

Manifold Learning, Explanations and Eigenflows

Marina Meilă

Yu-chia Chen, Samson Koelle, Hanyu Zhang and Ioannis Kevrekidis

University of Washington
mmp@stat.washington.edu

Non-Linear and High Dimensional Inference Workshop

Geometry and Statistics in Data Sciences

Institut Henri Poincaré

October 4, 2022

Outline

Manifold coordinates with Scientific meaning

Machine Learning 1-Laplacians, topology, vector fields

1-Laplacian $\Delta_1(\mathcal{M})$ estimation from samples

Analysis of vector fields – Helmholtz-Hodge decomposition

Harmonic Embedding Spectral Decomposition Algorithm

Spectral Shortest Homologous Loop Detection

Outline

Manifold coordinates with Scientific meaning

Machine Learning 1-Laplacians, topology, vector fields

1-Laplacian $\Delta_1(\mathcal{M})$ estimation from samples

Analysis of vector fields – Helmholtz-Hodge decomposition

Harmonic Embedding Spectral Decomposition Algorithm

Spectral Shortest Homologous Loop Detection

Motivation – understanding data from a Molecular Dynamics simulation

Motivation – understanding data from a Molecular Dynamics simulation

Motivation – understanding data from a Molecular Dynamics simulation

- ▶ 2 rotation angles (torsions) describe this manifold
- ▶ Can we discover these features automatically? Can we select these angles from a larger set of features with physical meaning?

scientific
language
(torsions)

data driven
coordinates
(from DiffMaps, Isomap)

+

=

Idea Replace data driven coordinates with selected torsions

- Scientist: proposes a *dictionary* \mathcal{G} with all variables of interest
- ML algorithm: outputs embedding ϕ ,
- MANIFOLDLASSO: finds new *coordinates in \mathcal{G}* “equivalent” with ϕ \leftarrow our algorithm

► Explanation

- = find manifold coordinates from among scientific variables of interest
- in the language of the domain

scientific
language
(torsions)

data driven
coordinates
(from DiffMaps, Isomap)

coordinates
with scientific
interpretation
(selected torsions)

+

=

Idea Replace data driven coordinates with selected torsions

- Scientist: proposes a *dictionary* \mathcal{G} with all variables of interest
- ML algorithm: outputs embedding ϕ ,
- MANIFOLDLASSO: finds new *coordinates in \mathcal{G}* “equivalent” with ϕ \leftarrow our algorithm

► **Explanation**

- = find manifold coordinates from among scientific variables of interest
- in the language of the domain

scientific
language
(torsions)

data driven
coordinates
(from DiffMaps, Isomap)

coordinates
with scientific
interpretation
(selected torsions)

+

=

Idea Replace data driven coordinates with selected torsions

- Scientist: proposes a **dictionary \mathcal{G}** with all variables of interest
- ML algorithm: outputs **embedding ϕ** ,
- MANIFOLDLASSO: finds new **coordinates in \mathcal{G}** “equivalent” with ϕ \leftarrow our algorithm

► Explanation

- = find manifold coordinates from among scientific variables of interest
- in the language of the domain

scientific
language
(torsions)

data driven
coordinates
(from DiffMaps, Isomap)

coordinates
with scientific
interpretation
(selected torsions)

$$\mathcal{G} = \{\text{functions } g\}$$

$$\phi$$

=

$$\{g_{j_1}, \dots g_{j_d}\} \equiv g_s \subset \mathcal{G}$$

Idea Replace data driven coordinates with selected torsions

- Scientist: proposes a **dictionary \mathcal{G}** with all variables of interest
- ML algorithm: outputs **embedding ϕ** ,
- MANIFOLDLASSO: finds new **coordinates in \mathcal{G}** “equivalent” with ϕ \leftarrow our algorithm

► Explanation

- = find manifold coordinates from among scientific variables of interest
- in the language of the domain

Idea: Sparse regression in function space

$$\begin{array}{ll} \text{homeomorphism} & D\phi = DhDgs \\ \phi = h \circ gs & \text{Leibnitz Rule} \\ \text{manifold} & \text{functions from } \mathcal{G} \\ \text{coordinates} & \text{(new coordinates)} \end{array}$$

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot take parametric form
- we cannot choose a basis for h
- will not ϕ_k depends on single g_i
- will not assume ϕ isometric

Functional (Group) Lasso

- optimize

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|Y_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

- support S of β selects g_{j_1, \dots, j_s} from \mathcal{G}

Idea: Sparse regression in function space

ϕ = $h \circ gs$
manifold coordinates functions from \mathcal{G}
 (new coordinates)

$$D\phi = DhDgs$$

Leibnitz Rule

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot take parametric form
- we cannot choose a basis for h
- will not ϕ_k depends on single g_j
- will not assume ϕ isometric

Functional (Group) Lasso

- optimize

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|Y_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

- support S of β selects g_{j_1, \dots, j_s} from \mathcal{G}

Idea: Sparse regression in function space

ϕ = $h \circ gs$
manifold coordinates functions from \mathcal{G}
 (new coordinates)

$$D\phi = DhDgs$$

Leibnitz Rule

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot take parametric form
- we cannot choose a basis for h
- will not ϕ_k depends on single g_j
- will not assume ϕ isometric

- sparse linear regression problem
- For every data i
 - $Y_i = \text{grad } \phi(\xi_i)$,
 - $X_i = \text{grad } g_{1:p}(\xi)$
 - $\beta_{ij} = \frac{\partial h}{\partial g_j}(\xi_i)$
- Sparse linear system
 $Y_i = X_i \beta_i$
- Constraint: subset S is same for all i

