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Motivation – understanding data from a Molecular Dynamics simulation

original
ethanol data torsion 1

preprocessed torsion 2

I 2 rotation angles (torsions) describe this manifold

I Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?



scientific data driven
language coordinates
(torsions) (from DiffMaps, Isomap)

+ =

Idea Replace data driven coordinates with selected torsions
• Scientist: proposes a dictionary G with all variables of interest
• ML algorithm: outputs embedding φ,
• ManifoldLasso: finds new coordinates in G “equivalent” with φ ← our

algorithm

I Explanation
I = find manifold coordinates from among scientific variables of interest
I in the language of the domain
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scientific data driven with scientific
language coordinates interpretation
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+ =
G = {functions g} φ {gj1 , . . . gjd } ≡ gS ⊂ G

Idea Replace data driven coordinates with selected torsions
• Scientist: proposes a dictionary G with all variables of interest
• ML algorithm: outputs embedding φ,
• ManifoldLasso: finds new coordinates in G “equivalent” with φ ← our

algorithm

I Explanation
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Idea: Sparse regression in function space

homeomorphism
φ = h ◦ gS

manifold functions from G
coordinates (new coordinates)

Challenges

I sparse, non-linear regression problem

I ML coordinates φ defined up to
diffeomorphism

I hence, h cannot take parametric form

I we cannot choose a basis for h

I will not φk depends on single gj

I will not assume φ isometric

Dφ = DhDgS

Leibnitz Rule

I sparse linear regression
problem

I For every data i
I Y i = gradφ(ξi ),
I Xi = grad g1:p(ξ)
I βij = ∂h

∂gj
(ξi )

I Sparse linear system
Yi = Xiβi

I Constraint: subset S is same
for all i

Functional (Group) Lasso

I optimize

min
β

Jλ(β) = 1
2

n∑
i=1

||Yi − Xiβ i ||
2
2 + λ

∑
j

||βj ||, (ManifoldLasso)

I support S of β selects gj1,...js from G
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ManifoldLasso Algorithm

Given Data ξ1:n, dimM = d , embedding φ(ξ1:n), dictionary G = {g1:p}
1. Estimate tangent subspace at ξi by (weighted) PCA

2. Project dictionary functions gradients ∇gj on tangent subspace, obtain
X1:n ∈ Rd×p

3. Estimate gradients of φ1:k , obtain Y1:n ∈ Rd×m

By pull-back from embedding space φ

4. Solve GroupLasso(Y1:n,X1:n, d), obtain support S

min
β

Jλ(β) = 1
2

n∑
i=1

||Yi − Xiβ i ||22 + λ
∑
j

||βj ||, (ManifoldLasso)

Output S
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Ethanol MD simulation

regularization paths β1:p vs λ



Theory

I When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj1,...js

I Basic result

fS = h ◦ fS′ on U iff

rank

(
DfS
DfS′

)
= rankDfS′ on U

I When can GLasso recover S ?
(Simple) Incoherence Conditions

µ = max
i=1:n,j∈S,j′ 6∈S

|XT
ji Xj′ i |

‖Xji‖‖Xj′ i‖
ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑
i,k

ε2
ik

Theorem If, ‖X1:p‖ = 1, µν
√
d + σ

√
nd
λ

< 1 then βj = 0 for j 6∈ S .
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Recovery for ManifoldLasso



TangentSpaceLasso: ManifoldLasso without embedding

Simplification regress basis of TξM on gradients of gj



Experiments

Dataset n Na D d εN m n′ p
SwissRoll 10000 NA 51 2 .18 2 100 51 synthetic
RigidEthanol 10000 9 50 2 3.5 3 100 12
Ethanol 50000 9 50 2 3.5 3 100 12 skeleton G
Malonaldehyde 50000 9 50 2 3.5 3 100 12
Toluene 50000 16 50 1 1.9 2 100 30
Ethanol 50000 9 50 2 3.5 3 100 756 exhaustive G
Malonaldehyde 50000 9 50 2 3.5 3 100 756

φ Lasso |G|

p = dictionary size, m = embedding dimension, n = sample size for manifold

estimation, n′ = sample size for ManifoldLasso



Two-stage sparse recovery for exhaustive G, p = 756

Ethanol

Malonaldehyde



Tangent Space Lasso experiments



Summary of ManifoldLasso/FunctionalLasso

Technical contribution

I non-linear sparse regression in function spaces

I Method to push/pull vectors through mappings φ

I ManifoldLasso: regression of data driven coordinates φ1:m on
domain-specific functions G = {g1:p}

scientific data driven interpretable
language coordinates coordinates
(torsions)

