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» 2 rotation angles (torsions) describe this manifold

» Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?
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Idea Replace data driven coordinates with selected torsions
e Scientist: proposes a dictionary G with all variables of interest
e ML algorithm: outputs embedding ¢,
e MANIFOLDLASSO: finds new coordinates in G “equivalent” with ¢ < our
algorithm



coordinates

scientific data driven with scientific
language coordinates interpretation
(torsions) (from DiffMaps, Isomap) (selected torsions)

»
, y

¢ £ - f

G = {functions g} 1) {8y, -8, =85CG

Idea Replace data driven coordinates with selected torsions

e Scientist: proposes a dictionary G with all variables of interest

e ML algorithm: outputs embedding ¢,

e MANIFOLDLASSO: finds new coordinates in G “equivalent” with ¢ < our
algorithm

» Explanation

» = find manifold coordinates from among scientific variables of interest
» in the language of the domain
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Challenges
sparse, non-linear regression problem

ML coordinates ¢ defined up to
diffeomorphism

hence, h cannot take parametric form
we cannot choose a basis for h
will not ¢, depends on single g;

will not assume ¢ isometric

D¢ = DhDgs
Leibnitz Rule

» sparse linear regression
problem
» For every data i
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X = grad g1:p(€)
5 = 2(6)

Sparse linear system
Yi = XiBi



Idea: Sparse regression in function space

¢ = hogs

manifold functions from G

coordinates (new coordinates)

vy

vvyVvyy

Challenges
sparse, non-linear regression problem

ML coordinates ¢ defined up to
diffeomorphism

hence, h cannot take parametric form
we cannot choose a basis for h
will not ¢, depends on single g;

will not assume ¢ isometric

D¢ = DhDgs
Leibnitz Rule

» sparse linear regression
problem
» For every data i
> Y =grado(&),
> X = grad g1:p(€)
> 5y = 2(€)

»> Sparse linear system
Yi = XiBi

» Constraint: subset S is same
for all 7



Idea: Sparse regression in function space

D¢ = DhDgs
¢ = hogs
manifold functions from G Leibnitz Rule
coordinates (new coordinates)
Challenges » sparse linear regression
problem

» sparse, non-linear regression problem .
» For every data i

> . .
ML coordme.xtes ¢ defined up to > Y, =grad ¢(&),
diffeomorphism > X = grad g1.5(8)

» hence, h cannot take parametric form > B = Bg L&)

» we cannot choose a basis for h > Sparse linear system

» will not ¢ depends on single g Yi = Xifi

» will not assume & isometric » Constraint: subset S is same

) for all i

Functional (Group) Lasso

» optimize
mﬁmJA = 2Z:HY XiB; ||2+)\ZH3|I, (MANIFOLDLASSO)

» support S of [ selects gj,,...;. from G
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Given Data &1.,, dim M = d, embedding ¢(&1:n), dictionary G = {g1.,}
1. Estimate tangent subspace at ¢; by (weighted) PCA
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MANIFOLDLASSO Algorithm

Given Data &1.,, dim M = d, embedding ¢(&1:n), dictionary G = {g1.,}
1. Estimate tangent subspace at ¢; by (weighted) PCA

2. Project dictionary functions gradients Vgj on tangent subspace, obtain
Xl:n S Rpr

3. Estimate gradients of ¢., obtain Y., € RIX™
By pull-back from embedding space ¢
4. Solve GROUPLASSO( Yi.n, X1:n, d), obtain support S

n
min IAB) = 3D Y= XiBilB+ 2D 1B)ll,  (MANIFOLDLASSO)
i=1 i

Output S



Ethanol MD simulation
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Theory

» When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj,..j,
» Basic result

fs = hofs on U iff

Dfs B
rank( Dfe, ) = rank Dfs;  on U



Theory

» When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj,..j,

» Basic result
fs = hofs on U iff

Dfs B
rank( Dfe, ) = rank Dfs;  on U

» When can GLASSO recover S ?
(Simple) Incoherence Conditions

max 7|X;Xj,[| v Y et = ng
i=tnjes.ygs || Xl [ Xyl minj=1n [ X5 Xis] |2 il
,

‘LL:

Theorem If, || X1, = 1, pvv/d + ”Tm < 1then 3 =0forj¢&S.



Recovery for MANIFOLDILLASSO

Theorem 7 (Support recovery) Assume that equation (30) holds, and that 3" 1||I"J'H2 = 'yf

forall j =1:p. Let Ve = max;gs vy, K5 = INAX;—1:n :::;:: |||: I” Denote by B the solution of

(31) for some A > 0. If1 — (s — L)p > 0 and

2 K ovid
— ] <1 ar
“‘“’“(1f(s71)min;;1minfes ||mur||+,\w‘») . (37)

then fi; =0 forjg S and alli=1,...n

Corollary 8 Assume that equation (31) and condition (37) hold. Let k = +— {:" T T FE Y
1 i'es 57
Fmax Tyl

and g = HX-;” Denote by | f the solution to problem (31) for some A = 0. If (1) h = ef=2T2s,
c>1, and (2) ||8;]] = OV (Vomax + 7s) + A1+ /5) for all j € 8, then the support § is recovered
eractly and

. 1 .
1By 551 < 0V +7)+ M1+ VE) = Vi [ 1415 s + e | forallj € 5.



