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Introduction I

The motivating question is: Given a shock solution u to a
hyperbolic balance law of the form

ut + f (u)x = g(u),

with u : R+ × R → Rn and f , g suitable functions and given a
small smooth perturbation v with compact support disjoint from
the initial discontinuity of u, does the solution to the balance law
with initial data u + v form any new singularities?



Introduction II

This is a rather new topic, with many recent results such as
Duchêne-Rodrigues ’20, Yang-Zumbrun ’20, Faye-Rodrigues ’22,
Blochas-Rodrigues ’22.

Important physical examples of balance laws include relaxation
models, such as the Saint-Venant equations [Liu ’87,
Johnson-Noble-Rodrigues-Yang-Zumbrun ’19] in fluids.



Introduction III

Damping estimates are a powerful tool in the stability of shocks, as
they allow one to control higher order derivatives in weighted
Sobolev norms by lower order derivatives. These estimates were
introduced in Zumbrun ’04 in the context of compressible
Navier-Stokes, with later works such as Z ’10, JNZ ’11, JNRZ ’14,
and RZ ’16 applying them to other problems in fluids, gas
dynamics, and certain abstract systems.

A damping estimate is an estimate of the form

d

dt
E(v) ≤ −θE(v) + C ||v ||2L2α ,

where E(v) is an energy equivalent to ||v ||2H2
α
and L2α and H2

α refer

to the weighted Sobolev spaces with weight x → eα|x |.



Introduction IV

By Sobolev embedding, a damping estimate prevents the formation
of secondary shocks so long as the weighted L2 norm of the
perturbation remains under control. Compared with classical
results on the formation of singularities in conservation laws such
as Lax ’73, John ’74, Liu ’79 among others, one sees that damping
estimates depend importantly on properties of g .



Introduction V

We will focus on two models of combustion, an inviscid variation
of the original Majda model (which we will call the Majda model
for simplicity) and Zeldovich-von Neumann-Doering (ZND)
models. These two models take the abstract form

Ut + f (U)x = q⃗kϕ(T )z ,

zt = −kϕ(T )z ,

where U, q⃗ ∈ Rn and z ∈ R.



Introduction VI

The shocks we are interested in here are called right going
detonation waves, which are traveling shocks with speed σ > 0
satisfying

lim
x→±∞

(U, z)(x , t) = (U±, z±),

with z− = 0 and z+ = 1. We additionally want U and z to
converge exponentially fast to their endstates.



Introduction VII

For the Majda model, one takes U and q to be scalars with U a
lumped variable representing features of
velocity/temperature/density and q the heat released by the
reaction.

▶ Levy ’92: weak entropy solutions converge to the shock wave

▶ Lyng-Raoofi-Texier-Zumbrun ’07: nonlinear stability for
viscous Majda model assuming spectral stability

▶ Jung-Yang-Zumbrun ’21, Jung-Yao ’12, Liu-Yu ’99: spectral
stability for viscous Majda



Introduction VIII

We write the ZND model in Lagrangian coordinates as

vt − ux = 0,

ut + px = 0,

Et + (pu)x = qkϕ(T )z ,

zt = −kϕ(T )z ,

where v represents specific volume, u is velocity, p is pressure, and
E is specific gas-dynamical energy. The form of the pressure and
temperature is not particularly important.



Introduction IX

For a very brief summary of stability results for the ZND model

▶ Erpenbeck ’60’s: formal stability results for multidimensional
shocks

▶ Zumbrun ’12: ZND is linearly stable if q ≪ 1

▶ Zumbrun ’11: linear stability of reactive Navier-Stokes (rNS)
for all small viscosities implies linear stability for ZND

▶ Texier-Zumbrun ’12: linear stability of rNS implies nonlinear
stability, however, this is not known for ZND



Damping estimate for the Majda model

The positive result for the Majda model is:

Theorem
If q is sufficiently small, then there exists a δ0 > 0, ϑ > 0, C > 0

and ϵ > 0 such that for every (v0, ζ0) ∈ H
5
2 (R) ∩ H2

ϵ (R) supported
away from 0 with ||v0||H2

ϵ
+ ||ζ0||H2

ϵ
< δ0, the solution (u, z) to the

Majda model with initial data (u + v0, z + ζ0) satisfies

||u(t, ·+ ψ(t))− u||H2
ϵ (R∗) + ||z(t, ·+ ψ(t))− z ||H2

ϵ (R∗)+

+ |ψ′(t)− σ| ≤ C (||v0||H2
ϵ
+ ||ζ0||H2

ϵ
)e−ϑt ,

where ψ(t) is a C 1 function denoting the position of the shock.



Sketch I

Let

v(t, x) = u(t, ψ(t) + x)− u(x),

ζ(t, x) = z(t, ψ(t) + x)− z(x).

