Towards a generative model for Stochastic Neighbor Embedding

Julien Chiquet, Thibault Espinasse, Francois Gindraud, Franck Picard, Hugues van Assel

Institut Camille Jordan, CNRS Univ. Lyon
AgroParisTech INRA - MIA, Paris
Laboratoire Biologie et Modélisation de la Cellule, CNRS ENS-Lyon

franck.picard@ens-lyon.fr
Outline

1. Presentation of Neighbor Embedding Methods
2. Empirical properties of tSNE
3. tSNE and Markov processes on Graphs
4. tSNE and Graph Coupling of Multivariate Gaussian Models
5. Open questions and research challenges
Beyond Linear methods

- Linear methods like PCA are robust but badly shaped for complex geometries
- High-dim. data are characterized by multiscale properties (local / global structures)
- Non-Linear projection methods aim at preserving local characteristics of distances
- Many proposed methods such as LargeVis, tSNE, UMAP

![UMAP](a) and t-SNE](b) from [3]
Stochastic Neighbor Embedding (SNE) [4]

• (X_1, \ldots, X_n) are the points in the high-dimensional space \mathbb{R}^p,

• Consider a similarity between points:

$$p_{i|j} = \frac{\exp(-\|X_i - X_j\|^2/2\sigma_i^2)}{\sum_{\ell \neq i} \exp(-\|X_\ell - X_j\|^2/2\sigma_\ell^2)}$$

• Further symmetrized

$$p_{ij} = (p_{i|j} + p_{j|i})/2N$$

• Hyper-parameter σ_i locally smooths the data, to be tuned

• Linked to the regularity of the target manifold
tSNE and Student / Cauchy kernels

- Consider \((Z_1, \ldots, Z_n)\) are points in the low-dimensional space \(\mathbb{R}^2\)
- Consider a similarity between points in the new representation:

\[
q_{i|j} = \frac{\exp(-\|Z_i - Z_j\|^2)}{\sum_{\ell \neq i} \exp(-\|Z_\ell - Z_j\|^2)}
\]

- Robustify this kernel by using Student(1) kernels (ie Cauchy)

\[
q_{i|j} = \frac{(1 + \|Z_i - Z_j\|^2)^{-1}}{\sum_{\ell \neq i} (1 + \|Z_i - Z_\ell\|^2)^{-1}}
\]
Optimizing tSNE by Gradient descent

- Minimize the KL between p and q to find $Z \in \mathbb{R}^2$ such that:

$$C(Z) = \sum_{ij} KL(p_{ij}, q_{ij})$$

$$\left[\frac{\partial C(Z)}{\partial Z} \right]_i = \sum_j (p_{ij} - q_{ij})(Z_i - Z_j)$$

- Gradient update (adaptive learning rate η)

$$Z^{(t)} = Z^{(t-1)} + \eta \frac{\partial C(Z)}{\partial Z} + \alpha(t)(Z^{(t-1)} - Z^{(t-2)})$$

- $\alpha(t)$ momentum to speed up and improve convergence

- Initialization $Z_i^{(0)} \sim \mathcal{N}(0, \delta I)$, δ small.
Uniform Manifold Approximation and Projection [3]

\[\forall (i, j) \in [n]^2, \quad p_{j|i} = \exp \left(-\frac{\|X_i - X_j\|^2}{\sigma_i} - \rho_i \right) \]

with \(\rho_i = \min_{j \neq i} \|X_i - X_j\|^2 \). Let us define

\[p_{ij} = p_{j|i} + p_{i|j} - p_{j|i}p_{i|j} \]

and:

\[\forall (i, j) \in [n]^2, \quad q_{ij} = \left(1 + a\|X_i - X_j\|_2^{2b} \right)^{-1} \]

UMAP solves the following problem:

\[\min_{Z \in \mathbb{R}^{n \times d}} - \sum_{i<j} p_{ij} \log q_{ij} + (1 - p_{ij}) \log(1 - q_{ij}) \]
Outline

1. Presentation of Neighbor Embedding Methods

2. Empirical properties of tSNE

3. tSNE and Markov processes on Graphs

4. tSNE and Graph Coupling of Multivariate Gaussian Models

5. Open questions and research challenges
tSNE on single cell Gene Expression data [1]
tSNE does not account for between-cluster distance

