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Ranking Problems
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i

True answer Edible Toxic Toxic Edible Edible Edible Toxic Edible

B b Toxic Toxic Edible Toxic Edible Toxic Toxic Edible
o 0 1 0 0 1 0 1 1

AI |C@  Edible Edible Toxic Edible Edible  Edible Toxic Edible
1 0 1 1 1 1 1 1

1 : Correct answer 0 : Wrong answer

Ranking n experts according to their ability on d questions
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Statistical Model

n experts and d questions

Observation Model

Y=M+E eR"?¢

m (E; ;) independent and Subgaussian (e.g. Bernoulli)
m M, €[0,1] for all 4,k
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Loss functions

Permutation loss for 7

(A, 7*) = [ Mpo1 = Mso1|% =

™

M=
M=

(M08~ JVIw*-l(i),k)2

1k=1

.
Il
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Loss functions

Permutation loss for 7

(A, 7*) = [ Mpo1 = Mso1|% =

(M- (i) = Mpn-103y 1)

M=
e

s
i=1
Estimation loss for M
7 2
[M - M|z.
Remark :

m Estimation of 7 is "less demanding" than estimation of M.

m Estimating a bi-isotonic matrix computationally simple.
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Interpretation of permutation Loss

Permutation loss for 7

U, %) = [Myor — My |2

™

1 4
My L
r
0+ | ‘
1 question k d

If green and red misclassified : Perm-Loss = 2rh2.
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R;erm [nad] = iI}f sup E[”Mir—l =M, ”%"]

T
T M,mw*

Riq[n,d] = inf sup E[|M - M|%]
M M,rm*
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R;erm [nad] = iI}f sup IE[”M;‘.—l =M, ”%"]

T
T M,mw*

Riq[n,d] = inf sup E[|M - M|%]
M M,m*

Recovering 7 is easier then estimating M

R;erm [n’ d] S stt [n’ d]
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Other ranking and permutations problems

Related Rectangular Problems :

= Two permutations [Mao et al., 2018, Shah et al., 2019] :
M is bi-isotonic up to permutations 7} and 75 of rows and columns.
Objective : ranking the experts and the questions.
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Other ranking and permutations problems

Related Rectangular Problems :

= Two permutations [Mao et al., 2018, Shah et al., 2019] :
M is bi-isotonic up to permutations 7} and 75 of rows and columns.
Objective : ranking the experts and the questions.

m Column isotony [Flammarion et al., 2019]

Ranking Players in a tournament : M is a n x n matrix with symmetries.
= Non-parametric Models SST [Shah et al., 2016]

m Parametric Models :
Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2020])
Noisy sorting [Braverman and Mossel, 2008]

Short story :

m No computational gap for parametric models (BLT, noisy sorting)

m mostly unknown for non-parametric models computational gaps are conjectured
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Main questions

Is Estimating 7* much easier than estimating M 7
Is there a computational-statistical gap ? (as in clustering problems with many groups)

Is the non-parametric problem intrinsically more challenging than the
parametric one?

Our Results

m Control of Ry, (n,d)

= A polynomial-time procedure achieves R;.,.,,, (1, d)
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Simple ranking methods
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Analysis of least-squares estimator [ ]

m II, collection of all permutations of [n]
m Biso collection all bi-isotonic matrices in [0,1]

Least-square estimator

(M"S,#15) = _argmin (| Mz -Y[3)
M eBiso,7well,
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Analysis of least-squares estimator [ ]

m IT,, collection of all permutations of [n]
m Biso collection all bi-isotonic matrices in [0,1]

Least-square estimator

(M1%5,#55) = argmin (|3 - V(%)
M eBiso,7well,,

o NrLS
Matrix MirLS,.'

Proposition ( e.g.[ 1

E[|M - M|%] s n+ (Vnd A nd*/?)

In this presentation, X, <, 2 is up to polylogarithms
9/30



Minimax Estimation Rates

Remarks :

m MLS is minimax for the estimation loss

R, xnv (Vndand/3) .
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Minimax Estimation Rates

Remarks :

m MLS is minimax for the estimation loss

R, xnv (Vndand/3) .

