Smooth branche

nonlinear Schrödinger equation

WORKSHOP Coastal flow models and boundary conditions

Toulouse, October 2022

David Chiron - UCA (Nice)
Partly joint works with E. Pacherie

The Nonlinear Schrödinger/Gross-Pitaevskii equation

$$i\partial_t \Psi + \Delta \Psi = \Psi(|\Psi|^2 - 1)$$
 in \mathbb{R}^2

- ullet with $|\Psi|
 ightarrow 1$ at spatial infinity.
- Bose-Einstein condensate, superfluidity, Nonlinear Optics, etc.
- Energy

$$E(\Psi) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \Psi|^2 + \frac{1}{2} (1 - |\Psi|^2)^2 dx$$

Momentum

$$\vec{P}(\Psi) = \frac{1}{2} \int_{\mathbb{R}^2} \langle \nabla \Psi | i \Psi \rangle \, dx$$

Hydrodynamical formulation

• Madelung's transform $\Psi = A e^{i\varphi} = \sqrt{\rho} e^{i\varphi}$

$$\begin{cases} \partial_t \rho + 2\nabla \cdot (\rho \nabla \varphi) = 0 \\ \partial_t \varphi + |\nabla \varphi|^2 + (\rho - 1) = \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \end{cases}$$

 \leadsto free wave equation of speed $\mathfrak{c}_s = \sqrt{2}$

$$\begin{cases} \partial_t \tilde{\rho} + 2\nabla \cdot (\nabla \tilde{\varphi}) = 0 \\ \partial_t \tilde{\varphi} + \tilde{\rho} = 0 \end{cases}$$

• the momentum

$$\vec{P}(\Psi) = \frac{1}{2} \int_{\mathbb{R}^2} \langle \nabla \Psi | i \Psi \rangle \, dx = \frac{1}{2} \int_{\mathbb{R}^2} \rho \nabla \varphi \, dx$$

Travelling waves

$$\Psi(t,(x_1,x_2)) = u(x_1 - ct, x_2), \quad \text{speed } c$$

$$\updownarrow$$

$$ic\partial_{x_1} u - \Delta u + u(|u|^2 - 1) = 0$$
 (TW_c).

Numerical study of Jones-Roberts in 2D and 3D axi. (1982).

Energy E vs momentum P diagrams Hamilton group relation $c=\frac{dE}{dP}$

$$c = 0.2 \ll 1$$

$$c = 1.35 \approx \sqrt{2}$$

8

Existence results for the travelling waves

- Béthuel-Saut (1999): existence (2D) for small c (mountain pass lemma).
- Béthuel-Gravejat-Saut (2009): existence for GP in 2D and 3D $(\min E \text{ at fixed } P)$.
- C.-Mariş (2017): compactness of minimizing sequences for NLS in 2D and 3D (min E at fixed P and ...) \rightsquigarrow orbital stability.
- Bellazini-Ruiz (2019): existence for almost all speed $c \in]0, \sqrt{2}[$.

Open questions

- ullet Uniqueness of minimizers of E at fixed P (up to the natural invariances)?
- ullet Are the correspondances $c \leftrightarrow P \leftrightarrow E$ bijective? Smooth? Can we parametrize the branches by the speed c?
- Do the different variational methods yield the same solutions?
- \Rightarrow two existence results of smooth branches for $c\ll 1$ and $c\approx \sqrt{2}$

Vortex branch: statement of the main results

Theorem 1 C.-Pacherie (2021) There exists $c_0 > 0$ such that

(i) for $0 < c < c_0$, \exists travelling wave U_c such that

$$U_c(x) = V_1(x_1, x_2 - d_c)V_{-1}(x_1, x_2 + d_c) + o(1)$$

where $\|o(1)\|_{L^{2+0}\cap L^\infty} \to 0$, $\|\nabla o(1)\|_{L^{1+0}\cap L^\infty} \to 0$ and

$$d_c \sim 1/c$$
;

(ii) for 2 , the mapping

$$[0, c_0(p)] \ni c \mapsto U_c - 1 \in \{h \in L^p, \ \nabla h \in L^{p-1}\}$$

is of class C^1 .

Vortex branch: statement of the main results

(iii) for $c \in]0, c'_0[$, we have the Hamilton group relation

$$\frac{d}{dc}E(U_c) = c\frac{d}{dc}P(U_c);$$

(iv) when $c \to 0$, there holds

$$E(U_c) \sim -2\pi \ln c$$
 and $P(U_c) \sim \frac{2\pi}{c}$.

 \leadsto Existence result in *Liu-Wei (2020)* without smoothness in c with several vortices and in *Wei et al.* for many other models.

