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Ranking Problems

Crowdsourcing Problems = Aggregation of Experts' opinion

↝ To calibrate the method : need to evaluate the reliability of the experts

1 : Correct answer 0 : Wrong answer

Our Goal

Ranking n experts according to their ability on d questions
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Statistical Model

n experts and d questions

Observation Model

Y =M +E ∈ Rn×d

(Ei,k) independent and Subgaussian (e.g. Bernoulli)
Mi,k ∈ [0,1] for all i, k

Parametric Models for M :

Questions equally di�cult ↝ Mij = ai ≈ [Dawid and Skene, 1979]
Ability/di�culty ↝ Mij = φ(αi − βj) ≈ [Bradley and Terry, 1952]

Non-Parametric Models for M ≈ [Mao et al., 2018]

Increasing columns up to permutation π∗ of rows : Mπ∗−1(i),k ≤Mπ∗−1(i+1),k
Rows are increasing : Mi,k ≤Mi,k+1

Aim

Estimation of π∗.

Partial observation of Y discussed later.
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Loss functions

Permutation loss for π̂

l(π̂, π∗) ∶= ∥Mπ̂−1 −Mπ∗−1∥
2
F =

n

∑
i=1

d

∑
k=1

(Mπ−1(i),k −Mπ∗−1(i),k)
2

Estimation loss for M̂

∥M̂ −M∥2F .

Remark :

Estimation of π∗ is "less demanding" than estimation of M .

Estimating a bi-isotonic matrix computationally simple.
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Interpretation of permutation Loss

Permutation loss for π̂

l(π̂, π∗) ∶= ∥Mπ̂−1 −Mπ∗−1∥
2
F .

If green and red misclassi�ed : Perm-Loss = 2rh2.
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Minimax Risk

R∗

perm[n, d] = inf
π̂

sup
M,π∗

E[∥Mπ̂−1 −Mπ∗−1∥
2
F ]

R∗

est[n, d] = inf
M̂

sup
M,π∗

E[∥M̂ −M∥2F ]

Recovering π∗ is easier then estimating M

R∗

perm[n, d] ≲ R∗

est[n, d]
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Other ranking and permutations problems

Related Rectangular Problems :

Two permutations [Mao et al., 2018, Shah et al., 2019] :
M is bi-isotonic up to permutations π∗1 and π∗2 of rows and columns.
Objective : ranking the experts and the questions.

Column isotony [Flammarion et al., 2019]

Ranking Players in a tournament : M is a n × n matrix with symmetries.

Non-parametric Models SST [Shah et al., 2016]

Parametric Models :
Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2020])
Noisy sorting [Braverman and Mossel, 2008]

Short story :

No computational gap for parametric models (BLT, noisy sorting)

mostly unknown for non-parametric models computational gaps are conjectured
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Main questions

1 Is Estimating π∗ much easier than estimating M ?

2 Is there a computational-statistical gap ? (as in clustering problems with many groups)

3 Is the non-parametric problem intrinsically more challenging than the
parametric one ?

Our Results

Control of R∗

perm(n, d)
A polynomial-time procedure achieves R∗

perm(n, d)
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1 Setting and Questions

2 Simple ranking methods

3 Minimax risks and polynomial time algorithm
Ingredient 1 : Localization of the di�erences
Ingredient 2 : PCA and Hierarchical sorting
Ingredient 3 : Hierarchical Sorting with memory
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Analysis of least-squares estimator [Shah et al., 2016]

Πn collection of all permutations of [n]
Biso collection all bi-isotonic matrices in [0,1]

Least-square estimator

(M̂LS, π̂LS) = arg min
M̃∈Biso,π̃∈Πn

(∥M̃π̃ − Y ∥2F )

Matrix Y .

Proposition ( e.g.[Shah et al., 2016])

E[∥M̂ −M∥2F ] ≲ n + (
√
nd ∧ nd1/3)

In this presentation, ≍, ≲, ≳ is up to polylogarithms
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Minimax Estimation Rates

Remarks :

M̂LS is minimax for the estimation loss

R∗

est ≍ n ∨ (
√
nd ∧ nd1/3) .

We have R∗

perm ≳ n.

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm ? ? ? ? n

R∗

est nd1/3
√
nd n

But the algorithms are not polynomial time.
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Global Average Comparison

e.g. [Pananjady and Samworth, 2020, Shah et al., 2019]

A simple ranking method :

For each expert i, average performances on all questions :

Y i =
1

d

d

∑
k=1

Yi,k

Rank experts according to their average : π̂av

11/30



Performances and failures of Global Average

Perfect expert on easy questions VS random expert :

M1,. = (0.5,0.5 . . .0.5,0.5,0.9,0.9,0.9,0.9
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≍

√

d

) ; M2,. = (0.5,0.5, . . . ,0.5,0.5)

Experts 1 and 2 are not distinguished by Y i ↝ Risk(π̂av) ≍
√
d

Guarantees on π̂av

sup
M

E [l(π̂av, π∗)] ≍ n
√
d

Sup-optimality of Global average :

comparisons are not localized (similar phenomenon in tournament problems)

Furthermore, one-to-one comparisons are not su�cient...