= We have R} >n.

perm ~
nsdB [ dB3<snsd | dsn
Rierm 77 77
Ri ndl/3 vnd n

But the algorithms are not polynomial time.
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Global Average Comparison

€.g. [Pananjady and Samworth, 2020, Shah et al., 2019]

A simple ranking method :

m For each expert i, average performances on all questions :

- d
Yi==> Yk
=1

Ul

m Rank experts according to their average : #2V
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Performances and failures of Global Average

Perfect expert on easy questions VS random expert :

M, =(0.5,0.5...0.5,0.5,0.9,0.9,0.9,0.9) ; My =(0.5,0.5,...,0.5,0.5)
—_———

=Vd

12/30



Performances and failures of Global Average

Perfect expert on easy questions VS random expert :

M, =(0.5,0.5...0.5,0.5,0.9,0.9,0.9,0.9) ; My =(0.5,0.5,...,0.5,0.5)
—_———

=Vd

Experts 1 and 2 are not distinguished by Y; ~  Risk(#®) < Vd

12/30



Performances and failures of Global Average

Perfect expert on easy questions VS random expert :

M, =(0.5,0.5...0.5,0.5,0.9,0.9,0.9,0.9) ; My =(0.5,0.5,...,0.5,0.5)
—_———

=Vd

Experts 1 and 2 are not distinguished by Y; ~  Risk(#®) < Vd

Guarantees on 72V

s;\J/IpIE (17>, 7*)] nVd

12/30



Performances and failures of Global Average

Perfect expert on easy questions VS random expert :

M, =(0.5,0.5...0.5,0.5,0.9,0.9,0.9,0.9) ; My =(0.5,0.5,...,0.5,0.5)
—_———
=V/d

Experts 1 and 2 are not distinguished by Y; ~  Risk(#®) < Vd

Guarantees on 72V

s;\J/IpIE (17>, 7*)] nVd

Sup-optimality of Global average :

m comparisons are not localized (similar phenomenon in tournament problems)

m Furthermore, one-to-one comparisons are not sufficient...

Improvements in [Mao et al., 2018] using local averages on bins.
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Localization and Hierarchical clustering [ ]

[Liu and Moitra, 2020] consider only d = n, and provide a poly. time estimator 7 (%)

E [l(ﬁ(LM)?W*)] < pl+o(1)

Optimal for d=n
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Localization and Hierarchical clustering [ ]

[Liu and Moitra, 2020] consider only d = n, and provide a poly. time estimator 7 (%)

E [l(ﬁ(LM)?W*)] < pl+o(1)

Optimal for d=n

h N 1

P o
T (..

0 1

1 question k d )
Localization through change-point 2 p
detection. :

Hierarchical sorting.
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Rierm 77 77 n
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nsd/B | dBsnsd]| dsn
Rierm 77 77 n
Rig nd'/3 vnd n
Global average (UB) nVd nVvd nvd
Ext. of [Liu and Moitra, 2020] (UB) d d n

Remarks :
m Poly. time method of [Liu and Moitra, 2020] minimax for d =n

= Known UB for rates in R, and Ry, not in polynomial time.
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Minimax risks and polynomial time algorithm
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Idealized setting : (as in [Liu and Moitra, 2020])
polylog independent full samples Y1) = M+ E), v (2) = M+ EG?)

Theorem [Pilliat, Carpentier, V., 2022]

There exists a estimator & of 7* which is poly. time and minimax optimal

E[l(7r,7*)] S+ (n3/4d And®) < RSy

nsdB [ dB3<snsd | dsn
R;e'r‘m Tldl/G n3/4dl 4 n
RE., nd/3 nd n

Consequence : Optimal estimation rate of M achievable in polynomial time.
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From global to local averages

If M1, M> not isotonic or unbounded
undistinguishable if | M1, — Mo, |3 V4.