Functional (Group) Lasso

- optimize

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|Y_i - X_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

- support S of β selects g_{j_1, \dots, j_s} from \mathcal{G}

Idea: Sparse regression in function space

ϕ = $h \circ gs$
manifold coordinates functions from \mathcal{G}
 (new coordinates)

$$D\phi = DhDgs$$

Leibnitz Rule

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot take parametric form
- we cannot choose a basis for h
- will not ϕ_k depends on single g_j
- will not assume ϕ isometric

Functional (Group) Lasso

- optimize

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|Y_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

- support S of β selects g_{j_1, \dots, j_s} from \mathcal{G}

Idea: Sparse regression in function space

$$\begin{array}{lcl} \phi & = & h \circ gs \\ \text{manifold} & & \text{functions from } \mathcal{G} \\ \text{coordinates} & & \text{(new coordinates)} \end{array}$$

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot take parametric form
- we cannot choose a basis for h
- will not ϕ_k depends on single g_j
- will not assume ϕ isometric

Functional (Group) Lasso

- optimize

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|Y_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

- support S of β selects g_{j_1, \dots, j_s} from \mathcal{G}

$$D\phi = DhDgs$$

Leibnitz Rule

- sparse linear regression problem
- For every data i
 - $Y_i = \text{grad } \phi(\xi_i)$,
 - $\mathbf{X}_i = \text{grad } g_{1:p}(\xi)$
 - $\beta_{ij} = \frac{\partial h}{\partial g_j}(\xi_i)$
 - Sparse linear system
 $Y_i = \mathbf{X}_i \beta_i$
- Constraint: subset S is same for all i

Idea: Sparse regression in function space

ϕ = $h \circ gs$
manifold functions from \mathcal{G}
coordinates (new coordinates)

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot take parametric form
- we cannot choose a basis for h
- will not ϕ_k depends on single g_j
- will not assume ϕ isometric

Functional (Group) Lasso

- optimize

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|Y_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

- support S of β selects g_{j_1, \dots, j_s} from \mathcal{G}

$$D\phi = DhDgs$$

Leibnitz Rule

- sparse linear regression problem
- For every data i
 - $Y_i = \text{grad } \phi(\xi_i)$,
 - $\mathbf{X}_i = \text{grad } g_{1:p}(\xi)$
 - $\beta_{ij} = \frac{\partial h}{\partial g_j}(\xi_i)$
 - Sparse linear system
 $Y_i = \mathbf{X}_i \beta_i$
- Constraint: subset S is same for all i

Idea: Sparse regression in function space

ϕ = $h \circ gs$
manifold functions from \mathcal{G}
coordinates (new coordinates)

Challenges

- sparse, non-linear regression problem
- ML coordinates ϕ defined up to diffeomorphism
- hence, h cannot take parametric form
- we cannot choose a basis for h
- will not ϕ_k depends on single g_j
- will not assume ϕ isometric

Functional (Group) Lasso

- optimize

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|\mathbf{Y}_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

- support S of β selects g_{j_1, \dots, j_s} from \mathcal{G}

$$D\phi = DhDgs$$

Leibnitz Rule

- sparse linear regression problem
- For every data i
 - $\mathbf{Y}_i = \text{grad } \phi(\xi_i)$,
 - $\mathbf{X}_i = \text{grad } g_{1:p}(\xi)$
 - $\beta_{ij} = \frac{\partial h}{\partial g_j}(\xi_i)$
 - Sparse linear system
 $\mathbf{Y}_i = \mathbf{X}_i \beta_i$
- Constraint: subset S is same for all i

MANIFOLDLASSO Algorithm

Given Data $\xi_{1:n}$, $\dim \mathcal{M} = d$, embedding $\phi(\xi_{1:n})$, dictionary $\mathcal{G} = \{\mathbf{g}_{1:p}\}$

1. Estimate tangent subspace at ξ_i by (weighted) PCA
2. Project dictionary functions gradients $\nabla \mathbf{g}_j$ on tangent subspace, obtain $\mathbf{X}_{1:n} \in \mathbb{R}^{d \times p}$
3. Estimate gradients of $\phi_{1:k}$, obtain $\mathbf{Y}_{1:n} \in \mathbb{R}^{d \times m}$
By pull-back from embedding space ϕ
4. Solve GROUPLASSO($\mathbf{Y}_{1:n}, \mathbf{X}_{1:n}, d$), obtain support S

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|\mathbf{Y}_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

Output S

MANIFOLDLASSO Algorithm

Given Data $\xi_{1:n}$, $\dim \mathcal{M} = d$, embedding $\phi(\xi_{1:n})$, dictionary $\mathcal{G} = \{\mathbf{g}_{1:p}\}$

1. Estimate tangent subspace at ξ_i by (weighted) PCA
2. Project dictionary functions gradients $\nabla \mathbf{g}_j$ on tangent subspace, obtain $\mathbf{X}_{1:n} \in \mathbb{R}^{d \times p}$
3. Estimate gradients of $\phi_{1:k}$, obtain $\mathbf{Y}_{1:n} \in \mathbb{R}^{d \times m}$
By pull-back from embedding space ϕ
4. Solve GROUPLASSO($\mathbf{Y}_{1:n}, \mathbf{X}_{1:n}, d$), obtain support S

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|\mathbf{Y}_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

Output S

MANIFOLDLASSO Algorithm

Given Data $\xi_{1:n}$, $\dim \mathcal{M} = d$, embedding $\phi(\xi_{1:n})$, dictionary $\mathcal{G} = \{\mathbf{g}_{1:p}\}$

