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Beyond Linear methods
• Linear methods like PCA are robust but badly shaped for complex

geometries
• High-dim. datas are characterized by multiscale properties (local /

global structures)
• Non-Linear projection methods aim at preserving local

characteristics of distances
• Many proposed methods such as LargeVis, tSNE, UMAP

from [3]
probabilistic SNE F. Picard
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Stochastic Neighbor Embedding (SNE) [4]

• (X1, . . . ,Xn) are the points in the high-dimensional space Rp,

• Consider a similarity between points:

pi |j =
exp(−‖Xi − Xj‖2/2σ2i )∑
6̀=i exp(−‖X` − Xj‖2/2σ2` )

• Further symmetrized

pij = (pi |j + pj |i )/2N

• Hyper-parameter σi locally smooths the data, to be tuned

• Linked to the regularity of the target manifold

probabilistic SNE F. Picard
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tSNE and Student / Cauchy kernels

• Consider (Z1, . . . ,Zn) are points in the low-dimensional space R2

• Consider a similarity between points in the new representation:

qi |j =
exp(−‖Zi − Zj‖2)∑
6̀=i exp(−‖Z` − Zj‖2)

• Robustify this kernel by using Student(1) kernels (ie Cauchy)

qi |j =
(1 + ‖Zi − Zj‖2)−1∑
6̀=i (1 + ‖Zi − Z`‖2)−1

probabilistic SNE F. Picard
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Optimizing tSNE by Gradient descent

• Minimize the KL between p and q to find Z ∈ R2 such that:

C (Z ) =
∑
ij

KL(pij , qij)

[
∂C (Z )

∂Z

]
i

=
∑
j

(pij − qij)(Zi − Zj)

• Gradient update (adaptive learning rate η)

Z (t) = Z (t−1) + η
∂C (Z )

∂Z
+ α(t)(Z (t−1) − Z (t−2))

• α(t) momentum to speed up and improve convergence

• Initialization Z
(0)
i ∼ N (0, δI ), δ small.
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Uniform Manifold Approximation and Projection [3]

∀(i , j) ∈ [n]2, pj |i = exp

(
−
‖Xi − Xj‖22 − ρi

σi

)
with ρi = minj 6=i ‖Xi − Xj‖2. Let us define

pij = pj |i + pi |j − pj |ipi |j

and:

∀(i , j) ∈ [n]2, qij =
(

1 + a‖Xi − Xj‖2b2
)−1

UMAP solves the following problem:

min
Z∈Rn×d

−
∑
i<j

pij log qij + (1− pij) log(1− qij)
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tSNE on single cell Gene Expression data [1]
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tSNE does not account for between-cluster distance
50 points

200 points

What about random noise ?
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Presentation Properties MP on graphs Graph coupling Challenges References

Catching Complex Geometries
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Properties of t-SNE

• Good at preserving local distances (intra-cluster variance)

• Not so good for global representation (inter-cluster variance)

• Good at creating clusters of points that are close, but bad at
positioning clusters wrt each other

• Does not handle well high dimensional data (preliminary PCA and
feature selection)

• Sensistive to the calibration of the hyperparameter (smoothing)

• Reproducibility of results due to stochastic optimization

→ What are the statistical / probabilistic foundations of Stochastic
Neighbor Embedding ?

probabilistic SNE F. Picard
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Motivations

• tSNE is defined by a quantity to optimize: Minimize the KL between
p and q so that the data representation z minimizes:

C (z) =
∑
ij

KL(pij , qij)

• What is the underlying model ? pij proba of ?

• Could we improve the optimization algorithm if the underlying
model was better defined ?

• Could we estimate the hyperparameters (smoothing) using ML ?

• Could we perform model selection ?

probabilistic SNE F. Picard
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Markov Processes on a Graph for X

• Consider GX = (V, EX ) with V = {1, . . . , n} a set of nodes

• Nodes have attributes (X1, . . . ,Xn) in Rp

• Main idea: to any reversible Markov Process one can associate a
symmetric graph, (reciprocal true).

• Introduce YX , a MP taking values in V, s.t.