Vortex branch: statement of the main results

Theorem 2 C.-Pacherie (2020) There exists $0 < c'_0 \le c_0$ s. t.

- the mapping $]0,c_0']\ni c\mapsto P(U_c)\in [P(U_{c_0'}),+\infty[$ is a smooth diffeomorphism;
- for $0 < c < c_0^\prime$, the set of minimizer for

$$E_{\mathsf{min}}(P(U_c)) = \mathsf{inf}\{E(u)|P(u) = P(U_c)\}$$

is exactly the orbit

$$\{e^{i\alpha}U_c(\cdot - X)|X \in \mathbb{R}^2, \ \alpha \in \mathbb{R}\}.$$

- \rightsquigarrow Orbital stability of U_c .
- \leadsto the correspondance $c \leftrightarrow P \leftrightarrow E$ for minimizers is smooth and bijective for c small (P, E | large).

Rarefaction pulse branch: formal derivation of KP-I

•
$$c = \sqrt{2 - \varepsilon^2} \rightarrow \sqrt{2}$$

• small amplitude - long wavelength ansatz

$$u(x) = (1 + \varepsilon^2 A_{\varepsilon}(z)) \exp(i\varepsilon\phi_{\varepsilon}(z)), \qquad z_1 \stackrel{\text{def}}{=} \varepsilon x_1, \quad z_2 \stackrel{\text{def}}{=} \varepsilon^2 x_2$$

$$A_{\varepsilon} \to A, \qquad \phi_{\varepsilon} \to \phi \qquad \text{as} \quad \varepsilon \to 0$$

$$(TW_{\sqrt{2-\varepsilon^2}}) \qquad \leadsto \qquad \begin{cases} \sqrt{2}A = \partial_{z_1}\phi \\ \\ \frac{1}{2}\partial_{z_1}A - \frac{1}{2}\partial_{z_1}^3A + 6A\partial_{z_1}A + \partial_{z_2}^2\partial_{z_1}^{-1}A = 0. \end{cases}$$

Rarefaction pulse branch: KP-I solitary waves

- Existence of ground state solitary waves *De Bouard-Saut* (1996, 1997) and orbital stability.
- The KP-I equation is integrable (Lax Pair) → explicit solitary waves: rational functions called *lumps*. The first lump *Manakov-Zakharov-Bordag-Its-Matveev* (1977)

$$W_1(z) = -2 \frac{3 - z_1^2 + z_2^2/2}{(3 + z_1^2 + z_2^2/2)^2}.$$

Rarefaction pulse branch: KP-I solitary waves

The lump solitary wave \mathcal{W}_1 . Is it "the" ground state?

Rarefaction pulse branch: statement of the main results

Theorem 3 C. For $1 given, there exist <math>\varepsilon_*(p) > 0$ small and a \mathcal{C}^1 mapping

$$[0, \varepsilon_*(p)] \ni \varepsilon \mapsto (A_{\varepsilon}, \phi_{\varepsilon}) \in W^{1,p} \times W^{1,p+1}$$

such that:

(i)
$$\forall 0 < \varepsilon \leqslant \varepsilon_*(p)$$
,

$$U_{c(\varepsilon)}(x) \stackrel{\text{def}}{=} (1 + \varepsilon^2 A_{\varepsilon}(z)) \exp(i\varepsilon\phi_{\varepsilon}(z)), \qquad z_1 = \varepsilon x_1, \quad z_2 = \varepsilon^2 x_2,$$

is a travelling wave for NLS of speed $c(\varepsilon) = \sqrt{\mathfrak{c}^2 - \varepsilon^2}$;

(ii) when $\varepsilon \to 0$,

$$||A_{\varepsilon} - \mathcal{W}_1||_{W^{1,p}} + ||\phi_{\varepsilon} - \mathfrak{c}\partial_{z_1}^{-1}\mathcal{W}_1||_{W^{1,p+1}} \leqslant C(p)\varepsilon^2 |\ln \varepsilon|^2 \to 0.$$

Rarefaction pulse branch: statement of the main results

(iii) for $c \in c_*(p)$, $\mathfrak{c}[$, we have the Hamilton group relation

$$\frac{d}{dc}E(U_c) = c\frac{d}{dc}P(U_c)$$

(iv) when $\varepsilon \to 0$, there holds

$$E(U_{c(\varepsilon)}) \sim \mathfrak{c}P(U_{c(\varepsilon)}) \approx \varepsilon,$$

$$E(U_{c(\varepsilon)}) - c(\varepsilon)P(U_{c(\varepsilon)}) \approx \varepsilon^3.$$

Rarefaction pulse branch: statement of the main results

- Variational methods: convergence to *some* ground state *Béthuel-Gravejat-Saut* (2008) and *C.-Mariş* (2014)
- Same kind of result obtained by Liu-Wang-Wei-Yang, with much worse error estimates
- (immediate) extension to the Euler-Korteweg model

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla (g(\rho)) = \nabla \left(\kappa(\rho) \Delta \rho + \frac{1}{2} \kappa'(\rho) |\nabla \rho|^2 \right), \end{cases}$$
(EK)
(NLS = EK with $\kappa(\rho) = 1/\rho$)

 \rightarrow Existence (variational) of travelling waves *Audiard* (2017) of small energy in 2d.