1. Estimate tangent subspace at ξ_i by (weighted) PCA
2. Project dictionary functions gradients $\nabla \mathbf{g}_j$ on tangent subspace, obtain $\mathbf{X}_{1:n} \in \mathbb{R}^{d \times p}$
3. Estimate gradients of $\phi_{1:k}$, obtain $\mathbf{Y}_{1:n} \in \mathbb{R}^{d \times m}$
By pull-back from embedding space ϕ
4. Solve GROUPLASSO($\mathbf{Y}_{1:n}, \mathbf{X}_{1:n}, d$), obtain support S

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|\mathbf{Y}_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

Output S

MANIFOLDLASSO Algorithm

Given Data $\xi_{1:n}$, $\dim \mathcal{M} = d$, embedding $\phi(\xi_{1:n})$, dictionary $\mathcal{G} = \{\mathbf{g}_{1:p}\}$

1. Estimate tangent subspace at ξ_i by (weighted) PCA
2. Project dictionary functions gradients $\nabla \mathbf{g}_j$ on tangent subspace, obtain $\mathbf{X}_{1:n} \in \mathbb{R}^{d \times p}$
3. Estimate gradients of $\phi_{1:k}$, obtain $\mathbf{Y}_{1:n} \in \mathbb{R}^{d \times m}$
By pull-back from embedding space ϕ
4. Solve GROUPLASSO($\mathbf{Y}_{1:n}, \mathbf{X}_{1:n}, d$), obtain support S

$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^n \|\mathbf{Y}_i - \mathbf{X}_i \beta_i\|_2^2 + \lambda \sum_j \|\beta_j\|, \quad (\text{MANIFOLDLASSO})$$

Output S

Ethanol MD simulation

Theory

- When is S unique? / When can \mathcal{M} be uniquely parametrized by \mathcal{G} ?
Functional independence conditions on dictionary \mathcal{G} and subset $\mathcal{G}_{j_1, \dots, j_s}$
- Basic result

$f_S = h \circ f_{S'}$ on U iff

$$\text{rank} \begin{pmatrix} Df_S \\ Df_{S'} \end{pmatrix} = \text{rank } Df_{S'} \quad \text{on } U$$

- When can GLASSO recover S ?
(Simple) Incoherence Conditions

$$\mu = \max_{i=1:n, j \in S, j' \notin S} \frac{|\mathbf{X}_{ji}^T \mathbf{X}_{j'i}|}{\|\mathbf{X}_{ji}\| \|\mathbf{X}_{j'i}\|} \quad \nu = \frac{1}{\min_{i=1:n} \|\mathbf{X}_{iS}^T \mathbf{X}_{iS}\|_2} \quad nd\sigma^2 = \sum_{i,k} \epsilon_{ik}^2$$

Theorem If, $\|\mathbf{X}_{1:p}\| = 1$, $\mu\nu\sqrt{d} + \frac{\sigma\sqrt{nd}}{\lambda} < 1$ then $\beta_j = 0$ for $j \notin S$.

Theory

- When is S unique? / When can \mathcal{M} be uniquely parametrized by \mathcal{G} ?
Functional independence conditions on dictionary \mathcal{G} and subset $\mathcal{G}_{j_1, \dots, j_s}$
- Basic result

$f_S = h \circ f_{S'}$ on U iff

$$\text{rank} \begin{pmatrix} Df_S \\ Df_{S'} \end{pmatrix} = \text{rank } Df_{S'} \quad \text{on } U$$

- When can GLASSO recover S ?
(Simple) Incoherence Conditions

$$\mu = \max_{i=1:n, j \in S, j' \notin S} \frac{|\mathbf{X}_{ji}^T \mathbf{X}_{j'i}|}{\|\mathbf{X}_{ji}\| \|\mathbf{X}_{j'i}\|} \quad \nu = \frac{1}{\min_{i=1:n} \|\mathbf{X}_{iS}^T \mathbf{X}_{iS}\|_2} \quad nd\sigma^2 = \sum_{i,k} \epsilon_{ik}^2$$

Theorem If, $\|\mathbf{X}_{1:p}\| = 1$, $\mu\nu\sqrt{d} + \frac{\sigma\sqrt{nd}}{\lambda} < 1$ then $\beta_j = 0$ for $j \notin S$.

Recovery for MANIFOLDLASSO

Theorem 7 (Support recovery) Assume that equation (30) holds, and that $\sum_{i=1}^n \|x_{ij}\|^2 = \gamma_j^2$ for all $j = 1 : p$. Let $\gamma_{\max} = \max_{j \notin S} \gamma_j$, $\kappa_S = \max_{i=1:n} \frac{\max_{j \in S} \|x_{ij}\|}{\min_{j \in S} \|x_{ij}\|}$. Denote by $\bar{\beta}$ the solution of (31) for some $\lambda > 0$. If $1 - (s - 1)\mu > 0$ and

$$\gamma_{\max} \left(\frac{\mu}{1 - (s - 1)\mu} \frac{\kappa_S}{\min_{i=1}^n \min_{j' \in S} \|x_{ij'}\|} + \frac{\sigma\sqrt{d}}{\lambda\sqrt{n}} \right) \leq 1 \quad (37)$$

then $\bar{\beta}_{ij} = 0$ for $j \notin S$ and all $i = 1, \dots, n$.