P(YX (t + 1) = j | YX (t) = i ,X = x) = ΠX (i , j)

• X is fixed, no distribution assumption (kernel method)

probabilistic SNE F. Picard
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Gaussian Transition Kernel on X
• We suppose that the transition kernel is of the form

ΠX (i , j) =
k(xi , xj)

dX (i)
, dX (i) =

n∑
j=1

k(xi , xj)

• ΠX is not symmetric but has the conservation property:

n∑
j=1

ΠX (i , j) = 1.

• ΠX is the 1-step transition matrix between points

• Stationary distribution of YX :

µXΠX = µX , µX (i) =
dX (i)

d̄X
, d̄X =

∑
j

dX (j)

probabilistic SNE F. Picard
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Markov Process on a Graph for Z

• Consider another graph GZ = (V, EZ ) with V = {1, . . . , n} (same)

• Z is the set of new attributed in Rq (unknown).

• Introduce a new MP YZ defined on {1, . . . , n} s.t.

P(YZ (t + 1) = j | YZ (t) = i ,Z = z) =
h(zi , zj)

dZ (i)
= ΠZ (i , j)

• Z is fixed and considered as a parameter, but the form of the
transition is specified

probabilistic SNE F. Picard
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Gaussian or Student transition kernel on Z
• Suppose the new transition is of the form (Z unknown)

ΠZ (i , j) =
h(zi , zj)

dZ (i)

• We get close to tSNE by choosing

k(xi , xj) = exp

(
− 1

2σ
‖xi − xj‖2

)
h(zi , zj) =

1

1 + ‖zi − zj‖2

• Suppose the two chains are conditionally independent

YX ⊥ YZ |X ,Z

probabilistic SNE F. Picard
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Maximum Coupling between Markov Processes

• Once the two chains specified, find Z by coupling the two processes

Z (X ) = max
Z

(
logP(YX = YZ | X ,Z )

)
• Maximizing the coupling between YX and YZ ⇔ Minimizing the KL

between YX and YZ

EYX∼µX

(
logP(YZ = YX | X ,Z )

)
= EY∼µX

(
logP(YZ = Y | X ,Z )

)

probabilistic SNE F. Picard
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Minimum KL and Maximum Coupling

• The KL divergence between Markov Process

KL(YX ,YZ ) = EY∼µX

(
logP(YX = Y )

)
− EY∼µX

(
logP(YZ = Y )

)
• Connection with the probability of coupling

EYX∼µX

(
logP(YZ = YX )

)
= EY∼µX

(
logP(YZ = Y )

)
• Minimizing the KL between chains wrt Z maximizes the probability

of coupling

KL(YX ,YZ ) = −HµX
(
YX

)
− EYX∼µX

(
logP(YZ = YX | X ,Z )

)

probabilistic SNE F. Picard
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Empirical Maximum Coupling

• To retrieve the hidden components:

Zn(X ) = arg max
Z

[
ĤµX (YZ | X )

]
,

• HµX (YZ | X ,Z ) stands for the entropy of chain YZ under µX with
empirical version (fixed X )

ĤµX (YZ | X ) =
n∑

i=1

µX (i) logµZ (i)

+
n∑

i=1

µX (i)

( n∑
j=1

ΠX (i , j) log ΠZ (i , j)

)
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Specified transitions induce simplifications

dX (i) =
n∑

j=1

k(xi , xj), dZ (i) =
n∑

j=1

h(zi , zj)

µX (i) = dX (i)/d̄X d̄X =
∑
i

dX (i)

µZ (i) = dZ (i)/d̄Z d̄Z =
∑
i

dZ (i)

and

ΠX (i , j) =
k(Xi ,Xj)

dX (i)
, ΠZ (i) =

h(Zi ,Zj)

dZ (i)

Then

ĤµX (YZ | X ) =
∑
i ,j

k(Xi ,Xj)

d̄X
log

h(Zi ,Zj)

d̄Z

probabilistic SNE F. Picard
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tSNE maximizes the coupling between Markov Processes

• If considering only KL minimization, the new representation would
be such that:

