈ R2, α ∈ R}.

 Orbital stability of Uc.

 the correspondance c↔ P ↔ E for minimizers is smooth and

bijective for c small (P , E large).
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Rarefaction pulse branch: formal derivation
of KP-I

• c =
√

2− ε2 →
√

2

• small amplitude - long wavelength ansatz

u(x) =
(
1 + ε2Aε(z)

)
exp

(
iεφε(z)

)
, z1

def
= εx1, z2

def
= ε2x2

Aε → A, φε → φ as ε→ 0

(TW√
2−ε2)  


√

2A = ∂z1φ

1
2 ∂z1A−

1
2 ∂

3
z1
A+ 6A∂z1A+ ∂2

z2
∂−1
z1
A = 0.
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Rarefaction pulse branch: KP-I solitary waves

• Existence of ground state solitary waves De Bouard-Saut (1996,
1997) and orbital stability.

• The KP-I equation is integrable (Lax Pair)  explicit solitary

waves: rational functions called lumps. The �rst lump Manakov-

Zakharov-Bordag-Its-Matveev (1977)

W1(z) = −2
3− z2

1 + z2
2/2

(3 + z2
1 + z2

2/2)2
.
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Rarefaction pulse branch: KP-I solitary waves

The lump solitary wave W1.

Is it �the� ground state?
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Rarefaction pulse branch: statement of the
main results

Theorem 3 C. For 1 < p 6∞ given, there exist ε∗(p) > 0 small

and a C1 mapping

]0, ε∗(p)] 3 ε 7→ (Aε, φε) ∈W1,p ×W1,p+1

such that:

(i) ∀0 < ε 6 ε∗(p),

Uc(ε)(x)
def
=

(
1+ε2Aε(z)

)
exp

(
iεφε(z)

)
, z1 = εx1, z2 = ε2x2,

is a travelling wave for NLS of speed c(ε) =
√
c2 − ε2;

(ii) when ε→ 0,

‖Aε −W1‖W1,p + ‖φε − c∂−1
z1
W1‖W1,p+1 6 C(p)ε2|ln ε|2 → 0.
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Rarefaction pulse branch: statement of the
main results

(iii) for c ∈]c(ε∗(p)), c[, we have the Hamilton group relation

d

dc
E(Uc) = c

d

dc
P (Uc)

(iv) when ε→ 0, there holds

E(Uc(ε)) ∼ cP (Uc(ε)) ≈ ε,

E(Uc(ε))− c(ε)P (Uc(ε)) ≈ ε3.
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Rarefaction pulse branch: statement of the
main results

• Variational methods: convergence to some ground state Béthuel-
Gravejat-Saut (2008) and C.-Mari³ (2014)

• Same kind of result obtained by Liu-Wang-Wei-Yang, with
much worse error estimates

• (immediate) extension to the Euler-Korteweg model
∂tρ+∇ · (ρu) = 0

∂tu + (u · ∇)u +∇(g(ρ)) = ∇
(
κ(ρ)∆ρ+

1

2
κ′(ρ)|∇ρ|2

)
,

(EK)

(NLS = EK with κ(ρ) = 1/ρ)

→ Existence (variational) of travelling waves Audiard (2017) of
small energy in 2d.
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About the proofs

• Not variational, but from an implicit function type argument

(or Liapounov-Schmidt reduction)

• Relies on decay estimates on the kernel

K = F−1
(

1

|ξ|4 + 2|ξ|2 − c2ξ2
1

)

 Gravejat (2004-2008)

OK for c 6 1:

|∇2K(x)| 6
C

|x|1/2(1 + |x|)3/2
, |∇3K(x)| 6

C

|x|3/2(1 + |x|)3/2
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Rarefaction pulse branch: estimates on the
kernel

... but anisotropy when c ≈
√

2

Kernel in the z-variable

Kε(z) = F−1
(

1

ξ2
1 + 2ξ2

2 + (ξ2
1 + ε2ξ2

2)2

)
.

Proposition C.

- For |z| > 1, |∇Kε(z)| 6 C
|z|, |∇

2Kε(z)| 6 C
|z|2, |∇

3Kε(z)| 6 C
|z|3.

-
∫
D(0,1)|∇Kε(z)|+ |∇∂z1Kε(z)|+ |∂3

z1
Kε(z)| dz 6 C and∫

D(0,1)|∂z1∂
2
z2
Kε(z)| dz 6 C |ln ε|ε ,

∫
D(0,1)|∂3

z2
Kε(z)| dz 6 C |ln ε|

ε2 .
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About the proofs

• Not variational, but from an implicit function type argument

(or Liapounov-Schmidt reduction)

• Relies on decay estimates on the kernel

K = F−1
(

1

|ξ|4 + 2|ξ|2 − c2ξ2
1

)

• Non-degeneracy results:
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Rarefaction pulse branch: non-degeneracy of
the W1 lump

Theorem 4 Liu-Wei (2019). If w is smooth, w → 0 at in�nity

and

∂2
z1
w − ∂4

z1
w + ∂2

z1
(wW1) + ∂2

z2
w = 0,

then

w ∈ Span(∂z1W1, ∂z2W1).