What about random noise?
Catching Complex Geometries

Original
Perplexity: 2
Step: 5,000

Original
Perplexity: 2
Step: 5,000

Original
Perplexity: 5
Step: 5,000

Original
Perplexity: 5
Step: 5,000

Original
Perplexity: 30
Step: 5,000

Original
Perplexity: 30
Step: 5,000

Original
Perplexity: 50
Step: 5,000

Original
Perplexity: 50
Step: 5,000

Original
Perplexity: 100
Step: 5,000

Original
Perplexity: 100
Step: 5,000

probabilistic SNE

F. Picard
Properties of t-SNE

- Good at preserving local distances (intra-cluster variance)
- Not so good for global representation (inter-cluster variance)
- Good at creating clusters of points that are close, but bad at positioning clusters wrt each other
- Does not handle well high dimensional data (preliminary PCA and feature selection)
- Sensitive to the calibration of the hyperparameter (smoothing)
- Reproducibility of results due to stochastic optimization

→ What are the statistical / probabilistic foundations of Stochastic Neighbor Embedding?
Outline

1. Presentation of Neighbor Embedding Methods
2. Empirical properties of tSNE
3. tSNE and Markov processes on Graphs
4. tSNE and Graph Coupling of Multivariate Gaussian Models
5. Open questions and research challenges
Motivations

• tSNE is defined by a quantity to optimize: Minimize the KL between p and q so that the data representation z minimizes:

$$C(z) = \sum_{ij} KL(p_{ij}, q_{ij})$$

• What is the underlying model? p_{ij} proba of?
• Could we improve the optimization algorithm if the underlying model was better defined?
• Could we estimate the hyperparameters (smoothing) using ML?
• Could we perform model selection?
Markov Processes on a Graph for X

• Consider $G_X = (\mathcal{V}, \mathcal{E}_X)$ with $\mathcal{V} = \{1, \ldots, n\}$ a set of nodes
• Nodes have attributes (X_1, \ldots, X_n) in \mathbb{R}^p
• **Main idea**: to any reversible Markov Process one can associate a symmetric graph, (reciprocal true).
• Introduce Y_X, a MP taking values in \mathcal{V}, s.t.

$$
\mathbb{P}(Y_X(t + 1) = j \mid Y_X(t) = i, X = x) = \prod_X(i, j)
$$

• X is fixed, no distribution assumption (kernel method)
Gaussian Transition Kernel on X

- We suppose that the transition kernel is of the form

$$\Pi_X(i, j) = \frac{k(x_i, x_j)}{d_X(i)}, \quad d_X(i) = \sum_{j=1}^{n} k(x_i, x_j)$$

- Π_X is not symmetric but has the conservation property:

$$\sum_{j=1}^{n} \Pi_X(i, j) = 1.$$

- Π_X is the 1-step transition matrix between points

- Stationary distribution of Y_X:

$$\mu_X \Pi_X = \mu_X, \quad \mu_X(i) = \frac{d_X(i)}{\bar{d}_X}, \quad \bar{d}_X = \sum_{j} d_X(j)$$
Markov Process on a Graph for Z

- Consider another graph $G_Z = (\mathcal{V}, \mathcal{E}_Z)$ with $\mathcal{V} = \{1, \ldots, n\}$ (same)
- Z is the set of new attributed in \mathbb{R}^q (unknown).
- Introduce a new MP Y_Z defined on $\{1, \ldots, n\}$ s.t.

$$P(Y_Z(t + 1) = j \mid Y_Z(t) = i, Z = z) = \frac{h(z_i, z_j)}{d_Z(i)} = \Pi_Z(i, j)$$

- Z is fixed and considered as a parameter, but the form of the transition is specified
Gaussian or Student transition kernel on Z