Corollary 8 Assume that equation (31) and condition (37) hold. Let $\kappa = \frac{\mu}{1 - (s - 1)\mu} \frac{\kappa_S}{\min_{i=1}^n \min_{j' \in S} \|x_{ij'}\|}$ and $\gamma_S = \|\bar{X}_S\|$. Denote by $\hat{\beta}$ the solution to problem (31) for some $\lambda > 0$. If (1) $\lambda = c \frac{\gamma_{\max} \sigma \sqrt{d}}{1 - \kappa \gamma_{\max}}$, $c > 1$, and (2) $\|\beta_j^*\| > \sigma\sqrt{d}(\gamma_{\max} + \gamma_S) + \lambda(1 + \sqrt{s})$ for all $j \in S$, then the support S is recovered exactly and

$$\|\hat{\beta}_j - \beta_j^*\| < \sigma\sqrt{d}(\gamma_{\max} + \gamma_S) + \lambda(1 + \sqrt{s}) = \sigma\sqrt{d}\gamma_{\max} \left[1 + \gamma_S/\gamma_{\max} + c \frac{1 + \sqrt{s}}{1 - \kappa \gamma_{\max}} \right] \quad \text{for all } j \in S.$$

TANGENTSPACE LASSO: MANIFOLD LASSO without embedding

Simplification regress basis of $\mathcal{T}_\xi \mathcal{M}$ on gradients of \mathbf{g}_j

Proposition 2 (after (?)). *Let \mathcal{F}, f_j be dictionary and dictionary functions on the d -dimensional smooth manifold \mathcal{M} . Assume $f_j \in C^\ell$ with $\ell \geq d+1$. Suppose $S \subset [p]$, and denote by $\text{grad } f_S$ the $\mathbb{R}^{d \times s}$ matrix of concatenated $\text{grad } f_j : f \in S$. Then, if there is a subset $S' \subsetneq S$ such that the following rank condition holds globally:*

$$\text{rank} \begin{pmatrix} \text{grad } f_S \\ \text{grad } f_{S'} \end{pmatrix} = \text{rank grad } f_{S'} . \quad (4)$$

Then there exists a function h which is C^ℓ almost everywhere in the image of $f_{S'}(\mathcal{M})$ such that $f_S = h \circ f_{S'}$

$$\mu_S = \sup_{\xi \in \mathcal{M}^\circ, j \in S, j' \notin S} |\mathbf{X}_{\{j\}, \xi}^T \mathbf{X}_{\{j'\}, \xi}| \quad (5)$$

$$\nu_S = \sup_{\xi \in \mathcal{M}^\circ, \alpha \in \mathbb{R}^d : \|\alpha\|_2 = 1} \alpha^T (\mathbf{X}_{S, \xi}^T \mathbf{X}_{S, \xi})^{-1} \alpha. \quad (6)$$

Proposition 3. *Assume that*

1. \mathcal{M} is d -dimensional C^k compact manifold with strictly positive reach.
2. Data ξ are sampled from some density p on \mathcal{M} with $p > 0$ all over \mathcal{M} .
3. $\xi \in \mathcal{M}^\circ$ with probability 1 under p .

Let S be the 'true' support, $S(\widehat{\mathbf{B}})$ be the support selected by TSLASSO, μ_S and ν_S be defined by (5) and (6), and further assume

4. $|S| = d$.
5. Df_S has rank d on \mathcal{M}° ,
6. $\mu_S \nu_S d < 1$.

Then if we adapt the tangent space estimation algorithm in (?) with bandwidth choice $h = O(\log n / (n-1))^d$, with $n \geq ((1 - \mu_S \nu_S d) / 2\nu_S d)^{d/(k-1)}$ we have

$$\Pr(S(\widehat{\mathbf{B}}) \subset S) \geq 1 - O\left(\left(\frac{1}{n}\right)^{\frac{k}{d}}\right).$$

Experiments

Dataset	n	N_a	D	d	ϵ_N	m	n'	p	
SwissRoll	10000	NA	51	2	.18	2	100	51	synthetic
RigidEthanol	10000	9	50	2	3.5	3	100	12	
Ethanol	50000	9	50	2	3.5	3	100	12	skeleton \mathcal{G}
Malonaldehyde	50000	9	50	2	3.5	3	100	12	
Toluene	50000	16	50	1	1.9	2	100	30	
Ethanol	50000	9	50	2	3.5	3	100	756	exhaustive \mathcal{G}
Malonaldehyde	50000	9	50	2	3.5	3	100	756	
	ϕ						LASSO	$ \mathcal{G} $	

p = dictionary size, m = embedding dimension, n = sample size for manifold estimation, n' = sample size for MANIFOLDLASSO

Two-stage sparse recovery for exhaustive \mathcal{G} , $p = 756$

Tangent Space Lasso experiments

Summary of MANIFOLDLASSO/FUNCTIONALLASSO

Technical contribution

- ▶ non-linear sparse regression in function spaces
- ▶ Method to push/pull vectors through mappings ϕ
- ▶ MANIFOLDLASSO: regression of data driven coordinates $\phi_{1:m}$ on domain-specific functions $\mathcal{G} = \{g_{1:p}\}$

- ▶ explains large scale structure with domain-relevant functions
- ▶ non-parametric; different from symbolic regression [Brunton et al. 2016, Rudy et al. 2019]
- ▶ transmissible knowledge, compare embeddings from different experiments
- ▶ extensions: estimated ∇g , simultaneous explanation of multiple manifolds

Summary of MANIFOLDLASSO/FUNCTIONALLASSO

Technical contribution

- ▶ non-linear sparse regression in function spaces
- ▶ Method to push/pull vectors through mappings ϕ
- ▶ MANIFOLDLASSO: regression of data driven coordinates $\phi_{1:m}$ on domain-specific functions $\mathcal{G} = \{g_{1:p}\}$

- ▶ explains large scale structure with domain-relevant functions
- ▶ non-parametric; different from symbolic regression [Brunton et al. 2016, Rudy et al. 2019]
- ▶ transmissible knowledge, compare embeddings from different experiments
- ▶ extensions: estimated ∇g , simultaneous explanation of multiple manifolds

Directed graph embedding
Manifold + vector field [NIPS 2011]

1-Laplacian estimation
[Arxiv:2103.07626]

Helmholtz-Hodge
decomposition

Independent loops
[Arxiv:2107.10970]
[NeurIPS 2021]

Smoothed vector fields

Outline

Manifold coordinates with Scientific meaning

Machine Learning 1-Laplacians, topology, vector fields

1-Laplacian $\Delta_1(\mathcal{M})$ estimation from samples

Analysis of vector fields – Helmholtz-Hodge decomposition

Harmonic Embedding Spectral Decomposition Algorithm

Spectral Shortest Homologous Loop Detection

Why Laplacians? Why higher order?