Improvements in [Mao et al., 2018] using local averages on bins.
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Localization and Hierarchical clustering [Liu and Moitra, 2020]

[Liu and Moitra, 2020] consider only d = n, and provide a poly. time estimator π̂(LM)

E [l(π̂(LM), π∗)] ≲ n1+o(1).

Optimal for d = n

Localization through change-point
detection.

Hierarchical sorting.

13/30



Localization and Hierarchical clustering [Liu and Moitra, 2020]

[Liu and Moitra, 2020] consider only d = n, and provide a poly. time estimator π̂(LM)

E [l(π̂(LM), π∗)] ≲ n1+o(1).

Optimal for d = n

Localization through change-point
detection.

Hierarchical sorting.

13/30



Summary

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm ? ? ? ? n

R∗

est nd1/3
√
nd n

Global average (UB) n
√
d n

√
d n

√
d

Ext. of [Liu and Moitra, 2020] (UB) d d n

Remarks :

Poly. time method of [Liu and Moitra, 2020] minimax for d = n
Known UB for rates in R∗

est and R∗

perm not in polynomial time.
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2 Simple ranking methods
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Minimax risks and polynomial time algorithm

Idealized setting : (as in [Liu and Moitra, 2020])

polylog independent full samples Y (1) =M +E(1), Y (2) =M +E(2), . . .

Theorem [Pilliat, Carpentier, V., 2022]

There exists a estimator π̂ of π∗ which is poly. time and minimax optimal

E[l(π̂, π∗)] ≲ n + (n3/4d1/4 ∧ nd1/6) ≍ R∗

perm .

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Consequence : Optimal estimation rate of M achievable in polynomial time.
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From global to local averages

Global average good.

Global average bad → localize.

If M1, M2 not isotonic or unbounded
undistinguishable if ∥M1,. −M2,.∥22 ≲

√
d.

Idea :

Local di�erence between experts
↝ a high-variation signature

Variation signatures detectable at larger scale

Procedure

Localize areas where any of the two experts
varies by more than h...

... and compute local averages.
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Algorithm

CUSUM Statistic :
Cl,r = 1

r
(∑l+r−1k=l Y1,k −∑l−1k=l−r Y1,k)

Pick height h > 0 and scale r > 0 :

Step 1 High-Variation Detection Cl,r ≳ h

Sr,h = ⋃{[l − r, l + r) ∶ Cl,r ≳ h}

Step 2 Localized comparison
Ψ(Sr,h) = 1

√

∣Sr,h ∣
∑k∈Sr,h

(Y2,k−Y1,k)

Proposition

Whp valid comparison if ∥M1,. −M2,.∥22 ≳ d
1/6

↝ Conversely, optimal for n = 2.
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Summary

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Global average (UB) n
√
d n

√
d n

√
d

Ext. of [Liu and Moitra, 2020] (UB) d d n
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1 Setting and Questions

2 Simple ranking methods

3 Minimax risks and polynomial time algorithm
Ingredient 1 : Localization of the di�erences
Ingredient 2 : PCA and Hierarchical sorting
Ingredient 3 : Hierarchical Sorting with memory
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Hierarchical Sorting Tree

Start from the complete set [n] of experts

Build a Trisection (O,P, I) of this set where :

1 Experts in O are whp among the n/2
worst

2 Experts in I are whp among the n/2 best

3 Experts in P are undecided

. . . Iterate on O, P , I with fresh samples

↝ ordered partition of [n]
↝ Random partition π̂

Lemma

l(π̂, π∗) ≲ ∑
P

∥M(P ) −M(P )∥2F ,

where P ⊃ P (slighty larger set)
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Partitionning a group G into three blocks

General Strategy :

O = ∅ ; I = ∅
For all heights h, scales r.

1 Dimension Reduction
↝ high-variation regions h of mean
expert at scale r

2 Estimate a direction ω ∈ Rd
+

3 Expert comparison by
weighted average ∑k Yi,kωk
↝ (L,U) ⊂ G
G← G ∖ (U ∪L) ; O ← O ∪L ; I ← I ∪U

Iterate Polylog times
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Toy example (with two pure subgroups)

Variation detection :
↝ keeping windows of size r with variation h
Aggregation :
↝ rescaled sum of observations on each window :

1

2

√
rh ×

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0
0 1 1 0 0 1 0 0
0 −1 −1 0 0 −1 0 0
0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Remark : For these two groups of experts

Ranking = Clustering

PCA outperforms row sums for large groups (to select active regions).