- Suppose the new transition is of the form (Z unknown)

$$\Pi_Z(i,j) = \frac{h(z_i, z_j)}{d_Z(i)}$$

- We get close to tSNE by choosing

$$k(x_i, x_j) = \exp \left(-\frac{1}{2\sigma} \|x_i - x_j\|^2 \right)$$

$$h(z_i, z_j) = \frac{1}{1 + \|z_i - z_j\|^2}$$

- Suppose the two chains are conditionally independent

$$Y_X \perp Y_Z|X, Z$$
Maximum Coupling between Markov Processes

• Once the two chains specified, find Z by coupling the two processes

$$Z(X) = \max_{Z} \left(\log \mathbb{P}(Y_X = Y_Z \mid X, Z) \right)$$

• Maximizing the coupling between Y_X and Y_Z \iff Minimizing the KL between Y_X and Y_Z

$$\mathbb{E}_{Y_X \sim \mu_X} \left(\log \mathbb{P}(Y_Z = Y_X \mid X, Z) \right) = \mathbb{E}_{Y \sim \mu_X} \left(\log \mathbb{P}(Y_Z = Y \mid X, Z) \right)$$
Minimum KL and Maximum Coupling

- The KL divergence between Markov Process

\[KL(Y_X, Y_Z) = \mathbb{E}_{Y \sim \mu_X} \left(\log P(Y_X = Y) \right) - \mathbb{E}_{Y \sim \mu_X} \left(\log P(Y_Z = Y) \right) \]

- Connection with the probability of coupling

\[\mathbb{E}_{Y \sim \mu_X} \left(\log P(Y_Z = Y_X) \right) = \mathbb{E}_{Y \sim \mu_X} \left(\log P(Y_Z = Y) \right) \]

- Minimizing the KL between chains wrt Z maximizes the probability of coupling

\[KL(Y_X, Y_Z) = -H_{\mu_X}(Y_X) - \mathbb{E}_{Y_X \sim \mu_X} \left(\log P(Y_Z = Y_X | X, Z) \right) \]
Empirical Maximum Coupling

- To retrieve the hidden components:

\[Z_n(X) = \arg \max_Z \left[\hat{H}_{\mu_X}(Y_Z | X) \right], \]

- \(\hat{H}_{\mu_X}(Y_Z | X, Z) \) stands for the entropy of chain \(Y_Z \) under \(\mu_X \) with empirical version (fixed \(X \))

\[
\hat{H}_{\mu_X}(Y_Z | X) = \sum_{i=1}^{n} \mu_X(i) \log \mu_Z(i) \\
+ \sum_{i=1}^{n} \mu_X(i) \left(\sum_{j=1}^{n} \Pi_X(i, j) \log \Pi_Z(i, j) \right)
\]
Specified transitions induce simplifications

\[d_X(i) = \sum_{j=1}^{n} k(x_i, x_j), \quad d_Z(i) = \sum_{j=1}^{n} h(z_i, z_j) \]

\[\mu_X(i) = d_X(i) / \bar{d}_X \quad \bar{d}_X = \sum_i d_X(i) \]

\[\mu_Z(i) = d_Z(i) / \bar{d}_Z \quad \bar{d}_Z = \sum_i d_Z(i) \]

and

\[\Pi_X(i, j) = k(X_i, X_j) / d_X(i), \quad \Pi_Z(i) = h(Z_i, Z_j) / d_Z(i) \]

Then

\[\hat{H}_{\mu_X}(Y_Z \mid X) = \sum_{i,j} \frac{k(X_i, X_j)}{\bar{d}_X} \log \frac{h(Z_i, Z_j)}{\bar{d}_Z} \]
tSNE maximizes the coupling between Markov Processes

- If considering only KL minimization, the new representation would be such that:

\[\hat{Z}_n(X) = \arg \max_Z \left[\sum_{i,j} \frac{k(X_i, X_j)}{d_X} \log \frac{h(Z_i, Z_j)}{d_Z} \right], \]

- \(d_X, d_Z\) are normalization terms (different in tSNE - for now)
- The criterion is conditional to \(X\)
- Interpretability of \(Z\)? Representation of new \(X\)s?
Outline

1. Presentation of Neighbor Embedding Methods
2. Empirical properties of tSNE
3. tSNE and Markov processes on Graphs
4. tSNE and Graph Coupling of Multivariate Gaussian Models
5. Open questions and research challenges
Hidden Graph to structure observations

• Let us suppose that observations (rows) are structured thanks to a hidden random Graph

• $G = (V, E)$ with $V = \{1, \cdots, n\}$ the vertices

\[
A_{ij} = \sum_{(k, \ell) \in E} \mathbb{1}(i, j) = (k, \ell), \quad L_G = D - A, \quad \text{where} \quad D_{ii} = \sum_j A_{ij}
\]

• L_G, the Laplacian of G has the following property:

\[
\forall X \in \mathbb{R}^{n \times p}, \quad \sum_{i, j} A_{ij} \|X_i - X_j\|^2 = \text{tr}(X^\top L_G X).
\]
Conditional distribution of X on a graph

- Conditional model of the observations given the graph

$$X \mid G \sim \mathcal{MN}(0, L_G^{-1}, R^{-1}),$$

- L_G^{-1} between-cell variability, R^{-1} between-genes correlation.

