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The Nonlinear Schrodinger/Gross-PitaevsKii
equation

OV + AV = W(|w]? —1) in R2
e With |W| — 1 at spatial infinity.
e Bose-Einstein condensate, superfluidity, Nonlinear Optics, etc.

e Energy

1 1
BW) =3 [ IVWR 420 - W) de

e Momentum

B(w) = %/R2<vw|iw> dz



Hydrodynamical formulation

e Madelung’s transform W = Ae'¥ = /pe'?
((Otp+2V - (pVp) =0

dp + Vol +(p—1) =

S

\

~ free wave equation of speed ¢s = /2
{ Op+2V - (Vg) =0

oo+ p=0

e the momentum

5 1 . 1
P(V) = 5 RQ(VW!ZW} dr = 5 Jr2 pVpdx



Travelling waves

\U(t, (z1, 332)) = u(xq —ct,zp), sSpeed c

0

icOp u — Au + u(|u]2 —1)=0 (TW,).

Numerical study of Jones-Roberts in 2D and 3D axi. (1982).



Travelling waves: the Jones-Roberts branch

E=csP

Energy £ vs momentum P diagrams

Hamilton group relation ¢ = 45



Travelling waves: the Jones-Roberts branch

Solution for speed c= 0.2 (E= 33.5,P=60.4) Solution for speed c= 0.2 (E= 33.5,P= 604
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Travelling waves: the Jones-Roberts branch

Solution for speed c= 135 = 4.98, P= 3.58)
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Travelling waves: the Jones-Roberts branch

Solution for speed c= 0.996 (E=12.9, P=10.7) Solution for speed c= 0.996 (E=12.9, P=10.7)
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Existence results for the travelling waves

e Béthuel-Saut (1999). existence (2D) for small ¢ (mountain
pass lemma).

e Béthuel-Gravejat-Saut (2009). existence for GP in 2D and 3D
(min E at fixed P).

e C.-Maris (2017). compactness of minimizing sequences for
NLS in 2D and 3D (min E at fixed P and ...) ~ orbital stability.

e Bellazini-Ruiz (2019): existence for almost all speed ¢ €]0, V2[.



Open questions

e Uniqueness of minimizers of E at fixed P (up to the natural
invariances)?

e Are the correspondances c < P < FE bijective? Smooth? Can
we parametrize the branches by the speed ¢?

e Do the different variational methods yield the same solutions?

= two existence results of smooth branches for ¢ < 1 and ¢ ~ /2
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Vortex branch: statement of the main results
Theorem 1 C.-Pacherie (2021) There exists cg > 0 such that

() for O < ¢ < ¢g, 3 travelling wave U, such that
Uc(x) = Vi(x1,22 —dc)V_1(z1, 22 + dc) + o(1)
where [[o(1)|| ;240700 = 0, [[Vo(1)|| ;140470 — O @nd
de ~ 1/c;
(i1) for 2 < p < oo, the mapping

10,co(P)[®c— Us—1€{heLP, Vhe LP™1}

is of class CL.
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Vortex branch: statement of the main results

(ii1) for c €]0, ch[, we have the Hamilton group relation
0

d d
—FE(Uy) = c—P(Ue);
dc (Ue) Cdc (Ue)

(iv) when ¢ — 0, there holds

2
E(U,) ~—2rlne  and  P(U.) ~ ="

C

~ Existence result in Liu-Wei (2020) without smoothness in ¢
with several vortices and in Wei et al. for many other models.
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Vortex branch: statement of the main results
Theorem 2 C.-Pacherie (2020) There exists 0 < ¢ < ¢p . t.

- the mapping ]0,¢5] 3 ¢ — P(Ue) € [P(UC/O),-I-oo[ is a smooth
diffeomorphism;

- for 0 < ¢ < ¢, the set of minimizer for

Emin(P(Ue)) = inf{E(u)|P(u) = P(Ue)}
IS exactly the orbit

{"U(- — X)|X € R?, o € R}.

~ Qrbital stability of Uk.