Ẑn(X ) = arg max
Z

[∑
i ,j

k(Xi ,Xj)

d̄X
log

h(Zi ,Zj)

d̄Z

]
,

• d̄X , d̄Z are normalization terms (different in tSNE - for now)

• The criterion is conditional to X

• interpretability of Z ? Representation of new X s ?

probabilistic SNE F. Picard
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Hidden Graph to structure observations

• Let us suppose that observations (rows) are structured thanks to a
hidden random Graph

• G = (V ,E ) with V = {1, · · · , n} the vertices

Aij =
∑

(k,`)∈E

11(i ,j)=(k,`), LG = D − A, where Dii =
∑
j

Aij

• LG , the Laplacian of G has the following property:

∀X ∈ Rn×p,
∑
i ,j

Aij‖Xi − Xj‖2 = tr(X>LGX ).

probabilistic SNE F. Picard



Presentation Properties MP on graphs Graph coupling Challenges References

Conditional distribution of X on a graph
• Conditional model of the observations given the graph

X | G ∼MN
(

0, L−1G , R−1
)
,

• L−1G between-cell variability, R−1 between-genes correlation.

• Consider the Gaussian kernel for X

k(Xi ,Xj) = exp

(
−1

2
‖Xi − Xj‖2R

)
,

• Conditional distribution of X | G :

P(X | G ) ∝ |LG |p/2
n∏

i ,j=1

k(Xi ,Xj)
Aij

probabilistic SNE F. Picard
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Conditional distribution of Z on a graph

• Consider that the low-dimensional representation is also structured
according to a graph

• Consider the Gaussian kernel for Z

k(Zi ,Zj) = exp

(
−1

2
‖Zi − Zj‖2Iq

)
,

• Conditional distribution of Z | G :

P(Z | G ) ∝ |LG |q/2
n∏

i ,j=1

k(Zi ,Zj)
Aij

probabilistic SNE F. Picard
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Embedding with Graph Coupling

• Consider two graphs GX and GZ

• Coupling with GX = GZ

EG∼GX

(
logP(GZ = GX | X ,Z )

)
• which is equivalent to

EG∼GX

(
logP(GZ = G | X ,Z )

)
• which is the entropy of GZ

under GX

HGX
(GZ | X ,Z )

Probabilistic Coupling

probabilistic SNE F. Picard
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Graph Coupling with Z as a parameter

• Find the best Z such that the two graphs GX and GZ are as close as
possible:

Z (X ) = arg min
Z

[
HGX

(GZ | X ,Z )

]
• The cross entropy between distribution of GX and GZ , which writes

HGX
(GZ ) = −

∑
g

P(GX = g | X ) logP(GZ = g | Z ).

• Challenge : define a prior distribution and deduce the posterior

probabilistic SNE F. Picard
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Bernoulli prior distribution for GX

• Let AX be the adjacency matrix of GX , with AX ,ij ∈ {0, 1}

P(GX ;πX ) =

∣∣LX ∣∣−aX /2 ×∏i ,j π
AX ,ij

X ,ij∑
A′∈{0,1}

∣∣LX (A′)
∣∣−aX /2 ×∏i ′,j ′ π

A′
X ,i′j′

X ,i ′j ′

•
∣∣LGX

∣∣−aX /2 catches the dependency of connections wrt the graph.

• Retrieves conjugacy with the Gaussian conditional model

• Setting aX = 0 leads to an independent Bernoulli prior

P(AX ,ij = 1;πX ) =
πX ,ij

1 + πX ,ij

probabilistic SNE F. Picard
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Induced Posterior Distribution for GX

• The posterior writes

P(GX | X ;πX ) ∝ P(GX ;πX )P(X | GX ;R)

∝
∣∣LX ∣∣(p−aX )/2∏

ij

(
πX ,ijk(Xi ,Xj ;R)

)AX ,ij

• When aX = p we get independent Bernoulli posteriors

P(Aij = 1 | X ;π) =
πijk(Xi ,Xj)

1 + πijk(Xi ,Xj)
= qB(Xi ,Xj)

