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Beyond Linear methods

® linear methods like PCA are robust but badly shaped for complex
geometries

® High-dim. datas are characterized by multiscale properties (local /
global structures)

® Non-Linear projection methods aim at preserving local
characteristics of distances

® Many proposed methods such as LargeVis, tSNE, UMAP

a) UMAP b) t-SNE A
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Stochastic Neighbor Embedding (SNE) [4]

® (Xi,...,X,) are the points in the high-dimensional space R”,

e Consider a similarity between points:
y — PN Xi1P/207)
Y Y exe(—1Xe — X2 /207)
[

Further symmetrized

pii = (pijj + pjji)/2N

® Hyper-parameter o; locally smooths the data, to be tuned

Linked to the regularity of the target manifold
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tSNE and Student / Cauchy kernels

e Consider (Z1,...,Z,) are points in the low-dimensional space R?

e Consider a similarity between points in the new representation:

o P2 = Z1P)
VS exp(=11Z - Z]?)

® Robustify this kernel by using Student(1) kernels (ie Cauchy)

B ¢ B ]
VS A+ 1z -zl
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Optimizing tSNE by Gradient descent

® Minimize the KL between p and q to find Z € R? such that:

=Y KL(py, 9y)
-

[ ],- Z(pu 9i)(Zi - Z)

® Gradient update (adaptive Iearnlng rate n)
7(t) — 7(t-1) _i_nag(zz) + a(t)(Z(t_l) — Z(t—2))

® o(t) momentum to speed up and improve convergence

e Initialization Z{” ~ A(0,61), & small.
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Uniform Manifold Approximation and Projection [3]

|Xi — Xjl15 — ﬂi>

agj

V(i,j) € [n]*, pji=exp <—
with p; = minjz; | X; — Xj||?. Let us define
Pij = Pjli T Pilj — PjliPilj

and:
-1
Vi.g) € P, a5 = (1+alx - X[3)

UMAP solves the following problem:

min ~ — > pjlog gy + (1 — py)log(1 — qy)
ZcRnxd i<j
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@® Empirical properties of tSNE
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tSNE on single cell Gene Expression data [1]

a N = 25000 b N=1306127
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tSNE does not account for between-cluster distance
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What about random noise ?
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Catching Complex Geometries
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Properties of t-SNE

® Good at preserving local distances (intra-cluster variance)
® Not so good for global representation (inter-cluster variance)

® Good at creating clusters of points that are close, but bad at
positioning clusters wrt each other

® Does not handle well high dimensional data (preliminary PCA and
feature selection)

® Sensistive to the calibration of the hyperparameter (smoothing)

® Reproducibility of results due to stochastic optimization

— What are the statistical / probabilistic foundations of Stochastic
Neighbor Embedding ?
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® tSNE and Markov processes on Graphs
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Motivations

tSNE is defined by a quantity to optimize: Minimize the KL between
p and g so that the data representation z minimizes:

C(z) = >_ KL(py: ay)

What is the underlying model ? p;; proba of ?

Could we improve the optimization algorithm if the underlying
model was better defined ?

Could we estimate the hyperparameters (smoothing) using ML ?

Could we perform model selection ?
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Markov Processes on a Graph for X

® Consider Gx = (V,Ex) with V = {1,...,n} a set of nodes
¢ Nodes have attributes (Xi,...,X,) in RP
® Main idea: to any reversible Markov Process one can associate a
symmetric graph, (reciprocal true).
® |ntroduce Yy, a MP taking values in V, s.t.
P(Yx(t+1) =/ Yx(t) =i, X =x) =Nx(i,j)
[ )

X is fixed, no distribution assumption (kernel method)
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Gaussian Transition Kernel on X

® We suppose that the transition kernel is of the form

Mx(irj) = E, ’()f Zk Xi: %)

® [lx is not symmetric but has the conservation property:

n
j=1

® [lx is the 1-step transition matrix between points
e Stationary distribution of Yyx:

pxTx = px,  px(i) = d{(i)» dx =) dx())
j

dx
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Markov Process on a Graph for Z

Consider another graph Gz = (V,£7) with V = {1,...,n} (same)

® Z is the set of new attributed in R9 (unknown).