- Consider the Gaussian kernel for X

$$k(X_i, X_j) = \exp \left(-\frac{1}{2} \| X_i - X_j \|^2_R \right),$$

- Conditional distribution of $X \mid G$:

$$\mathbb{P}(X \mid G) \propto |L_G|^{p/2} \prod_{i,j=1}^{n} k(X_i, X_j)^{A_{ij}}$$
Conditional distribution of Z on a graph

- Consider that the low-dimensional representation is also structured according to a graph
- Consider the Gaussian kernel for Z
 \[k(Z_i, Z_j) = \exp \left(-\frac{1}{2} \| Z_i - Z_j \|_{L_q}^2 \right) , \]
- Conditional distribution of $Z \mid G$:
 \[\mathbb{P}(Z \mid G) \propto |L_G|^{q/2} \prod_{i,j=1}^{n} k(Z_i, Z_j)^{A_{ij}} \]
Embedding with Graph Coupling

- Consider two graphs G_X and G_Z
- Coupling with $G_X = G_Z$

$$\mathbb{E}_{G \sim G_X} \left(\log \mathbb{P}(G_Z = G_X \mid X, Z) \right)$$

- which is equivalent to

$$\mathbb{E}_{G \sim G_X} \left(\log \mathbb{P}(G_Z = G \mid X, Z) \right)$$

- which is the entropy of G_Z under G_X

$$H_{G_X}(G_Z \mid X, Z)$$
Graph Coupling with Z as a parameter

- Find the best Z such that the two graphs G_X and G_Z are as close as possible:

$$Z(X) = \arg \min_Z \left[H_{G_X}(G_Z \mid X, Z) \right]$$

- The cross entropy between distribution of G_X and G_Z, which writes

$$H_{G_X}(G_Z) = - \sum_g \mathbb{P}(G_X = g \mid X) \log \mathbb{P}(G_Z = g \mid Z).$$

- Challenge: define a prior distribution and deduce the posterior probabilistic SNE

F. Picard
Bernoulli prior distribution for G_X

- Let A_X be the adjacency matrix of G_X, with $A_X,ij \in \{0, 1\}$

$$
\mathbb{P}(G_X; \pi_X) = \frac{|L_X|^{-a_X/2} \times \prod_{i,j} \pi_X,ij^{A_X,ij}}{\sum_{A' \in \{0,1\}} |L_X(A')|^{-a_X/2} \times \prod_{i',j'} \pi_X,i'j'}
$$

- $|L_{G_X}|^{-a_X/2}$ catches the dependency of connections wrt the graph.
- Retrieves conjugacy with the Gaussian conditional model.
- Setting $a_X = 0$ leads to an independent Bernoulli prior

$$
\mathbb{P}(A_X,ij = 1; \pi_X) = \frac{\pi_X,ij}{1 + \pi_X,ij}
$$
Induced Posterior Distribution for G_X

- The posterior writes

$$
\mathbb{P}(G_X \mid X; \pi_X) \propto \mathbb{P}(G_X; \pi_X)\mathbb{P}(X \mid G_X; R)
\propto |L_X|^{(p-a_X)/2} \prod_{ij} \left(\pi_{X,ij} k(X_i, X_j; R) \right)^{A_{X,ij}}
$$

- When $a_X = p$ we get independent Bernoulli posteriors

$$
\mathbb{P}(A_{ij} = 1 \mid X; \pi) = \frac{\pi_{ij} k(X_i, X_j)}{1 + \pi_{ij} k(X_i, X_j)} = q_{ij}(X_i, X_j)
$$