Global average bad — localize.
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From global to local averages

If M1, M> not isotonic or unbounded
undistinguishable if | M1, — Mo, |3 V4.

Idea :

m Local difference between experts
oL ~ a high-variation signature

1 auestion k 7

m Variation signatures detectable at larger scale
Global average good. & &
" Procedure

m Localize areas where any of the two experts
varies by more than h...

ol m ... and compute local averages.

1 question d

Global average bad — localize.
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Algorithm

CUSUM Statistic :
Cip=2(Z ' i -0 Yik)

1 +
Pick height h >0 and scale >0 :

Step 1 High-Variation Detection C; . 2 h

M
Sen=U{ll-rl+r): Cr2h}
h Step 2 Localized comparison
— _ 1 —
ot r { lIj(sr,h) = \/m ZkESTYh(YQ,k Yl,k:)
1 question & d
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CUSUM Statistic :
Cipr = % (Zhrtyy -2t Yag)

s
Pick height h >0 and scale >0 :
Step 1 High-Variation Detection C; . 2 h
M
Sen=U{ll-rl+r): Cr2h}
h Step 2 Localized comparison

— _ 1 —

ot r ~ lIj(sr,h) = \/m ZkESTYh(YQ,k Yl,k:)
1 question & d

Whp valid comparison if | M1, — Ma, |3 % d*/6

~ Conversely, optimal for n = 2.



nsd/B [ dPBPgnsd ]| dsn
Ryperm nd'/6 n3/tqt/a n
Rig nd'/3 Vnd n
Global average (UB) nvd nvd nvd
Ext. of [Liu and Moitra, 2020] (UB) d d n
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Minimax risks and polynomial time algorithm

m Ingredient 2 : PCA and Hierarchical sorting
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Hierarchical Sorting Tree

Start from the complete set [n] of experts
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Hierarchical Sorting Tree
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— /// I
- P
S

Start from the complete set [n] of experts

Build a Trisection (O, P, I) of this set where :

Experts in O are whp among the n/2
worst

Experts in I are whp among the n/2 best
Experts in P are undecided

... Iterate on O, P, I with fresh samples

~ ordered partition of [n]
~ Random partition 7™

Lemma

(7,7 s T IM(P) - M (B3
P

where P > P (slighty larger set)



Partitionning a group G into three blocks

11 General Strategy :
O=@;1=92
For all heights h, scales r.
M Dimension Reduction
~ high-variation regions h of mean
expert at scale r
oL,

1 question & d
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My

Estimate a direction w ¢ RY

Expert comparison by

} - : weighted average >3, Y; pwy
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Partitionning a group G into three blocks

General Strategy :

1 +
O=2;1=0
For all heights h, scales r.
My
. . - d
Estimate a direction w ¢ R}
01

&l

1 question k

Iterate Polylog times
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Toy example (with two pure subgroups)

—=— subsetU" above ——
—— subset L’ below
mean FP) of P
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Toy example (with two pure subgroups)

Variation detection :

~ keeping windows of size r with variation h
Aggregation :

~» rescaled sum of observations on each window :

—— subsetU* above ——
—— subsetl’ below
meanmF o F 1 —
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________ 01 1 00 1 00
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Toy example (with two pure subgroups)

Variation detection :

~ keeping windows of size r with variation h
Aggregation :

~» rescaled sum of observations on each window :

—— subsetU* above ——
— subsetL” below
meanmF o F 1 —
0 -1 -1 0 0 -1 0 0
________ 01 1 00 1 00
1 01 1 00 1 00
SVPRXlg 1 1 0 0 -1 0 o0
0 -1 -1 0 0 -1 0 0
oby - o1 1 00 1 00

Remark : For these two groups of experts
m Ranking = Clustering

m PCA outperforms row sums for large groups (to select active regions).