® Introduce a new MP Y7 defined on {1,...,n} s.t.
, , h(zi, z; .
BVt 4+1) =1 Valt) = 1,2 = 2) = "By
dz(i)
[ ]

Z is fixed and considered as a parameter, but the form of the
transition is specified
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Gaussian or Student transition kernel on Z
® Suppose the new transition is of the form (Z unknown)
h(Z,',ZJ')

® We get close to tSNE by choosing

1
) = oo (=5l 5l?)
1

h . .
(anj) 1+”Zi_zj”2

® Suppose the two chains are conditionally independent
Yx L Yz|X,Z
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Maximum Coupling between Markov Processes

® Once the two chains specified, find Z by coupling the two processes
Z(X) = max (IogIP’(YX — Y, | X, Z))

® Maximizing the coupling between Yx and Yz < Minimizing the KL
between Yx and Y

va~px<|0gP(YZ = YX | X,Z)) :EYNMX (IogIP’(YZ =Y | X,Z)>
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Minimum KL and Maximum Coupling

® The KL divergence between Markov Process
KL(Yx,Yz) = Eypuy (Iog P(Yx = Y)) —Eypx < logP(Yz = Y)>
e Connection with the probability of coupling
Evy~ux (Iog P(Y; = YX)) =Ey. (Iog P(Y; = Y)>

® Minimizing the KL between chains wrt Z maximizes the probability
of coupling

KL(Yx,Yz) = —Hux(Yx) = Eyyou <IogIP(YZ = Yy | X,Z)>
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Empirical Maximum Coupling

® To retrieve the hidden components:

Zn(X) = argmax {HM(YZ | X)] ,

® H,, (Yz| X, Z) stands for the entropy of chain Yz under px with
empirical version (fixed X)

Hux (Y2 | X) = Z#x ) log 1z (i)

+ ZMX(I)(Z nX(’?J) log rIZ(’?./))
i=1

J=1
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Specified transitions induce simplifications

n n

dx (i) = Zk(xf7xj)v dz(i) = Zh(zf7zj)

=1 =1
px(i) =dx()/dx dx =) dx(i)
pz(i) =dz(i)/dz dz = Z dz(i)
and

k(Xf7Xj)

Then

_ KX, X)) h(Zi,Z;
A (vz ] x) = 30 M2 1oy M2 2)
ij
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tSNE maximizes the coupling between Markov Processes

® |f considering only KL minimization, the new representation would
be such that:

Zn(X) = argmax [Z

i

KX X) | M2 2)]
dx dz

® dx,d7 are normalization terms (different in tSNE - for now)
® The criterion is conditional to X

® interpretability of Z 7 Representation of new Xs ?
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@ tSNE and Graph Coupling of Multivariate Gaussian Models
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Hidden Graph to structure observations

® |et us suppose that observations (rows) are structured thanks to a
hidden random Graph

o G=(V,E)with V={1,---,n} the vertices

Aj= Y Lip=key Le=D—A where Dj=3 Aj
(k,0)eE J

® [, the Laplacian of G has the following property:

VX ER™P, N AIX — Xi|? =tr(X " LeX).
i
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Conditional distribution of X on a graph

e Conditional model of the observations given the graph
X| G~ MN(O, L, R1>,

. Lgl between-cell variability, R~ between-genes correlation.