- When $a_X = 0$ we get an independent prior, but an intractable posterior
Maximum Coupling with the Bernoulli prior

$$KL(G_X, G_Z) = \sum_{ij} p_B(X_i, X_j) \log \frac{p_B(X_i, X_j)}{q_B(Z_i, Z_j)} + \sum_{ij} \left(1 - p_B(X_i, X_j)\right) \log \frac{1 - p_B(X_i, X_j)}{1 - q_B(Z_i, Z_j)}$$

$$= H^B_{G_X}(G_Z) + \sum_{ij} p_B(X_i, X_j) \log p_B(X_i, X_j) + \sum_{ij} \left(1 - p_B(X_i, X_j)\right) \log \left(1 - p_B(X_i, X_j)\right)$$

→ UMAP computes a KL (and not a cross entropy)
Fixed-degree prior distribution for G_X

- Denote by $D_{X,i}$ the degree of node i, consider

$$\mathbb{P}(G_X; \pi, D_X) \propto |L_{G_X}|^{-a_X/2} \prod_{i=1}^{n} \prod_{\ell=1}^{D_i} \pi_{i,e_{i\ell}}, \quad A_{X,ij} = \sum_{\ell=1}^{D_i} \mathbb{1}_{\{e_{i\ell} = j\}}$$

- Choosing $a_X = 0$ corresponds to a multinomial model:

$$A_{X,i1, \ldots, X,in; D_{X,i}} \sim \mathcal{M}\left\{D_{X,i}; \left(\frac{\pi_{X,ij}}{\sum_{\ell=1}^{n} \pi_{X,i\ell}}\right)_j\right\},$$

- Choosing $a_X = p$ leads to

$$A_{X,i1, \ldots, X,in \mid X; D_{X,i}} \sim \mathcal{M}\left\{D_{X,i}; \left(\frac{\pi_{X,ij}k(X_i, X_j)}{\sum_{\ell=1}^{n} \pi_{X,ik}k(X_i, X_\ell)}\right)_j\right\},$$
tSNE and the Fixed-degree model

• In the following we will write:

\[p_D(X_i, X_j) = \frac{\pi_{ij} k(X_i, X_j)}{\sum_{\ell=1}^{n} \pi_{ij} k(X_i, X_\ell)}, \quad q_D(Z_i, Z_j) = \frac{\pi_{ij} k(Z_i, Z_j)}{\sum_{\ell=1}^{n} \pi_{ij} k(Z_i, Z_\ell)}. \]

• We retrieve the non-symmetric normalization term (Markov-like)

• With this prior we obtain the tSNE-like criterion

\[H^D_{Gx}(G_Z) = -\sum_{i,j} D_{X_i} \left\{ p_D(X_i, X_j) \log q_D(Z_i, Z_j) \right\} \]
tSNE is defined for fixed X

- In the original method, the distribution of X is not modelled.
- All quantities are defined conditionally to X.
- This helps to choose $a_X = p$ and $a_Z = q$ so that the posteriors p and q are factorized.
- This allows to compute the cross entropy (sum).
- Master’s internship:
 - impact on Z of the different priors
 - induced momentum algorithms for each prior
Outline

1. Presentation of Neighbor Embedding Methods
2. Empirical properties of tSNE
3. tSNE and Markov processes on Graphs
4. tSNE and Graph Coupling of Multivariate Gaussian Models
5. Open questions and research challenges
Symmetrization and directed graphs

• In the original formulation: \(p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N} \)

• What probabilistic model should we consider to obtain the same symmetrization with our posteriors?

• Considering an oriented graph with symmetrized Laplacian

\[
\begin{align*}
L_{ij} &= -\frac{(A_{ij} + A_{ji})}{2} \quad \text{if } i \neq j \\
L_{ii} &= \frac{(A_{i+} + A_{+i})}{2}
\end{align*}
\]

• How to get to a symmetrized posterior from here?

• Interpretation of the underlying directed graph?
Kernel calibration and Perplexity

- tSNE strongly depends on the calibration of the kernel

\[k(X_i, X_j; \sigma_i) = \exp \left(-\frac{1}{2\sigma_i} \|X_i - X_j\|^2_R \right), \]

- \(\sigma_i \) should adjust to local densities (neighborhood of point \(i \))
- In practice, the method is tuned by fixing a given amount of entropy

\[H(p_i) = - \sum_{j=1}^{n} p_{ij} \log_2 p_{ij} \]

- Find \(\sigma_i \) such that \(2^{H(p_i)} = \text{perp} \) (user defined)
- Interpreted as the smoothed effective number of neighbors.
Visual inspection of the influence of $\sigma[1]$
Connecting the kernel bandwidth with the graph model