The Laplacian $\mathcal{L}_0 \in \mathbb{R}^{n \times n}$ is central to Manifold Learning

- ▶ embedding data by Diffusion Maps [Coifman, Lafon 2006]
- ▶ Spectral Clustering
- ▶ \mathcal{L}_0 related to Riemannian metric – captures geometry of \mathcal{M}
- ▶ Function approximation
- ▶ Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

Higher order Laplacians $\Delta_1, \dots, \Delta_k$ also capture geometry and topology of \mathcal{M}

This talk

- ▶ estimate first order Laplacian (Helmholtzian) $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ calculate Helmholtz-Hodge decomposition of $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ Smoothing, function approximation, semi-supervised learning (Laplacian regularization) for vector fields on manifolds
- ▶ Manifold prime decomposition (\approx Spectral clustering)
- ▶ find short loop bases

Why Laplacians? Why higher order?

The Laplacian $\mathcal{L}_0 \in \mathbb{R}^{n \times n}$ is central to Manifold Learning

- ▶ embedding data by Diffusion Maps [Coifman, Lafon 2006]
- ▶ Spectral Clustering
- ▶ \mathcal{L}_0 related to Riemannian metric – captures geometry of \mathcal{M}
- ▶ Function approximation
- ▶ Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

Higher order Laplacians $\Delta_1, \dots, \Delta_k$ also capture geometry and topology of \mathcal{M}

This talk

- ▶ estimate first order Laplacian (Helmholtzian) $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ calculate Helmholtz-Hodge decomposition of $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ Smoothing, function approximation, semi-supervised learning (Laplacian regularization) for vector fields on manifolds
- ▶ Manifold prime decomposition (\approx Spectral clustering)
- ▶ find short loop bases

Why Laplacians? Why higher order?

The Laplacian $\mathcal{L}_0 \in \mathbb{R}^{n \times n}$ is central to Manifold Learning

- ▶ embedding data by Diffusion Maps [Coifman, Lafon 2006]
- ▶ Spectral Clustering
- ▶ \mathcal{L}_0 related to Riemannian metric – captures geometry of \mathcal{M}
- ▶ Function approximation
- ▶ Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

Higher order Laplacians $\Delta_1, \dots, \Delta_k$ also capture geometry and topology of \mathcal{M}

This talk

- ▶ estimate first order Laplacian (Helmholtzian) $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ calculate Helmholtz-Hodge decomposition of $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ Smoothing, function approximation, semi-supervised learning (Laplacian regularization) for vector fields on manifolds
- ▶ Manifold prime decomposition (\approx Spectral clustering)
- ▶ find short loop bases

Why Laplacians? Why higher order?

The Laplacian $\mathcal{L}_0 \in \mathbb{R}^{n \times n}$ is central to Manifold Learning

- ▶ embedding data by Diffusion Maps [Coifman, Lafon 2006]
- ▶ Spectral Clustering
- ▶ \mathcal{L}_0 related to Riemannian metric – captures geometry of \mathcal{M}
- ▶ Function approximation
- ▶ Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

Higher order Laplacians $\Delta_1, \dots, \Delta_k$ also capture geometry and topology of \mathcal{M}

This talk

- ▶ estimate first order Laplacian (Helmholtzian) $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ calculate Helmholtz-Hodge decomposition of $\mathcal{L}_1(\mathcal{M})$ from data
- ▶ Smoothing, function approximation, semi-supervised learning (Laplacian regularization) for vector fields on manifolds
- ▶ Manifold prime decomposition (\approx Spectral clustering)
- ▶ find short loop bases

Estimating the 1-Laplacian with samples from \mathcal{M}

$$\begin{aligned}\mathcal{L}_1^{\text{down}} &= \mathbf{B}_E^\top \mathbf{W}_V^{-1} \mathbf{B}_E \mathbf{W}_E \\ \mathcal{L}_1^{\text{up}} &= \mathbf{W}_E^{-1} \mathbf{B}_T \mathbf{W}_T \mathbf{B}_E^\top \\ &\Downarrow \\ \mathcal{L}_1 &= a \cdot \mathcal{L}_1^{\text{down}} + b \cdot \mathcal{L}_1^{\text{up}}\end{aligned}$$

$\mathcal{C}_1 \cong \mathbb{R}^{n_E} = \text{gradient} \oplus \text{harmonic} \oplus \text{curl}$

\mathcal{L}_1 estimation for Molecular Dynamics data (malonaldehyde)

graph Laplacian $w_t = 1$, [Berry, Giannakis 2020], [Chen, M, Kevrekidis 2020]

Outline

Manifold coordinates with Scientific meaning

Machine Learning 1-Laplacians, topology, vector fields

1-Laplacian $\Delta_1(\mathcal{M})$ estimation from samples

Analysis of vector fields – Helmholtz-Hodge decomposition

Harmonic Embedding Spectral Decomposition Algorithm

Spectral Shortest Homologous Loop Detection

Eigenfunctions of \mathcal{L}_1 – what are they useful for?