About the proofs

- Not variational, but from an implicit function type argument (or Liapounov-Schmidt reduction)
- Relies on decay estimates on the kernel

$$\mathcal{K} = \mathcal{F}^{-1} \left(\frac{1}{|\xi|^4 + 2|\xi|^2 - c^2 \xi_1^2} \right)$$

OK for $c \leq 1$:

$$|\nabla^2 \mathcal{K}(x)| \le \frac{C}{|x|^{1/2} (1+|x|)^{3/2}}, \qquad |\nabla^3 \mathcal{K}(x)| \le \frac{C}{|x|^{3/2} (1+|x|)^{3/2}}$$

Rarefaction pulse branch: estimates on the kernel

... but anisotropy when $c \approx \sqrt{2}$

Kernel in the z-variable

$$\mathcal{K}^{\varepsilon}(z) = \mathcal{F}^{-1}\left(\frac{1}{\xi_1^2 + 2\xi_2^2 + (\xi_1^2 + \varepsilon^2 \xi_2^2)^2}\right).$$

Proposition C.

- For
$$|z|\geqslant 1$$
, $|\nabla \mathcal{K}^{\varepsilon}(z)|\leqslant \frac{C}{|z|}$, $|\nabla^2 \mathcal{K}^{\varepsilon}(z)|\leqslant \frac{C}{|z|^2}$, $|\nabla^3 \mathcal{K}^{\varepsilon}(z)|\leqslant \frac{C}{|z|^3}$.

$$-\int_{D(0,1)} |\nabla \mathcal{K}^{\varepsilon}(z)| + |\nabla \partial_{z_{1}} \mathcal{K}^{\varepsilon}(z)| + |\partial_{z_{1}}^{3} \mathcal{K}^{\varepsilon}(z)| \, dz \leqslant C \text{ and}$$

$$\int_{D(0,1)} |\partial_{z_{1}} \partial_{z_{2}}^{2} \mathcal{K}^{\varepsilon}(z)| \, dz \leqslant C \frac{|\ln \varepsilon|}{\varepsilon}, \, \int_{D(0,1)} |\partial_{z_{2}}^{3} \mathcal{K}^{\varepsilon}(z)| \, dz \leqslant C \frac{|\ln \varepsilon|}{\varepsilon^{2}}.$$

About the proofs

- Not variational, but from an implicit function type argument (or Liapounov-Schmidt reduction)
- Relies on decay estimates on the kernel

$$\mathcal{K} = \mathcal{F}^{-1} \left(\frac{1}{|\xi|^4 + 2|\xi|^2 - c^2 \xi_1^2} \right)$$

Non-degeneracy results:

Rarefaction pulse branch: non-degeneracy of the \mathcal{W}_1 lump

Theorem 4 Liu-Wei (2019). If w is smooth, $w \to 0$ at infinity and

$$\partial_{z_1}^2 w - \partial_{z_1}^4 w + \partial_{z_1}^2 (w \mathcal{W}_1) + \partial_{z_2}^2 w = 0,$$

then

$$w \in \mathsf{Span}(\partial_{z_1} \mathcal{W}_1, \partial_{z_2} \mathcal{W}_1).$$

Furthermore, the linearized operator

$$\mathfrak{L}: w \mapsto w - \partial_{z_1}^2 w + w \mathcal{W}_1 + \partial_{z_2}^2 \partial_{z_1}^{-2} w$$

has exactly one negative eigenvalue.

The proof uses Bäcklund transform \Rightarrow direct proof using Darboux transform ?

Rarefaction pulse branch: last difficulties

- ullet Work with symmetric functions \leadsto removes the kernel of \mathfrak{L} .
- Formal derivation of KP-I from NLS by expansion in ε ... but no expansion in ε for A_{ε} and ϕ_{ε} due to the $\partial_{z_1}^{-1}$ operator (C. (2014))
- \rightarrow *no* implicit function theorem from $\varepsilon = 0$
- \leadsto fix point problem with arepsilon-dependent norms taking into account the preparedness assumption $\sqrt{2}A \approx \partial_{z_1}\phi$
- \rightarrow necessary (small) loss in the inversion of the linearized operator \Rightarrow ansatz = approximate solution + error.