+ =
I explains large scale structure with domain-relevant functions

I non-parametric; different from symbolic regression [Brunton et al. 2016,

Rudy et al. 2019]

I transmissible knowledge, compare embeddings from different experiments

I extensions: estimated ∇g, simultaneous explanation of multiple manifolds
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Learning with flows and vector fields [with Yu-chia Chen, Yoannis Kevrekidis]
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Why Laplacians? Why higher order?

The Laplacian L0 ∈ Rn×n is central to Manifold Learning
I embedding data by Diffusion Maps [Coifman, Lafon 2006]
I Spectral Clustering

I L0 related to Riemannian metric – captures geometry of M
I Function approximation
I Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

Higher order Laplacians ∆1, . . .∆k also capture geometry and topology of M
This talk

I estimate first order Laplacian (Helmholtzian) L1(M) from data
I calculate Helmholtz-Hodge decomposition of L1(M) from data
I Smoothing, function approximation, semi-supervised learning (Laplacian

regularization) for vector fields on manifolds
I Manifold prime decomposition (≈ Spectral clustering)
I find short loop bases
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Estimating the 1-Laplacian with samples from M

Manifold M

Samples X
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w
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L1 estimation for Molecular Dynamics data (malonaldehyde)
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Eigenfunctions of L1 – what are they useful for?

I Helmholtz-Hodge Decomposition classifies eigenfunctions of L1

C1
∼= RnE ∼= ImLdown

1︸ ︷︷ ︸
gradient

⊕NullL1︸ ︷︷ ︸
harmonic

⊕ ImLup
1︸ ︷︷ ︸

curl

I Analysis of vector fields on M
I Decompose onto harmonic, gradient, curl
I Smooth, predict, extend, complete a flow

I Analysis of M
I H1 = NullL1 Space of loops on M (1st co-homology space)
I dimH1 = β1 number of (independent loops)
I Find shortest loop basis



Helmholtz-Hodge
decomposition for ocean buoys
data
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simplicial complex (V ,E ,T )



Flow Smoothing



Flow Completion – Semi-Supervised Learning (SSL)
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Connected sum and manifold (prime) decomposition

The connected sum ? M =M1]M2:

1. removing two d-dimensional “disks” from M1

and M2 (shaded area)

2. gluing together two manifolds at the
boundaries

Existence of prime decomposition: factorize a manifold M =M1] · · · ]Mκ

into Mi ’s so that Mi is a prime manifold

I d = 2: classification theorem of surfaces ?

I d = 3: the uniqueness of the prime decomposition was shown by
Kneser-Milnor theorem ?

I d ≥ 5: ? proved the existence of factorization (but they might not be
unique)
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The decomposition of the higher-order homology embedding constructed
from the k-Laplacian [Chen,M NeurIPS 2021]

I L1 is nE × nE , operates on edges flows of neighborhood graph

I NullL1 = H1 harmonic space, β1 = dimH1

I Y is basis of H1 harmonic flows

I Y NOT UNIQUE

Harmonic Eigenfunctions Y (raw) vs. Z (decoupled)



Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable
manifold
I κ-fold connected sum: M =M1] · · · ]Mκ
I Hk (SC) (discrete) and Hk (M,R)

(continuous) are isomorphic. Also for every
Mi

I Works for any consistent method to build Lk
I We use our prior work ? for L1

2. No k-homology class is created/destroyed during the connected sum
I If dim(M) > k, then Hk (M1]M2) ∼= Hk (M1)⊕Hk (M2) ?
I [Technical] The eigengap of Lk is the min of each L̂(ii)

k :
δ = min{δ1, · · · , δκ}

3. Sparsely connected manifold
I Not too many triangles are created/destroyed during connected sum (for

k = 1)
I Empirically, the perturbation is small even when M is not sparsely

connected
I [Technical] Perturbations of `-simplex set Σ` are small (ε` and ε′` are small)

for ` = k, k − 1



Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable
manifold
I κ-fold connected sum: M =M1] · · · ]Mκ
I Hk (SC) (discrete) and Hk (M,R)