- Helmholtz-Hodge Decomposition classifies eigenfunctions of \mathcal{L}_1

$$\mathcal{C}_1 \cong \mathbb{R}^{n_E} \cong \underbrace{\text{Im } \mathcal{L}_1^{\text{down}}}_{\text{gradient}} \oplus \underbrace{\text{Null } \mathcal{L}_1}_{\text{harmonic}} \oplus \underbrace{\text{Im } \mathcal{L}_1^{\text{up}}}_{\text{curl}}$$

- Analysis of vector fields on \mathcal{M}
 - Decompose onto harmonic, gradient, curl
 - Smooth, predict, extend, complete a flow
- Analysis of \mathcal{M}
 - $\mathcal{H}_1 = \text{Null } \mathcal{L}_1$ Space of loops on \mathcal{M} (1st co-homology space)
 - $\dim \mathcal{H}_1 = \beta_1$ number of (independent loops)
 - Find shortest loop basis

Helmholtz-Hodge decomposition for ocean buoys data

simplicial complex (V, E, T)

Flow Smoothing

Flow Completion – Semi-Supervised Learning (SSL)

Outline

Manifold coordinates with Scientific meaning

Machine Learning 1-Laplacians, topology, vector fields

1-Laplacian $\Delta_1(\mathcal{M})$ estimation from samples

Analysis of vector fields – Helmholtz-Hodge decomposition

Harmonic Embedding Spectral Decomposition Algorithm

Spectral Shortest Homologous Loop Detection

Connected sum and manifold (prime) decomposition

The **connected sum** ? $\mathcal{M} = \mathcal{M}_1 \# \mathcal{M}_2$:

1. removing two d -dimensional “disks” from \mathcal{M}_1 and \mathcal{M}_2 (shaded area)
2. gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold $\mathcal{M} = \mathcal{M}_1 \# \cdots \# \mathcal{M}_\kappa$ into \mathcal{M}_i ’s so that \mathcal{M}_i is a **prime manifold**

- ▶ $d = 2$: classification theorem of surfaces ?
- ▶ $d = 3$: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem ?
- ▶ $d \geq 5$: ? proved the existence of factorization (but they might not be unique)

Connected sum and manifold (prime) decomposition

The **connected sum** ? $\mathcal{M} = \mathcal{M}_1 \# \mathcal{M}_2$:

1. removing two d -dimensional “disks” from \mathcal{M}_1 and \mathcal{M}_2 (shaded area)
2. gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold $\mathcal{M} = \mathcal{M}_1 \# \cdots \# \mathcal{M}_\kappa$ into \mathcal{M}_i ’s so that \mathcal{M}_i is a **prime manifold**

- ▶ $d = 2$: classification theorem of surfaces ?
- ▶ $d = 3$: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem ?
- ▶ $d \geq 5$: ? proved the existence of factorization (but they might not be unique)

The decomposition of the higher-order homology embedding constructed from the k -Laplacian [Chen,M NeurIPS 2021]

- \mathcal{L}_1 is $n_E \times n_E$, operates on edges flows of neighborhood graph
- Null $\mathcal{L}_1 = \mathcal{H}_1$ harmonic space, $\beta_1 = \dim \mathcal{H}_1$
- \mathbf{Y} is basis of \mathcal{H}_1 harmonic flows
- \mathbf{Y} NOT UNIQUE

Harmonic Eigenfunctions \mathbf{Y} (raw) vs. \mathbf{Z} (decoupled)

Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable manifold

- κ -fold connected sum: $\mathcal{M} = \mathcal{M}_1 \# \cdots \# \mathcal{M}_\kappa$
- $\mathcal{H}_k(\text{SC})$ (discrete) and $H_k(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_i
 - Works for **any** consistent method to build \mathcal{L}_k
 - We use our prior work ? for \mathcal{L}_1

2. No k -homology class is created/destroyed during the connected sum

- If $\dim(\mathcal{M}) > k$, then $\mathcal{H}_k(\mathcal{M}_1 \# \mathcal{M}_2) \cong \mathcal{H}_k(\mathcal{M}_1) \oplus \mathcal{H}_k(\mathcal{M}_2)$?
- **[Technical]** The eigengap of \mathcal{L}_k is the min of each $\hat{\mathcal{L}}_k^{(ii)}$:
 $\delta = \min\{\delta_1, \dots, \delta_\kappa\}$

3. Sparsely connected manifold

- Not too many **triangles** are created/destroyed during connected sum (for $k = 1$)
- **Empirically**, the perturbation is small even when \mathcal{M} is not sparsely connected
- **[Technical]** Perturbations of ℓ -simplex set Σ_ℓ are small (ϵ_ℓ and ϵ'_ℓ are small) for $\ell = k, k-1$

Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable manifold

- ▶ κ -fold connected sum: $\mathcal{M} = \mathcal{M}_1 \# \cdots \# \mathcal{M}_\kappa$
- ▶ $\mathcal{H}_k(\text{SC})$ (discrete) and $H_k(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_i
 - ▶ Works for **any** consistent method to build \mathcal{L}_k
 - ▶ We use our prior work ? for \mathcal{L}_1

2. No k -homology class is created/destroyed during the connected sum

- ▶ If $\dim(\mathcal{M}) > k$, then $\mathcal{H}_k(\mathcal{M}_1 \# \mathcal{M}_2) \cong \mathcal{H}_k(\mathcal{M}_1) \oplus \mathcal{H}_k(\mathcal{M}_2)$?
- ▶ **[Technical]** The eigengap of \mathcal{L}_k is the min of each $\hat{\mathcal{L}}_k^{(ii)}$:
 $\delta = \min\{\delta_1, \dots, \delta_\kappa\}$