® Consider the Gaussian kernel for X
1
k(X ) = o0 (=51 = X1

e Conditional distribution of X | G:

P(X|G) o |LglP? TT k(X x))%
ij=1
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Conditional distribution of Z on a graph

® Consider that the low-dimensional representation is also structured
according to a graph

® Consider the Gaussian kernel for Z
1 2
KZiz) =exw (=512 Zi1},)

¢ Conditional distribution of Z | G:

P(Z|G) o |Lg|"? T k(Z:, Z))%i
J
ij=1
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Embedding with Graph Coupling

® Consider two graphs Gx and Gz
® Coupling with Gx = Gz

Ec~cy <Iog P(Gz = Gx | X, Z)> @.@

® which is equivalent to
EGNGX<|OgP(GZ:G‘X,Z)) @ @
Probabilistic Coupling
® which is the entropy of Gz .% Gx =Gy .%
under Gy
He, (Gz | X, Z)
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Graph Coupling with Z as a parameter

® Find the best Z such that the two graphs Gx and Gz are as close as
possible:

200 = argmin [He,(Gz | X.2)

® The cross entropy between distribution of Gx and Gz, which writes

Hox(Gz) = =) P(Gx =g | X)logP(Gz =g | Z).
g

® Challenge : define a prior distribution and deduce the posterior
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Bernoulli prior distribution for Gx

® Let Ax be the adjacency matrix of Gx, with Ax j € {0,1}

L —ax/2 % AXU
]P)(GX,']TX) — } ‘ H’;J X,ij

ax/2 it
ZA’G{O,l} ‘LX(A/ ‘ T x [T XX: i

. |LGX ‘_aX/z catches the dependency of connections wrt the graph.

® Retrieves conjugacy with the Gaussian conditional model
® Setting ax = 0 leads to an independent Bernoulli prior

TX,ij

]P)(AX ij = ]_ 7TX) m
7’./
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Induced Posterior Distribution for Gx

® The posterior writes
P(GX ’ X;Wx) 0.8 P(Gx;ﬁx)P(X ’ Gx; R)

-~ ‘LX|(P73><)/2 H (WX,Uk(Xi, X;: R))AX,U
ij

® When ax = p we get independent Bernoulli posteriors

i'k XiaX'
P(Aj = 1| X; ) = KX X))

= = Xi7X'
1+ mik(Xi, X;) 95X, X))

® When ax = 0 we get an independent prior, but an intractable
posterior
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Maximum Coupling with the Bernoulli prior

PB(X:;XJ)
KL = Xi, Xi) |
(GXaGZ) IZJPB( i _/) og—= =+ CIB(Z,,ZJ)
1- pB(XH)(j)
1-— Xi, Xj) | log ———————==
ij
= HE,(Gz)
+ Y ps(Xi, Xj) log ps(Xi, X))
7
+ > (1 - pB(X,-,Xj)> log (1 - PB(Xi>Xj)>
ij

— UMAP computes a KL (and not a cross entropy)
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Fixed-degree prior distribution for Gx

® Denote by Dx ; the degree of node i/, consider

]P’(Gx;Tr,DX ‘L ‘_aX/2HH7T:e,¢; AXU_ZII'{e,z—j}
i=1¢=1

® Choosing ax = 0 corresponds to a multinomial model:

7rX7ij
Ax,i1s- -+ Ax,im Dx,i ~ M{Dx,i; (n > }7
D=1 TX it

® Choosing ax = p leads to

7TX7ijk(Xi7)<j)
Ax.it,---sAx.in| X;Dxi ~ Dx.i; ’
X, il X,in | X, M{ X (Zgzl 7x,ikk(Xi, Xe) j
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tSNE and the Fixed-degree model

® In the following we will write:
mipk(Xi, X)) mijk(Zi, Zj)
> i1 mik(Xi, Xe)” > mik(Zi, Z0)
® \We retrieve the non-symmetric normalization term (Markov-like)
e With this prior we obtain the tSNE-like criterion

po(Xi, X;) = ap(Zi, Zj) =

HE, (Gz) = ZDXI{PD(X,,X)Ioqu(Z,,Z)}
iJ
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tSNE is defined for fixed X

® |n the original method, the distribution of X is not modelled
® All quantities are defined conditionally to X

® This helps to choose ax = p and a, = g so that the posteriors p
and g are factorized

® This allows to compute the cross entropy (sum)

® Master's internship:

1

impact on Z of the different priors

1

induced momentum algorithms for each prior
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@ Open questions and research challenges
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Symmetrization and directed graphs

In the original formulation : p; = (p;j; + pji)/2N

What probabilistic model should we consider to obtain the same
symmetrization with our posteriors ?