The vortex branch: vortices

Vortex of degree n: particular *stationary* solution of (GP) of the form

$$V_n(x) = \mathfrak{a}_n(r) e^{in\theta}$$

 $n = \text{degree} = \text{winding number} \in \mathbb{Z}$

$$\mathfrak{a}_n'' + \frac{\mathfrak{a}_n'}{r} - \frac{n^2}{r^2}\mathfrak{a}_n + \mathfrak{a}_n(1 - \mathfrak{a}_n^2) = 0$$

with $a_n(0) = 0$ and $a_n(+\infty) = 1$.

Vortices

Profile \mathfrak{a}_1 of the vortex of degree one

Vortex branch: about the proof

• Linearization near the vortex of degree one

Theorem Del Pino-Felmer-Kowalczyk (2004) Assume that

$$||w||_{V_1}^2 = \int_{\mathbb{R}^2} |\nabla w|^2 + 2\langle V_1 | w \rangle^2 + (1 - |V_1|^2) |w|^2 dx < \infty.$$

Then,

$$0 \leqslant \mathcal{Q}_{V_1}(w) = \int_{\mathbb{R}^2} |\nabla w|^2 + 2\langle V_1 | w \rangle^2 - (1 - |V_1|^2) |w|^2 dx$$

and

$$Q_{V_1}(w) = 0 \iff w \in \operatorname{Span}(\partial_1 V_1, \partial_2 V_1)$$

Remark: $\mathcal{L}_{V_1}(iV_1) = 0$ but $||iV_1||_{V_1}^2 = +\infty$.

Vortex branch: about the proof

- Liapounov-Schmidt reduction Del Pino-Kowalczyk-Musso (2006): Ginzburg-Landau model (Dirichlet/Neumann boundary condition), and extensively used by Wei *et al.*
- Ansatz $U_c = \chi V_1 V_{-1} (1 + \zeta) + (1 \chi) V_1 V_{-1} e^{\zeta}$
- Norms: for some $\sigma \in]0,1[$,

$$\|\zeta\|_{*} = \|V_{1}V_{-1}\zeta\|_{\mathcal{C}^{1}(\{\tilde{r} \leq 3\})} + \|\tilde{r}^{1+\sigma}(\zeta_{1}, \tilde{r}\nabla\zeta_{1})\|_{L^{\infty}(\{\tilde{r} \geq 2\})} + \|\tilde{r}^{\sigma}(\zeta_{2}, \tilde{r}\nabla\zeta_{2})\|_{L^{\infty}(\{\tilde{r} \geq 2\})}$$

where $\tilde{r} = \min(|x - (0, d)|, |x - (0, -d)|)$.

 \rightsquigarrow existence and smoothness in c.

Vortex branch: further results

Theorem C.-Pacherie (2022) For c small, the travelling wave U_c enjoys:

- if u " \perp " to $\partial_1 U_c$, $\partial_2 U_c$ and $\partial_c U_c$, then

$$Q_{U_c}(u) = \langle \mathcal{L}_{U_c}(u) | u \rangle \geqslant \alpha c^{2+0} ||u||_{coer}^2,$$

with

$$||u||_{\text{coer}}^2 = \int_{\mathbb{R}^2} |U_c|^4 |\nabla(u/Q_c)|^2 + |U_c|^4 |\text{Re}(u/Q_c)|^2$$

- in the linear energy space,

$$\ker(\mathcal{L}_{U_c}) = \operatorname{Span}(\partial_1 U_c, \partial_2 U_c)$$

- the mapping $c\mapsto U_c$ is of class \mathcal{C}^2
- \mathcal{L}_{U_c} has exactly one negative eigenvalue

Vortex branch: constrained minimization

- Improvement of the coercivity for symmetric functions (constrained minimizers are symmetric)

$$JU = \langle i\partial_1 U | \partial_2 U \rangle = \frac{1}{2} \operatorname{curl} \langle iU | \nabla U \rangle$$

• Proof of the orbital stability indirect: use of *C.-Mariş* (2017); coercivity norm not sufficient

Conclusions

Main results

- Existence of smooth branches of travelling waves for $c \ll 1$ with vortices and of rarefaction pulses (KP-I equation) for $c \approx \mathfrak{c}$.
- Uniqueness of constrained minimizers for large momentum

Future work

- Rigorous justification of the (-2, +2) and (-3, +3) branches obtained in *C-Scheid* (2018)? Need coercivity (at least non degeneracy) around V_2 and V_3 .
- Construction of a branch for speeds $c \approx \sqrt{2}$ related to the multilumps solitary waves of the KP-I equation *C-Scheid* (2018) \rightsquigarrow extension of the analysis of Liu-Wei.