(continuous) are isomorphic. Also for every
Mi

I Works for any consistent method to build Lk
I We use our prior work ? for L1

2. No k-homology class is created/destroyed during the connected sum
I If dim(M) > k, then Hk (M1]M2) ∼= Hk (M1)⊕Hk (M2) ?
I [Technical] The eigengap of Lk is the min of each L̂(ii)

k :
δ = min{δ1, · · · , δκ}

3. Sparsely connected manifold
I Not too many triangles are created/destroyed during connected sum (for

k = 1)
I Empirically, the perturbation is small even when M is not sparsely

connected
I [Technical] Perturbations of `-simplex set Σ` are small (ε` and ε′` are small)

for ` = k, k − 1



Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable
manifold
I κ-fold connected sum: M =M1] · · · ]Mκ
I Hk (SC) (discrete) and Hk (M,R)

(continuous) are isomorphic. Also for every
Mi

I Works for any consistent method to build Lk
I We use our prior work ? for L1

2. No k-homology class is created/destroyed during the connected sum
I If dim(M) > k, then Hk (M1]M2) ∼= Hk (M1)⊕Hk (M2) ?
I [Technical] The eigengap of Lk is the min of each L̂(ii)

k :
δ = min{δ1, · · · , δκ}

3. Sparsely connected manifold
I Not too many triangles are created/destroyed during connected sum (for

k = 1)
I Empirically, the perturbation is small even when M is not sparsely

connected
I [Technical] Perturbations of `-simplex set Σ` are small (ε` and ε′` are small)

for ` = k, k − 1



Subspace perturbation

Theorem 1
Under Assumptions 1–3∥∥∥DiffLdown

k

∥∥∥2
≤
[

2
√
ε′k + ε

′
k +

(
1 +

√
ε′k

)2√
ε′k−1 + 4

√
εk−1

]2

(k + 1)2; and

∥∥DiffLup
k

∥∥2 ≤
[

2
√
ε′k + ε

′
k + 2εk + 4

√
εk

]2
(k + 2)2

,

and there exists a unitary matrix O ∈ Rβk×βk such that

∥∥∥YNk ,: − ŶNk ,:O
∥∥∥2

F
≤

8βk
[∥∥DiffLdown

k

∥∥2
+ ‖DiffLup

k ‖
2
]

min{δ1, · · · , δκ}
. (1)

I Assu. 2: no topology is destroyed/created

I Assu. 3: sparsely connected

I Nk : bound only simplexes that are not altered during connected sum
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Harmonic Embedding Spectral Decomposition Algorithm

In Simplicial complex (V ,E ,T ), weights
WV ,WE ,WT

1. Compute L1

2. Eigendecomposition

β1,Y ← Null(L1)

3. Independent Component Analysis

Z← ICAnoprewhite(Y)

Out Z



Outline

Manifold coordinates with Scientific meaning

Machine Learning 1-Laplacians, topology, vector fields
1-Laplacian ∆1(M) estimation from samples
Analysis of vector fields – Helmholtz-Hodge decomposition
Harmonic Embedding Spectral Decomposition Algorithm
Spectral Shortest Homologous Loop Detection



Spectral Shortest Homologous Loop Detection

In Z = [z1, . . . zβ1 ], (V ,E), edge lengths dE

for l = 1 : β1

1. Remove edges e with low |Zle |, keep top
1/β1 fraction Ekeep

2. Construct Gl = (V ,Ekeep), edge weights dE
3. Repeat for a lot of edges in Ekeep

3.1 select e = (t, s0) ∈ Ekeep

3.2 find shortest path s0 to t
Pe ←Dijkstra(V ,Ekeep \ {e}, s0, t, dE )

4. Cl ← argmine length(loop(Pe))

Out loops C1:β1



Shortest loop basis on real data

RNA single cell sculpture ocean buoys retina



Summary – Manifold Learning beyond embedding algorithm

I Manifolds, vector fields, . . .
I historically used for modeling scientific data
I represented analytically

NOW representations learned from data
• machine learning needs to handle new mathematical concepts
• need to output results in scientific language

I Generic method for Interpretation in the language of the domain
I by finding coordinates from among domain-specific functions
I non-parametric and non-linear

I Extended manifold learning from scalar functions to vector fields
I first 1-Laplacian estimator
I continuous limit derived
I natural extensions of smoothing, semi-supervised learning to vector field

data
I perturbation result for prime manifold decomposition
I algorithm for shortest loop basis
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