Direction ω selection : right singular vector
left singular vector + image thresholding + correction

(≠ [Liu and Moitra, 2020])
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Suboptimality of the procedure

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Ext. of [Liu and Moitra, 2020] (UB) d d n

(modi�ed) PCA+ Hierarchy nd1/6 n2/3d1/3 n

Bene�ts of hierarchical Sorting :

Allows to localize the di�erences between subgroup of experts

Builds upon large groups of close experts

. . . but oblivious of previous structure found in the data

↝ Hierarchical Sorting with Memory which is optimal.

24/30



Suboptimality of the procedure

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Ext. of [Liu and Moitra, 2020] (UB) d d n

(modi�ed) PCA+ Hierarchy nd1/6 n2/3d1/3 n

Bene�ts of hierarchical Sorting :

Allows to localize the di�erences between subgroup of experts

Builds upon large groups of close experts

. . . but oblivious of previous structure found in the data

↝ Hierarchical Sorting with Memory which is optimal.

24/30



Suboptimality of the procedure

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Ext. of [Liu and Moitra, 2020] (UB) d d n

(modi�ed) PCA+ Hierarchy nd1/6 n2/3d1/3 n

Bene�ts of hierarchical Sorting :

Allows to localize the di�erences between subgroup of experts

Builds upon large groups of close experts

. . . but oblivious of previous structure found in the data

↝ Hierarchical Sorting with Memory which is optimal.
24/30



1 Setting and Questions

2 Simple ranking methods

3 Minimax risks and polynomial time algorithm
Ingredient 1 : Localization of the di�erences
Ingredient 2 : PCA and Hierarchical sorting
Ingredient 3 : Hierarchical Sorting with memory

25/30



Bi-isotonic M

Each line Mi,⋅ represents an expert i
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Which information is brought by the tree ?

Our vanilla dimension reduction techniques :
Detection of variations of the mean expert in G

. . . but . . .

A large scale r is needed if ∣G∣ is small.

Spurious regions are detected
(those where the width of G is small).

Idea :
Using the partial ordering to :

decrease the variance of the CUSUM
(with V ⊃ G experts)

Estimate the width ∆ of G
∆k = maxi∈GMi,k −maxi∈GMi,k of G
by comparing mean experts in groups
above and below G.
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In practice

Fix a height h, and a scale r (possibly too small for G).
Consider expert sets V+ above G and V− below G

Simultaneously check :

1. If variations at scale r higher than h

Ĉ
(ext)
k,r

= 1
r ∑

k+r
l=k+1 yl(V

+ ∪ V−) −∑k+rl=k+1 yl(V
+ ∪ V−)

2. If the width of G at scale r
2
higher than h.

∆̂
(ext)
k,r

= 1
r ∑

k+r
l=k−r yl(V

+) − yl(V−)
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Main result

Estimator π̂WM with this new dimension reduction step

Theorem

Max-Perm(π̂)WM ≲ [nd1/6 ∧ (n3/4d1/4)] + n ≍MiniMax-Perm

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Ext. of [Liu and Moitra, 2020] (UB) d d n

(modi�ed) PCA+ Hierarchy+Memory nd1/6 n3/4d1/4 n

↝ As a corollary, minimax polynomial-time estimator of M .

29/30



Main result

Estimator π̂WM with this new dimension reduction step

Theorem

Max-Perm(π̂)WM ≲ [nd1/6 ∧ (n3/4d1/4)] + n ≍MiniMax-Perm

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Ext. of [Liu and Moitra, 2020] (UB) d d n

(modi�ed) PCA+ Hierarchy+Memory nd1/6 n3/4d1/4 n

↝ As a corollary, minimax polynomial-time estimator of M .

29/30



Main result

Estimator π̂WM with this new dimension reduction step

Theorem

Max-Perm(π̂)WM ≲ [nd1/6 ∧ (n3/4d1/4)] + n ≍MiniMax-Perm

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n
R∗

perm nd1/6 n3/4d1/4 n

R∗

est nd1/3
√
nd n

Ext. of [Liu and Moitra, 2020] (UB) d d n

(modi�ed) PCA+ Hierarchy+Memory nd1/6 n3/4d1/4 n

↝ As a corollary, minimax polynomial-time estimator of M .

29/30



Conclusion

No computational gap for this ranking (and estimation) problem

In comparison to n = d, rectangular setting requires new ideas :
↝ side information from partial ranking.

Results extend to partial observations and general noise levels.

For two permutations, existence of a computational gap is not clear.
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