As long as the unweighted Lipschitz norms of v , ζ remain small,
then one can write down evolution equations for v and ζ on R+

and R−. Formally assuming smoothness of the restrictions of v
and ζ to R±, one can differentiate the evolution equations with
respect to x up to two times.



Sketch II

Specifically, one has the systems

vt = (ψ′ − f ′(u + v))vx + (ψ′ − σ + f ′(u)− f ′(u + v))u′ + kqζ,

ζt = (ψ′ − σ)z ′ − kζ + ψ′ζ,

on R− and on R+ one has

vt = (ψ′ − f ′(u + v))vx ,

ζt = ψ′ζx .



Sketch III

Introducing weights

ϱ−(x) = exp(−ϵx −
∫ x

0
Ceθydy),

ϱ+(x) = exp(ϵx +

∫ x

0
Ce−θydy),

for ϵ > 0, θ > 0 and C > 0 to be determined; we see that these
weights induce Sobolev spaces equivalent to the weight x → eϵ|x |.
The additional exponential is used to absorb terms coming from
the underlying shock as well as control boundary terms. Let
E±(w) denote the quantity

E±(w) =

∫
R±

w2(x)ϱ±(x)dx .



Boundary terms

There are good and bad boundary terms depending on whether or
not the signal is incoming or outgoing to the shock. Consider a
transport equation

ut − ux = 0,

and consider a weighted L2α estimate for a solution u. By
integration by parts, one finds that

d

dt

1

2
||u(t)||2L2α = +

u(0+)2

2
− 1

2
α

∫ ∞

0
u(x)2eαxdx−

− u(0−)2

2
+

1

2
α

∫ 0

−∞
u(x)2e−αxdx .



Sketch IV

From here, one performs the energy estimates as usual while
keeping track of the boundary terms. To finish the argument, one
checks that one can choose constants C1, ....,C12 so that

1

2

d

dt
(C1E−(v) + C2E−(ζ) + ...) ≤ −ϑ

2
(C1E−(v) + C2E−(ζ) + ...),

which leads to the final desired energy estimate after applying
Sobolev embedding to ensure that the unweighted Lipschitz norm
doesn’t blow up.



Singularity formation for ZND
We first prove a generalization of a classical result of F. John.

Theorem
Let A(U) be strictly hyperbolic with at least one genuinely
nonlinear field. Consider a stationary shock solution U of

Ut + A(U)Ux = 0.

Assume U is smooth for x ̸= 0 and that U and its derivatives
converges to its endstates exponentially fast. Then for all θ > 0
sufficiently small, there is a nonzero Û(x , 0) with C 2 norm at most
θ and supported a distance ∼ θ−1 from 0 so that if U is the
solution with initial data U + Û, then Û(x , t) = U(x , t)− U(x)
satisfies

sup
0≤t<T∗

||Û(t)||∞ <∞ lim sup
t→T∗

||∂x Û(t)||∞ = ∞,

for some T∗ ∼ θ−1.



Remark

The assumption that the shock is stationary is harmless in the
proof, as the assumptions on A are invariant under Galilean
changes of coordinates. The exponential convergence of U to its
endstates can be relaxed somewhat; the price paid is that one can
no longer control how far the support of Û needs to be from the
origin.



Motivation: blowup for Burgers equation

For Burgers equation, one can show blowup for all nonzero
compactly supported data by using the method of characteristics.
Along characteristics, Burgers equation takes the form

du

dt
= 0,

and the derivative w := ux is subject to

dw

dt
= −w2,

which blows up in finite time.

John ’74 adapts this argument to systems.



Sketch I

We will modify John’s argument to suitable variable coefficient
systems.

For the shock U, there is a radius R > 0 such that for |x | ≥ R, the
shock is smooth and small enough. So we will choose the support
of our initial perturbation Û so far to the left so that on the
desired finite time of existence T , the support of the perturbation
remains entirely in the region where |x | ≥ R (which can be done
by finite propagation speed).



Sketch II

Letting U be the solution with initial data U + Û and subtracting
the equation for U leads to a system of the form

Ût + (A(U + Û)− A(U))Ux + A(U + Û)Ûx = 0.

Applying the fundamental theorem of calculus twice and some
rearranging leads to

Ût + (A(Û) + B(x , Û))Ûx = G (x , Û)Û,

where for |x | ≥ R B(x , Û) and G (x , Û) decay exponentially in x as
do all of their derivatives.



Sketch III

John’s argument relies on the method of characteristics, and for
the evolution equation of the perturbation; the evolution along the
i-th characteristic takes the form

dÛ

dt
=

∑
(λi − λk)wkξ

k − G (x , Û)Û,

where the λi are the eigenvalues of A(x , Û) := A(Û) + B(x , Û),
the ξk are the corresponding right eigenvectors, and the wk are
defined by

wk = ηk · Ûx ,

where ηk is the left eigenvector.