Furthermore, the linearized operator

L : w 7→ w − ∂2
z1
w + wW1 + ∂2

z2
∂−2
z1
w

has exactly one negative eigenvalue.

The proof uses Bäcklund transform⇒ direct proof using Darboux

transform ?
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Rarefaction pulse branch: last di�culties

• Work with symmetric functions  removes the kernel of L.

• Formal derivation of KP-I from NLS by expansion in ε... but no

expansion in ε for Aε and φε due to the ∂−1
z1

operator (C. (2014))

 no implicit function theorem from ε = 0

 �x point problem with ε-dependent norms taking into account

the preparedness assumption
√

2A ≈ ∂z1φ

 necessary (small) loss in the inversion of the linearized operator

⇒ ansatz = approximate solution + error.
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The vortex branch: vortices

Vortex of degree n: particular stationary solution of (GP) of the

form

Vn(x) = an(r)einθ

n = degree = winding number ∈ Z

a′′n +
a′n
r
−
n2

r2
an + an(1− a2

n) = 0

with an(0) = 0 and an(+∞) = 1.
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Vortices

Pro�le a1 of the vortex of degree one
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Vortex branch: about the proof

• Linearization near the vortex of degree one

Theorem Del Pino-Felmer-Kowalczyk (2004) Assume that

‖w‖2V1
=
∫
R2
|∇w|2 + 2〈V1|w〉2 + (1− |V1|2)|w|2 dx <∞.

Then,

0 6 QV1
(w) =

∫
R2
|∇w|2 + 2〈V1|w〉2 − (1− |V1|2)|w|2 dx

and

QV1
(w) = 0 ⇐⇒ w ∈ Span(∂1V1, ∂2V1)

Remark: LV1
(iV1) = 0 but ‖iV1‖2V1

= +∞.
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Vortex branch: about the proof

• Liapounov-Schmidt reduction Del Pino-Kowalczyk-Musso (2006):

Ginzburg-Landau model (Dirichlet/Neumann boundary condition),

and extensively used by Wei et al.

• Ansatz Uc = χV1V−1(1 + ζ) + (1− χ)V1V−1e
ζ

• Norms: for some σ ∈]0,1[,

‖ζ‖∗ = ‖V1V−1ζ‖C1({r̃63}) + ‖r̃1+σ(ζ1, r̃∇ζ1)‖L∞({r̃>2})
+ ‖r̃σ(ζ2, r̃∇ζ2)‖L∞({r̃>2})

where r̃ = min(|x− (0, d)|, |x− (0,−d)|).

 existence and smoothness in c.
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Vortex branch: further results

Theorem C.-Pacherie (2022) For c small, the travelling wave Uc
enjoys:

- if u ” ⊥ ” to ∂1Uc, ∂2Uc and ∂cUc, then

QUc(u) = 〈LUc(u)|u〉 > αc2+0‖u‖2coer,

with

‖u‖2coer =
∫
R2
|Uc|4|∇(u/Qc)|2 + |Uc|4|Re(u/Qc)|2

- in the linear energy space,

ker(LUc) = Span(∂1Uc, ∂2Uc)

- the mapping c 7→ Uc is of class C2

- LUc has exactly one negative eigenvalue
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Vortex branch: constrained minimization

• Improvement of the coercivity for symmetric functions (con-

strained minimizers are symmetric)

• Proof that any minimizer satis�es the required hypotheses  

tools from Ginzburg-Landau theory Béthuel-Brézis-Hélein (1994),

Sandier (1998), Béthuel-Orlandi-Smets (2004): concentration

of the Jacobian

JU = 〈i∂1U |∂2U〉 =
1

2
curl〈iU |∇U〉

• Proof of the orbital stability indirect: use of C.-Mari³ (2017);

coercivity norm not su�cient
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Conclusions

Main results

• Existence of smooth branches of travelling waves for c � 1
with vortices and of rarefaction pulses (KP-I equation) for c ≈ c.

• Uniqueness of constrained minimizers for large momentum

Future work

• Rigorous justi�cation of the (−2,+2) and (−3,+3) branches

obtained in C-Scheid (2018)? Need coercivity (at least non de-

generacy) around V2 and V3.

• Construction of a branch for speeds c ≈
√

2 related to the

multilumps solitary waves of the KP-I equation C-Scheid (2018)

 extension of the analysis of Liu-Wei.
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Thank you for your attention!