Direction w selection : right-singtlar—veetor
left singular vector + image thresholding + correction
(# [Liu and Moitra, 2020])

23/30



Suboptimality of the procedure

nsd/B [ dBsnsd]|dsn
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Suboptimality of the procedure

nsd/B [ dBsnsd]|dsn
R;erm ndl/G 7’L3/4d1/4 n
Ri nd'/3 vnd n
Ext. of [Liu and Moitra, 2020] (UB) d d n
(modified) PCA+ Hierarchy nd/6 n2/341/3 n

Benefits of hierarchical Sorting :
m Allows to localize the differences between subgroup of experts
m Builds upon large groups of close experts

= ...but oblivious of previous structure found in the data

G- Gy gD GO G G G GH

~ Hierarchical Sorting with Memory which is optimal.
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Minimax risks and polynomial time algorithm

m Ingredient 3 : Hierarchical Sorting with memory

25/30



Bi-isotonic M

0+

1 question k d

Each line M; . represents an expert 4
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Which information is brought by the tree?

Our vanilla dimension reduction techniques :
Detection of variations of the mean expert in G
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Which information is brought by the tree?

Our vanilla dimension reduction techniques :
Detection of variations of the mean expert in G
... but ...

m A large scale r is needed if |G| is small.

m Spurious regions are detected
(those where the width of G is small).
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Which information is brought by the tree?

Our vanilla dimension reduction techniques : .

H = H H == subsetU" above ———
Detection of variations of the mean expert in G R
...but ... meonmPoF LT

m A large scale r is needed if |G| is small.

m Spurious regions are detected
(those where the width of G is small).

Idea :
Using the partial ordering to :
m decrease the variance of the CUSUM
(with V o G experts)
m Estimate the width A of G
Aj = max;eq Mi,k —maX;e Mi,k of G
by comparing mean experts in groups
G G G GO G0 GO G G above and below G.
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In practice

Fix a height h, and a scale r (possibly too small for G).
Consider expert sets V* above G and V™ below G

Simultaneously check :
1. If variations at scale r higher than h

T = EE B UV - B BV UV

—— subsetU’ above meanmiy®) of ¥
— subsetL’ below  mmmm meanTmly)of -
mean FF) of P

~(ext)
Ceh=h

28/30



In practice
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Fix a height h, and a scale r (possibly too small for G).
Consider expert sets V* above G and V™ below G
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1. If variations at scale r higher than h

T = EE B UV - B BV UV
2. If the width of G at scale 5 higher than h.

RV = Lokt (vt -5,(v7)

1 1
—— subsetU’ above meany®) of ¥ —— subsetU’ above
—— subsetL’ below  mems meanmiy-)of ¥~ — subsetl’below = pmmmmmemee
mean FF) of P mean P of P
meanmIv)of v
E(ext)>h [l r—— —mean miv-) of V7 oo |
K 1™ !
e (1 e N I e
Vi
1
! A <
T .
B
. Fep . 0
1 a 1 d



Main result

W M

Estimator with this new dimension reduction step

Max-Perm(7)VM [ndl/6 A (n3/4d1/4)] +n X MiniMax-Perm

29/30



Main result

W M

Estimator with this new dimension reduction step

Max-Perm(7)VM [ndl/6 A (n3/4d1/4)] +n X MiniMax-Perm

ngdB [ dBsngd ]| d

sn
Ryperm nd'/® n3MAgl/A n
Ri nd'/3 Vnd n
Ext. of [Liu and Moitra, 2020] (UB) d d n
(modified) PCA+ Hierarchy+Memory nd'/® n3/Aq1/4 n

29/30



Main result

W M

Estimator with this new dimension reduction step

Max-Perm(7)VM [ndl/6 A (n3/4d1/4)] +n X MiniMax-Perm
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~ As a corollary, minimax polynomial-time estimator of M.
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Conclusion

= No computational gap for this ranking (and estimation) problem

m In comparison to n = d, rectangular setting requires new ideas :
~ side information from partial ranking.

m Results extend to partial observations and general noise levels.
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Conclusion

= No computational gap for this ranking (and estimation) problem

m In comparison to n = d, rectangular setting requires new ideas :
~ side information from partial ranking.

m Results extend to partial observations and general noise levels.

For two permutations, existence of a computational gap is not clear.
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