• When aX = 0 we get an independent prior, but an intractable
posterior

probabilistic SNE F. Picard
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Maximum Coupling with the Bernoulli prior

KL(GX ,GZ ) =
∑
ij

pB(Xi ,Xj) log
pB(Xi ,Xj)

qB(Zi ,Zj)

+
∑
ij

(
1− pB(Xi ,Xj)

)
log

1− pB(Xi ,Xj)

1− qB(Zi ,Zj)

= HBGX
(GZ )

+
∑
ij

pB(Xi ,Xj) log pB(Xi ,Xj)

+
∑
ij

(
1− pB(Xi ,Xj)

)
log

(
1− pB(Xi ,Xj)

)

→ UMAP computes a KL (and not a cross entropy)

probabilistic SNE F. Picard
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Fixed-degree prior distribution for GX

• Denote by DX ,i the degree of node i , consider

P(GX ;π,DX ) ∝
∣∣LGX

∣∣−aX /2 n∏
i=1

Di∏
`=1

πi ,ei` , AX ,ij =

Di∑
`=1

11{ei`=j}

• Choosing aX = 0 corresponds to a multinomial model:

AX ,i1, . . . ,AX ,in;DX ,i ∼ M
{
DX ,i ;

(
πX ,ij∑n
`=1 πX ,i`

)
j

}
,

• Choosing aX = p leads to

AX ,i1, . . . ,AX ,in | X ;DX ,i ∼ M
{
DX ,i ;

(
πX ,ijk(Xi ,Xj)∑n
`=1 πX ,ikk(Xi ,X`)

)
j

}
,

probabilistic SNE F. Picard



Presentation Properties MP on graphs Graph coupling Challenges References

tSNE and the Fixed-degree model

• In the following we will write:

pD(Xi ,Xj) =
πijk(Xi ,Xj)∑n
`=1 πijk(Xi ,X`)

, qD(Zi ,Zj) =
πijk(Zi ,Zj)∑n
`=1 πijk(Zi ,Z`)

.

• We retrieve the non-symmetric normalization term (Markov-like)

• With this prior we obtain the tSNE-like criterion

HD
GX

(GZ ) = −
∑
i ,j

DXi

{
pD
(
Xi ,Xj

)
log qD(Zi ,Zj)

}

probabilistic SNE F. Picard
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tSNE is defined for fixed X

• In the original method, the distribution of X is not modelled

• All quantities are defined conditionally to X

• This helps to choose aX = p and az = q so that the posteriors p
and q are factorized

• This allows to compute the cross entropy (sum)

• Master’s internship:

→ impact on Z of the different priors

→ induced momentum algorithms for each prior

probabilistic SNE F. Picard
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Symmetrization and directed graphs

• In the original formulation : pij = (pi |j + pj |i )/2N

• What probabilistic model should we consider to obtain the same
symmetrization with our posteriors ?

• Considering an oriented graph with symmetrized Laplacian Lij = −(Aij + Aji )/2 if i 6= j

Lii = (Ai+ + A+i )/2

• How to get to a symmetrized posterior from here ?

• interpretation of the underlying directed graph ?

probabilistic SNE F. Picard
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Kernel calibration and Perplexity

• tSNE strongly depends on the calibration of the kernel

k(Xi ,Xj ;σi ) = exp

(
− 1

2σi
‖Xi − Xj‖2R

)
,

• σi should adjust to local densities (neighborhood of point i)

• In practice, the method is tuned by fixing a given amount of entropy

H(pi ) = −
n∑

j=1

pij log2 pij

• Find σi such that 2H(pi ) = perp (user defined)

• Interpreted as the smoothed effective number of neighbors.

probabilistic SNE F. Picard
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Visual inspection of the influence of σ[1]
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Connecting the kernel bandwidth with the graph model

• Consider D = diag(d1, . . . , dn) the matrix of degrees

• Consider the random walk laplacian is defined by:

LRW = D−1L

• The following property holds:

∀X ∈ Rn, tr(XTLRWX ) =
1

2

∑
i ,j

Ai ,j
‖Xi − Xj‖2

di

• Hence we can consider

Xn,p | GX ∼MN n,p

(
0,
(
LRW

)−1
,R−1

)

probabilistic SNE F. Picard
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Back to the coupling strategy

• Maximizing the probability of coupling by minimizing the KL

KL(GX ,GZ ) = HGX
(GZ )− HGX

(GX )

• HGX
(GX ) is exactly the perplexity parameter

• Constrained coupling with a given degree of entropy

Z (X ) = arg min
Z ,HGX

(GX )=Perp

[
KL(GX ,GZ )

]
= arg min

Z ,HGX
(GX )=Perp

(
HGX

(GZ )− Perp

)

probabilistic SNE F. Picard
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Connection with Nearest Neighbors Graphs and Manifold
Learning

• The method is based on a preliminary smoothing of the data to
retrieve a graph with controlled complexity

• This is related (how ?) to manifold learning and density estimation
on manifolds

• The output Ẑ (X ) strongly depends on this preliminary step

ẐPerp(X ) = arg min
Z

(
H
ĜX ,Perp

(GZ )

)

probabilistic SNE F. Picard
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Maximum Likelihood inference for SNE ?

• Define the observed X and hidden G ,Z variables

• Define the observed-data likelihood : P(X )

• Define the conditional distribution : P(X | G ,Z )

• Define the prior distribution P(G ,Z )

• Compute the conditional expectation of the complete-data loglik

Q = EG ,Z |X

(
logP(X ,G ,Z )

)
• Compute the posterior

logP(G ,Z | X )

probabilistic SNE F. Picard
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The two-graph model is not identifiable

• Coupling with GX = GZ

logP(X ,Z ,GX ,GZ ,GX = GZ )

• Discrepancy between two priors
and posterior

• Difficult to model a link
between X and Z

• Non identifiable model

Probabilistic Coupling
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The one-graph model

• One prior that rules them all

• Different priors for G (Bernoulli,
fixed number of edges, fixed
degree)

• Identifiable model but
computational issues

• tSNE strategy : Z is a
parameter

Link ? 

Underlying Graph 
between cells

probabilistic SNE F. Picard
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When aX and aZ come back
• The joint likelihood of the model:

logP(X ,G | Z ) = logP(X | G ,Z ) + logP(G | Z )

• In the EM framework, Q becomes

QZ = EG |X

(
logP(X | G ,Z ) + logP(G | Z )

)
• Ẑ maximizes the posterior probability of connection

Ẑ = arg max
Z

(
QZ

)
= arg max

Z

{
EG |X

(
logP(G | Z )

)}
• Involves the tricky term

EG |X

(
|LG |

)
probabilistic SNE F. Picard
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Connections with the fixed graph model [2]

• Consider the Multivariate Gaussian Model

Xi ∼ N (µi ,Σ), µi ∈ Rp Σ ∈ Sp+ i = 1, 2, ..., n

• Consider that the observations are connected by a given graph G

• Regularized Mean estimation problem:

M̂α = argmin
M
‖X −M‖2F + αtr(MTLSM)

where LS = D−A
1
n

∑
i di

• In our setting, would it be X | µ, µ ∼ N
(
0, τ
)

?

probabilistic SNE F. Picard



Presentation Properties MP on graphs Graph coupling Challenges References

References

[1] Dmitry Kobak and Philipp Berens. The art of using t-sne for single-cell
transcriptomics. bioRxiv, 2018.

[2] Tianxi Li, Cheng Qian, Elizaveta Levina, and Ji Zhu. High-dimensional
gaussian graphical models on network-linked data. Journal of Machine
Learning Research, 21(74):1–45, 2020.

[3] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold
approximation and projection for dimension reduction. Arxiv,
(1802.03426):1–63, 2018.

[4] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

probabilistic SNE F. Picard


	Presentation of Neighbor Embedding Methods
	Empirical properties of tSNE
	tSNE and Markov processes on Graphs
	tSNE and Graph Coupling of Multivariate Gaussian Models
	Open questions and research challenges
	References