3. Sparsely connected manifold

- ▶ Not too many **triangles** are created/destroyed during connected sum (for $k = 1$)
- ▶ **Empirically**, the perturbation is small even when \mathcal{M} is not sparsely connected
- ▶ **[Technical]** Perturbations of ℓ -simplex set Σ_ℓ are small (ϵ_ℓ and ϵ'_ℓ are small) for $\ell = k, k-1$

Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable manifold

- ▶ κ -fold connected sum: $\mathcal{M} = \mathcal{M}_1 \# \cdots \# \mathcal{M}_\kappa$
- ▶ $\mathcal{H}_k(\text{SC})$ (discrete) and $H_k(\mathcal{M}, \mathbb{R})$ (continuous) are isomorphic. Also for every \mathcal{M}_i
 - ▶ Works for **any** consistent method to build \mathcal{L}_k
 - ▶ We use our prior work ? for \mathcal{L}_1

2. No k -homology class is created/destroyed during the connected sum

- ▶ If $\dim(\mathcal{M}) > k$, then $\mathcal{H}_k(\mathcal{M}_1 \# \mathcal{M}_2) \cong \mathcal{H}_k(\mathcal{M}_1) \oplus \mathcal{H}_k(\mathcal{M}_2)$?
- ▶ **[Technical]** The eigengap of \mathcal{L}_k is the min of each $\hat{\mathcal{L}}_k^{(ii)}$:
 $\delta = \min\{\delta_1, \dots, \delta_\kappa\}$

3. Sparsely connected manifold

- ▶ Not too many **triangles** are created/destroyed during connected sum (for $k = 1$)
- ▶ **Empirically**, the perturbation is small even when \mathcal{M} is not sparsely connected
- ▶ **[Technical]** Perturbations of ℓ -simplex set Σ_ℓ are small (ϵ_ℓ and ϵ'_ℓ are small) for $\ell = k, k - 1$

Subspace perturbation

Theorem 1

Under Assumptions 1–3

$$\begin{aligned}\|\text{DiffL}_k^{\text{down}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + \left(1 + \sqrt{\epsilon'_k}\right)^2 \sqrt{\epsilon'_{k-1}} + 4\sqrt{\epsilon_{k-1}}\right]^2 (k+1)^2; \text{ and} \\ \|\text{DiffL}_k^{\text{up}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + 2\epsilon_k + 4\sqrt{\epsilon_k}\right]^2 (k+2)^2,\end{aligned}$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\|\mathbf{Y}_{N_k,:} - \hat{\mathbf{Y}}_{N_k,:} \mathbf{O}\right\|_F^2 \leq \frac{8\beta_k \left[\|\text{DiffL}_k^{\text{down}}\|^2 + \|\text{DiffL}_k^{\text{up}}\|^2\right]}{\min\{\delta_1, \dots, \delta_\kappa\}}. \quad (1)$$

- ▶ **Assu. 2:** no topology is destroyed/created
- ▶ **Assu. 3:** sparsely connected
- ▶ **N_k :** bound only simplexes that are **not** altered during connected sum

Subspace perturbation

Theorem 1

Under Assumptions 1–3

$$\begin{aligned}\|\text{DiffL}_k^{\text{down}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + \left(1 + \sqrt{\epsilon'_k}\right)^2 \sqrt{\epsilon'_{k-1}} + 4\sqrt{\epsilon_{k-1}}\right]^2 (k+1)^2; \text{ and} \\ \|\text{DiffL}_k^{\text{up}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + 2\epsilon_k + 4\sqrt{\epsilon_k}\right]^2 (k+2)^2,\end{aligned}$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\|\mathbf{Y}_{N_k,:} - \hat{\mathbf{Y}}_{N_k,:} \mathbf{O}\right\|_F^2 \leq \frac{8\beta_k \left[\|\text{DiffL}_k^{\text{down}}\|^2 + \|\text{DiffL}_k^{\text{up}}\|^2\right]}{\min\{\delta_1, \dots, \delta_\kappa\}}. \quad (1)$$

- ▶ **Assu. 2:** no topology is destroyed/created
- ▶ **Assu. 3:** sparsely connected
- ▶ N_k : bound only simplexes that are **not** altered during connected sum

Subspace perturbation

Theorem 1

Under Assumptions 1–3

$$\begin{aligned}\|\text{DiffL}_k^{\text{down}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + \left(1 + \sqrt{\epsilon'_k}\right)^2 \sqrt{\epsilon'_{k-1}} + 4\sqrt{\epsilon_{k-1}}\right]^2 (k+1)^2; \text{ and} \\ \|\text{DiffL}_k^{\text{up}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + 2\epsilon_k + 4\sqrt{\epsilon_k}\right]^2 (k+2)^2,\end{aligned}$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\|\mathbf{Y}_{N_k,:} - \hat{\mathbf{Y}}_{N_k,:} \mathbf{O}\right\|_F^2 \leq \frac{8\beta_k \left[\|\text{DiffL}_k^{\text{down}}\|^2 + \|\text{DiffL}_k^{\text{up}}\|^2 \right]}{\min\{\delta_1, \dots, \delta_\kappa\}}. \quad (1)$$

- ▶ **Assu. 2:** no topology is destroyed/created
- ▶ **Assu. 3:** sparsely connected
- ▶ N_k : bound only simplexes that are **not** altered during connected sum