- Consider $D = \text{diag}(d_1, \ldots, d_n)$ the matrix of degrees
- Consider the random walk laplacian is defined by:

$$L^{RW} = D^{-1}L$$

- The following property holds:

$$\forall X \in \mathbb{R}^n, \quad \text{tr}(X^T L^{RW} X) = \frac{1}{2} \sum_{i,j} A_{i,j} \frac{\|X_i - X_j\|^2}{d_i}$$

- Hence we can consider

$$X_{n,p} \mid G_X \sim \mathcal{MN}_{n,p}(0, \left(L^{RW}\right)^{-1}, R^{-1})$$
Back to the coupling strategy

- Maximizing the probability of coupling by minimizing the KL

\[\text{KL}(G_X, G_Z) = H_{G_X}(G_Z) - H_{G_X}(G_X) \]

- \(H_{G_X}(G_X) \) is exactly the perplexity parameter

- Constrained coupling with a given degree of entropy

\[Z(X) = \arg \min_{Z, H_{G_X}(G_X) = \text{Perp}} \left[\text{KL}(G_X, G_Z) \right] \]

\[= \arg \min_{Z, H_{G_X}(G_X) = \text{Perp}} \left(H_{G_X}(G_Z) - \text{Perp} \right) \]
Connection with Nearest Neighbors Graphs and Manifold Learning

- The method is based on a preliminary smoothing of the data to retrieve a graph with controlled complexity.
- This is related (how?) to manifold learning and density estimation on manifolds.
- The output \(\hat{Z}(X) \) strongly depends on this preliminary step.

\[
\hat{Z}_{\text{Perp}}(X) = \arg\min_Z \left(H_{\hat{G}_{X,\text{Perp}}}(G_Z) \right)
\]
Maximum Likelihood inference for SNE?

- Define the observed X and hidden G, Z variables
- Define the observed-data likelihood: $\mathbb{P}(X)$
- Define the conditional distribution: $\mathbb{P}(X | G, Z)$
- Define the prior distribution $\mathbb{P}(G, Z)$
- Compute the conditional expectation of the complete-data loglik

$$Q = \mathbb{E}_{G,Z|X} \left(\log \mathbb{P}(X, G, Z) \right)$$

- Compute the posterior

$$\log \mathbb{P}(G, Z | X)$$
The two-graph model is not identifiable

- Coupling with $G_X = G_Z$

 $$\log P(X, Z, G_X, G_Z, G_X = G_Z)$$

- Discrepancy between two priors and posterior

- Difficult to model a link between X and Z

- Non identifiable model
The one-graph model

- One prior that rules them all
- Different priors for G (Bernoulli, fixed number of edges, fixed degree)
- Identifiable model but computational issues
- tSNE strategy: Z is a parameter
When a_X and a_Z come back

- The joint likelihood of the model:

$$\log P(X, G \mid Z) = \log P(X \mid G, Z) + \log P(G \mid Z)$$

- In the EM framework, Q becomes

$$Q_Z = \mathbb{E}_{G \mid X} \left(\log P(X \mid G, Z) + \log P(G \mid Z) \right)$$

- \hat{Z} maximizes the posterior probability of connection

$$\hat{Z} = \arg \max_Z \left(Q_Z \right) = \arg \max_Z \left\{ \mathbb{E}_{G \mid X} \left(\log P(G \mid Z) \right) \right\}$$

- Involves the tricky term

$$\mathbb{E}_{G \mid X} \left(\left| L_G \right| \right)$$
Connections with the fixed graph model [2]

- Consider the Multivariate Gaussian Model
 \[X_i \sim \mathcal{N}(\mu_i, \Sigma), \quad \mu_i \in \mathbb{R}^p \quad \Sigma \in S_+^p \quad i = 1, 2, ..., n \]

- Consider that the observations are connected by a given graph \(G \)

- Regularized Mean estimation problem:
 \[
 \hat{M}_\alpha = \arg\min_M \|X - M\|_F^2 + \alpha \text{tr}(M^T \mathcal{L}_S M)
 \]
 where \(\mathcal{L}_S = \frac{D-A}{\frac{1}{n} \sum_i d_i} \)

- In our setting, would it be \(X \mid \mu, \mu \sim \mathcal{N}(0, \tau) \)?
References