Sketch IV

The evolution of wi along the i-th characteristic is given by

dwi

dt
=

∑
k,m

γikmwkwm +
∑
k

ζikwk + κi Û,

where each coefficient is known.



Sketch V

The i-th characteristic field is genuinely nonlinear precisely if
γiii ̸= 0, so the core insight of John’s argument is that provided the
other wk remain small along some i-th characteristic where wi

satisfies
wi (y , 0) = max

k
sup
x

|wk(x , 0)|,

for some y , then the perturbation blows up in C 1 norm in finite
time by comparison with a suitable Riccati equation.



Sketch VI

The final step is to do a careful analysis of the characteristic
equations along each characteristic to show that ||Û||∞ remains
finite until the blowup and that each wk for k ̸= i remains small
along the i-th characteristics.



Application to ZND

To apply the blowup theorem to ZND, note that if the
perturbation of z , ẑ , starts identically zero; then because the
ignition function is piecewise constant the perturbation ẑ remains
zero forever. Effectively, this allows us to eliminate z from the
ZND model which reduces the system to gas dynamics.

The same strategy to apply the blowup theorem for ZND will also
work to show blowup for the Majda model as well, which shows
that the weight is crucial in the stability result; since the
perturbation we construct is very large in the weighted norm, the
weight is what allows the stability result to hold.



Lack of damping for ZND

For the ZND model, there are no damping estimates with a
uniform weight on each coordinate. This is because there is an
acoustic mode which is traveling to the left.

Proposition

Consider a system of the form

ut + (A(u) + B(x , u))ux = G (x , u)u,

as in the proof of the blowup theorem. Suppose further that the
smallest eigenvalue, Λn of A(0) is negative. Then for all α > 0,
then there exists ε0 > 0 so that for all 0 < ε < ε0 and all δ > 0
there is a smooth compactly supported initial data u0 with
||u0||H2

α
≤ δ and ||u(t)||H2

α
> ϵ for some time in the interval of

existence.



Sketch I

Let ξn denote the right eigenvector associated to Λn and choose ϕ
smooth and compactly supported on [−1, 0]. Then let

vp := cpe
−αpϕ(·+ p)ξn,

where cp > 0 is a sequence of numbers chosen to go to 0 as
p → ∞. The sequence vp then goes to zero in H2

α as p → ∞. Let
up be the solution to the system with initial data vp.



Sketch II

Let ηn denote the corresponding left eigenvector to Λn and consider
the evolution equation for the scalar quantity wp := ηn · up given by

(wp)t+Λn(wp)x = ηn(A(0)−A(up)−B(x , up))(up)x−ηnG (x , up)up.

Call the right hand side N(up).



Sketch III

By contradiction, for each ε > 0 up stays in the ball of radius ε
centered at 0 in H2

α. In particular, this is a global solution to the
equation. Applying the Duhamel formulation, we can write wp as

wp(x ,T ) = wp(x − ΛnT ,T ) +

∫ T

0
N(up)(x − Λn(T − s), s)ds,

for T ≥ 0.



Sketch IV

From here, the plan is to show that the Duhamel term remains
small enough up to time T for T large enough (depending on p),
as one can check that the linear term is bounded from below (in
L2α) by

||ϕ||L2αe
−ΛnT .



Key difference

On the right of the shock, all modes in both models are incoming
which are damped by the exponential weight.

On the left side of the shock, both models have an outgoing
damped mode, namely ẑ . So long as the weight is not too strong,
this allows for decay.

The key difference between the Majda and ZND models is that the
ZND model has an outgoing undamped mode on the left of the
shock; causing the damping estimate to fail.



Aside: W 1,p damping

In the case of conservation laws, one does not have access to
unweighted W 1,p-damping estimates for p > 1. What underlies
this observation are results of Bressan and coauthors about
well-posedness in BV in conjunction with results of Liu regarding
convergence to N-waves. The core of the argument is that for any
interval I and solution u in W 1,p one can bound the variation of u
on I by using Hölder’s inequality

V (u, I ) ≤ |I |1−
1
p ||ux ||Lp .

The convergence to N-waves gives access to a point (x∗, t∗) for
which the variation of u remains bounded away from 0 on any
interval centered at x∗, which means that the W 1,p cannot be
damped.



Open Problems

▶ What does nonlinear stability look like for systems, like ZND,
which do not admit damping estimates?

▶ Does the solution blow up in the weighted norm, and if so,
what types of blowup can occur?

▶ For compactly supported initial data, how much longer does
the W 1,p-norm for p > 1 take to blow up than the
W 1,∞-norm?

▶ How does one detect formation of singularities in W 1,1?