Considering an oriented graph with symmetrized Laplacian

Lij=—(Aj+Ai)/2 ifi#]
Li = (Aiy +Ayi)/2

® How to get to a symmetrized posterior from here ?

interpretation of the underlying directed graph ?
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Kernel calibration and Perplexity

® tSNE strongly depends on the calibration of the kernel

1
X Xi03) = (1~ X3 )

o; should adjust to local densities (neighborhood of point i)

In practice, the method is tuned by fixing a given amount of entropy

n
H(pi) == pjjlog, pj
=

Find o; such that 2F(P) = perp (user defined)

Interpreted as the smoothed effective number of neighbors.
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Visual inspection of the influence of o[1]

a Perplexity = 50 b Perplexity = 5 C Perplexity = 500
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Connecting the kernel bandwidth with the graph model

® Consider D = diag(di, ..., d,) the matrix of degrees

® Consider the random walk laplacian is defined by:

LFW =DM

The following property holds:
1 1Xi — X112
n TIRW y\ _ A J
VX e R", tr(XTL X)—EZA,’J 7
ij

® Hence we can consider

Xpp | Gx ~ MN oy <07 (LRW>_1’ R1>
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Back to the coupling strategy

® Maximizing the probability of coupling by minimizing the KL
KL(Gx, Gz) = Hg, (Gz) — Hg, (Gx)

® Hg, (Gx) is exactly the perplexity parameter
e Constrained coupling with a given degree of entropy

Z(X) = arg min [KL(GX, GZ)}
Z,HGX(Gx):Per

= i Hey(Gz) — P
8 10, e (1068 =)
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Connection with Nearest Neighbors Graphs and Manifold
Learning

® The method is based on a preliminary smoothing of the data to
retrieve a graph with controlled complexity

® This is related (how ?) to manifold learning and density estimation
on manifolds

e The output 2(X) strongly depends on this preliminary step

ZPerp(X) = argmzin <H§X7Perp(GZ)>
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Maximum Likelihood inference for SNE 7

Define the observed X and hidden G, Z variables
Define the observed-data likelihood : P(X)
Define the conditional distribution : P(X | G, Z)
Define the prior distribution P(G, Z)

Compute the conditional expectation of the complete-data loglik

Q= ]EG,Z|X<IOgP(Xa GaZ)>

Compute the posterior

logP(G, Z | X)
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The two-graph model is not identifiable

Coupling with Gx = G
log P(X, Z, Gx, Gz, Gx = Gz) @' """""""""" @
® Discrepancy between two priors

and posterior

Difficult to model a link

between X and Z Probabilistic Coupling
Gx =Gz

Non identifiable model
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The one-graph model

® One prior that rules them all

¢ Different priors for G (Bernoulli,
fixed number of edges, fixed
degree)

® |dentifiable model but
computational issues

Underlying Graph
® tSNE strategy : Zis a between cells
parameter

probabilistic SNE F. Picard



Challenges
000000000080

When ax and azy come back
® The joint likelihood of the model:

logP(X,G | Z) = logP(X|G,Z)+logP(G | 2)

® |n the EM framework, Q becomes
0z = Eap (0F(X| 6.2) + log (G | 2))

® 7 maximizes the posterior probability of connection

Z=arg max (Qz> = arg max {EG|X<IogIP’(G | Z))}

® |nvolves the tricky term
Egx <|LG!>
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Connections with the fixed graph model [2]

® Consider the Multivariate Gaussian Model
Xi~N(pi,x), peRP eS8 i=1,2..n

® Consider that the observations are connected by a given graph G

® Regularized Mean estimation problem:

M, = argmin || X — M|Z + atr(MT LsM)
M

where Lg = IZ d

® In our setting, would it be X | i, u NN(O,T) ?
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