~ the correspondance c < P «< FE for minimizers is smooth and
bijective for ¢ small (P, E large).
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Rarefaction pulse branch: formal derivation
of KP-I

oc=\/2—€2—>\/§

e small amplitude - long wavelength ansatz

u(x) = (1 + €2Ae(2)) exp (i€¢a(Z)>, 21 eny, 2T 2,

As — A, G — @ as ¢—0

\/EA — 82'1@5

\/ 2—
) 10,4103 A+640,,A+020;'A=0.

1
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Rarefaction pulse branch: KP-I solitary waves

e Existence of ground state solitary waves De Bouard-Saut (1996,
1997) and orbital stability.

e The KP-I equation is integrable (Lax Pair) ~ explicit solitary
waves: rational functions called lumps. The first lump Manakov-

Zakharov-Bordag-Its-Matveev (1977)
3 — z% —+ z%/Q |
(34 22 4 23/2)2

Wi(z) = =2
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Rarefaction pulse branch: KP-I solitary waves

The lump solitary wave Ws.
Is it “the’” ground state?
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Rarefaction pulse branch: statement of the
main results

Theorem 3 C. For 1 < p < oo given, there exist e4«(p) > 0 small
and a ¢! mapping

10,ex(p)] D e = (Ae, o) € WHP x wihrtl
such that:

(i) VO < e < e«(p),

Uy (2)

is a travelling wave for NLS of speed c(e) = /¢

(1—|—52A5(z)) exp (iaqbg(z)), 21 =exy, 25 = €&’To,

2—82;

() when ¢ — 0,
|Ae — Wirllyyip + [l ¢e — C3,2711W1||W1,p+1 < C(p)e?|inel® — 0.
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Rarefaction pulse branch: statement of the
main results

(731) for c €]c(ex(p)),c[, we have the Hamilton group relation

d d
—FE(U;) = c—P(U
dc (Ue) Cdc (Ue)

(iv) when ¢ — 0O, there holds

E(Uc(g)) ~ CP(UC(g)) ~ g,

E(Uy2)) — c(€)P(Upyy) = €.
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Rarefaction pulse branch: statement of the
main results

e Variational methods: convergence to some ground state Béthuel-
Gravejat-Saut (2008) and C.-Maris (2014)

e Same kind of result obtained by Liu-Wang-Wei-Yang, with
much worse error estimates

e (immediate) extension to the Euler-Korteweg model

( Oip+ V- (pu) =0
(EK)

1
o+ (u- V)u+ V(9(0) = V(5(0) B + 55 (2)V6I?) .
(NLS = EK with k(p) = 1/p)
— Existence (variational) of travelling waves Audiard (2017) of

small energy in 2d.
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About the proofs

e Not variational, but from an implicit function type argument
(or Liapounov-Schmidt reduction)

e Relies on decay estimates on the kernel

1
= |
€4 + 2]€|2 — c2¢7
~ Gravejat (2004-2008)

OK for ¢ < 1:

C
2H/2(1 + |z[)3/2

C

V3KC <
VRS R )32

V2K (x)| <

20



Rarefaction pulse branch: estimates on the
kernel

. but anisotropy when ¢ ~ /2
Kernel in the z-variable

1
,C&? — 0‘—1 ]
(2)=7 (£% ¥22+ (2 + 5253)2>

Proposition C.

- For |2 2 1, [VK*(2)| < G, IV2K2(2)| < (S IVBKE(2)] < 1S

- Ipo)IVKE(2)| + [V, K= (2)| + |03 K¢(2)| dz < C and

|Ins|

ID(0.1)102102,K(2)| dz < “ns' . Ipo,1)|95,K5(2)dz < C5.




About the proofs

e Not variational, but from an implicit function type argument
(or Liapounov-Schmidt reduction)

e Relies on decay estimates on the kernel

— g1 1
=7 (|£|4+2|£|2—c2§%>

e Non-degeneracy results:
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Rarefaction pulse branch: non-degeneracy of
the Wy lump

Theorem 4 Liu-Wei (2019). If w is smooth, w — 0 at infinity
and

0z, w — 0w + 02, (WWq) + 82,w = 0,
then
w € Span(0z; W1, 02, V1).
Furthermore, the linearized operator
£lw—w— 83110 + wWi + 8328;1210

has exactly one negative eigenvalue.