Subspace perturbation

Theorem 1

Under Assumptions 1–3

$$\begin{aligned}\|\text{DiffL}_k^{\text{down}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + \left(1 + \sqrt{\epsilon'_k}\right)^2 \sqrt{\epsilon'_{k-1}} + 4\sqrt{\epsilon_{k-1}}\right]^2 (k+1)^2; \text{ and} \\ \|\text{DiffL}_k^{\text{up}}\|^2 &\leq \left[2\sqrt{\epsilon'_k} + \epsilon'_k + 2\epsilon_k + 4\sqrt{\epsilon_k}\right]^2 (k+2)^2,\end{aligned}$$

and there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\| \mathbf{Y}_{N_k,:} - \hat{\mathbf{Y}}_{N_k,:} \mathbf{O} \right\|_F^2 \leq \frac{8\beta_k \left[\|\text{DiffL}_k^{\text{down}}\|^2 + \|\text{DiffL}_k^{\text{up}}\|^2 \right]}{\min\{\delta_1, \dots, \delta_\kappa\}}. \quad (1)$$

- ▶ **Assu. 2:** no topology is destroyed/created
- ▶ **Assu. 3:** sparsely connected
- ▶ N_k : bound only simplexes that are **not** altered during connected sum

Harmonic Embedding Spectral Decomposition Algorithm

In Simplicial complex (V, E, T) , weights
 $\mathbf{W}_V, \mathbf{W}_E, \mathbf{W}_T$

1. Compute \mathcal{L}_1
2. Eigendecomposition

$$\beta_1, \mathbf{Y} \leftarrow \text{Null}(\mathcal{L}_1)$$

3. Independent Component Analysis

$$\mathbf{Z} \leftarrow \text{ICANOPREWHITE}(\mathbf{Y})$$

Out \mathbf{Z}

Outline

Manifold coordinates with Scientific meaning

Machine Learning 1-Laplacians, topology, vector fields

1-Laplacian $\Delta_1(\mathcal{M})$ estimation from samples

Analysis of vector fields – Helmholtz-Hodge decomposition

Harmonic Embedding Spectral Decomposition Algorithm

Spectral Shortest Homologous Loop Detection

Spectral Shortest Homologous Loop Detection

In $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_{\beta_1}]$, (V, E) , edge lengths d_E

for $l = 1 : \beta_1$

1. Remove edges e with low $|\mathbf{Z}_{le}|$, keep top $1/\beta_1$ fraction E_{keep}
2. Construct $G_l = (V, E_{keep})$, edge weights d_E
3. Repeat for a lot of edges in E_{keep}
 - 3.1 select $e = (t, s_0) \in E_{keep}$
 - 3.2 find shortest path s_0 to t
 $P_e \leftarrow \text{DIJKSTRA}(V, E_{keep} \setminus \{e\}, s_0, t, d_E)$
4. $C_l \leftarrow \operatorname{argmin}_e \text{length}(\text{loop}(P_e))$

Out loops $C_{1:\beta_1}$

Shortest loop basis on real data

RNA single cell

sculpture

ocean buoys

retina

Summary – Manifold Learning beyond embedding algorithm

- ▶ Manifolds, vector fields, . . .
 - ▶ historically used for modeling scientific data
 - ▶ represented analytically
- NOW representations learned from data
 - machine learning needs to handle new mathematical concepts
 - need to output results in scientific language
- ▶ Generic method for Interpretation in the language of the domain
 - ▶ by finding coordinates from among domain-specific functions
 - ▶ non-parametric and non-linear
- ▶ Extended manifold learning from scalar functions to vector fields
 - ▶ first 1-Laplacian estimator
 - ▶ continuous limit derived
 - ▶ natural extensions of smoothing, semi-supervised learning to vector field data
 - ▶ perturbation result for prime manifold decomposition
 - ▶ algorithm for shortest loop basis

Summary – Manifold Learning beyond embedding algorithm

- ▶ Manifolds, vector fields, . . .
 - ▶ historically used for modeling scientific data
 - ▶ represented analytically
- NOW representations learned from data
 - machine learning needs to handle new mathematical concepts
 - need to output results in scientific language
- ▶ Generic method for **Interpretation in the language of the domain**
 - ▶ by finding coordinates from among domain-specific functions
 - ▶ non-parametric and non-linear
- ▶ Extended manifold learning from scalar functions to vector fields
 - ▶ first 1-Laplacian estimator
 - ▶ continuous limit derived
 - ▶ natural extensions of smoothing, semi-supervised learning to vector field data
 - ▶ perturbation result for prime manifold decomposition
 - ▶ algorithm for shortest loop basis

Summary – Manifold Learning beyond embedding algorithm

- ▶ Manifolds, vector fields, . . .
 - ▶ historically used for modeling scientific data
 - ▶ represented analytically
- NOW representations learned from data
 - machine learning needs to handle new mathematical concepts
 - need to output results in scientific language
- ▶ Generic method for **Interpretation in the language of the domain**
 - ▶ by finding coordinates from among domain-specific functions
 - ▶ non-parametric and non-linear
- ▶ Extended manifold learning from scalar functions to **vector fields**
 - ▶ first 1-Laplacian estimator
 - ▶ continuous limit derived
 - ▶ natural extensions of smoothing, semi-supervised learning to vector field data
 - ▶ perturbation result for prime manifold decomposition
 - ▶ algorithm for shortest loop basis

Samson Koelle, Yu-Chia Chen, Hanyu Zhang, Alon Milchgrub

Hugh Hillhouse (UW), Jim Pfaendtner (UW), Chris Fu (UW)
Stefan Chmiela, Cecilia Clementi, John Maddocks, Klaus Müller, Frank Noé, Christof Schütte
Alexandre Tkatchenko, Alvaro Vasquez-Mayagoitia

Thank you

References I