The proof uses Bdcklund transform =- direct proof using Darboux

transform 7
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Rarefaction pulse branch: last difficulties
e \Work with symmetric functions ~~ removes the kernel of £.

e Formal derivation of KP-I from NLS by expansion in ... but no
expansion in ¢ for A: and ¢- due to the 8;11 operator (C. (2014))

~ no implicit function theorem from ¢ =20

~ fix point problem with e-dependent norms taking into account
the preparedness assumption /24 ~ 0,,¢

~ necessary (small) loss in the inversion of the linearized operator
= ansatz = approximate solution + error.
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T he vortex branch: vortices

Vortex of degree n: particular stationary solution of (GP) of the
form

V() = an(r)e™

n = degree = winding number € Z

7 a n? 2
ay + — — —an+an(l—a3) =0
r r

with a,(0) = 0 and an(+o0) = 1.
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Vortices

Profile of the function a

Profile a; of the vortex of degree one
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Vortex branch: about the proof

e Linearization near the vortex of degree one

Theorem Del Pino-Felmer-Kowalczyk (2004) Assume that

[l = [, 19wl +2(Vi[w)? + (1 = [ViP)]uwldo < co.
Then,

0< Oy, (w) = [, [Vwl? +2(Vifw)? — (1 = Vi) w|? da
and

Qvl(’w) =0 < we Span(alvl,agvl)

Remark: Ly, (iV1) = 0 but [|iV4 |3, = +oo.
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Vortex branch: about the proof

e Liapounov-Schmidt reduction Del Pino-Kowalczyk-Musso (2006):
Ginzburg-Landau model (Dirichlet/Neumann boundary condition),
and extensively used by Wei et al.

e Ansatz U. = xViV_1(14+¢) + (1 —x)V1V_q1eb

e Norms: for some o €]0, 1],

I¢l = IViVo1Cllergresyy + 177 (CL FVED oo sy
+ 177 (C2, TV ) | Loo(g7=21)
where 7 = min(jz — (0,d)|, |z — (0, —d)]).

~ existence and smoothness in c.
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Vortex branch: further results

Theorem C.-Pacherie (2022) For ¢ small, the travelling wave U,
enjoys:

- |f u R to a]_Uc, aQUC and acUc, then

Qu.(u) = (Ly,(w)|u) > ac®TO|ulZoers
with

[uloer = [, 1011V (w/Q)I? + [Uel | Re(u/Qe)
- in the linear energy space,
ker(Lyr.) = Span(01Uc, 02U¢)
- the mapping ¢ — U, is of class C2

- Ly, has exactly one negative eigenvalue
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Vortex branch: constrained minimization

e Improvement of the coercivity for symmetric functions (con-
strained minimizers are symmetric)

e Proof that any minimizer satisfies the required hypotheses ~~
tools from Ginzburg-Landau theory Béthuel-Brézis-Hélein (1994),
Sandier (1998), Béthuel-Orlandi-Smets (2004). concentration
of the Jacobian

1
JU = (i01U]02U) = _curl(iU|VU)

e Proof of the orbital stability indirect: use of C.-Maris (2017);
coercivity norm not sufficient
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Conclusions
Main results

e EXistence of smooth branches of travelling waves for ¢ <« 1
with vortices and of rarefaction pulses (KP-I equation) for ¢ =~ «.

e Uniqueness of constrained minimizers for large momentum
Future work

e Rigorous justification of the (—-2,42) and (—3,+3) branches
obtained in C-Scheid (2018)7 Need coercivity (at least non de-
generacy) around V5 and Va.

e Construction of a branch for speeds ¢ ~ /2 related to the
multilumps solitary waves of the KP-I equation C-Scheid (2018)
~ extension of the analysis of Liu-Wei.
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Thank you for your attention!