TANGENTSPACELASSO: MANIFOLDLASSO without embedding

Simplification regress basis of 7¢. M on gradients of g;

Proposition 2 (after (?)). Ler F, f]- be dictionary and dic-
tionary functions on the d—dimensional smooth manifold
M. Assume f; € C* with ¢ > d+ 1. Suppose § C [p],
and denote by grad fs the R%® matrix of concatenated
grad f; : f € S. Then, if there is a subset 8’ C S such that
the following rank condition holds globally:

rank (:::g;;) = rankgrad fg . )

Then there exists a function h which is C* almost every-
where in the image of fs (M) such that fs = ho fs

g = sup IXT, X 5)
cemoges s e U

vg = sup aT(Xg‘EX&E)’la. ©6)

EeMPacRY:|a|z=1

Proposition 3. Assume that

1. M is d—dimensional C* compact manifold with
strictly positive reach.

2. Data & are sampled from some density p on M with
p > 0all over M.

3. & € M°® with probability 1 under p.

Let S be the 'true’ support, S(ﬁ) be the support selected
by TSLASSO, ps and vs be defined by (5) and (6), and
Surther assume

4. |S|=4d
5. Dfs has rank d on M°,
6. psvsd < 1.

Then if we adapt the tangent space estimation algorithm in
(?) with bandwidth choice h = O(logn/(n — 1))%, with
n > (1 — psvsd) /2vsd)¥ %=1 we have

Pris@)c 8 >1-0 ((%)ﬁ) .



Experiments

Dataset n N, D d en m n P
SwissRoll 10000 | NA | 51 | 2 | .18 | 2 100 51 synthetic
RigidEthanol 10000 9 50 | 2 | 35| 3 100 12
Ethanol 50000 9 50 | 2 | 35| 3 100 12 skeleton G
Malonaldehyde | 50000 9 50 | 2 | 35| 3 100 12
Toluene 50000 | 16 | 50 | 1 | 1.9 | 2 100 30
Ethanol 50000 9 50 | 2 |35 3 100 756 | exhaustive G
Malonaldehyde | 50000 9 50 | 2 | 35| 3 100 756

o Lasso | [G]

p = dictionary size, m = embedding dimension, n = sample size for manifold
estimation, n’ = sample size for MANIFOLDLASSO



Two-stage sparse recovery for exhaustive G, p = 756
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Tangent Space Lasso experiments
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Summary of MANIFOLDLASSO/FUNCTIONALLASSO

Technical contribution
» non-linear sparse regression in function spaces
» Method to push/pull vectors through mappings ¢

» MANIFOLDLASSO: regression of data driven coordinates ¢1.,, on
domain-specific functions G = {gi1:» }

scientific data driven interpretable
language coordinates coordinates
(torsions)
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Summary of MANIFOLDLASSO/FUNCTIONALLASSO

Technical contribution
» non-linear sparse regression in function spaces
» Method to push/pull vectors through mappings ¢

» MANIFOLDLASSO: regression of data driven coordinates ¢1.,, on
domain-specific functions G = {gi.p}

scientific data driven interpretable
language coordinates coordinates
(torsions)
*
€ R p
; N f
+ & o=k

» explains large scale structure with domain-relevant functions

» non-parametric; different from symbolic regression [Brunton et al. 2016,
Rudy et al. 2019]

» transmissible knowledge, compare embeddings from different experiments

> extensions: estimated Vg, simultaneous explanation of multiple manifolds



Learning with flows and vector fields [with Yu-chia Chen, Yoannis Kevrekidis|

1-Laplacian estimation
Directed graph embedding [Arxiv:2103.07626)
Manifold + vector field [NIPS 2011] il ez

Independent loops
[Arxiv:2107.10970]
[NeurlPS 2021]

Smoothed vector fields <\
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Machine Learning 1-Laplacians, topology, vector fields
1-Laplacian A;(M) estimation from samples
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The Laplacian £o € R"*" is central to Manifold Learning

» embedding data by Diffusion Maps [Coifman, Lafon 2006]
» Spectral Clustering



Why Laplacians? Why higher order?

The Laplacian £o € R"*" is central to Manifold Learning

» embedding data by Diffusion Maps [Coifman, Lafon 2006]
» Spectral Clustering

Ly related to Riemannian metric — captures geometry of M
Function approximation
Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

vvyy



Why Laplacians? Why higher order?

The Laplacian £o € R"*" is central to Manifold Learning

» embedding data by Diffusion Maps [Coifman, Lafon 2006]
» Spectral Clustering
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» calculate Helmholtz-Hodge decomposition of £1(M) from data



Why Laplacians? Why higher order?

The Laplacian £o € R"*" is central to Manifold Learning

>
>

>
>
>

embedding data by Diffusion Maps [Coifman, Lafon 2006]
Spectral Clustering

Ly related to Riemannian metric — captures geometry of M
Function approximation
Smoothing, semi-supervised learning (Laplacian regularization) on manifolds

Higher order Laplacians Ay, ... Ak also capture geometry and topology of M
This talk

>
>
>

estimate first order Laplacian (Helmholtzian) £1(M) from data
calculate Helmholtz-Hodge decomposition of £1(M) from data
Smoothing, function approximation, semi-supervised learning (Laplacian
regularization) for vector fields on manifolds

Manifold prime decomposition (& Spectral clustering)

find short loop bases



Estimating the 1-Laplacian with samples from M

SC, = (V,E,T)
'/’—*.\ A Y

h/ e=(s, ]EE\
\ waX< Xill <5
\ \,
\ VRComplex ‘\
t=(s,t,u)eT '\

~p—

if(s tu),(s,u) € E
—— Manifold M\ \l\ /
Samples X \_ / <
L£ovn = B{ Wy 'BeWe -
L =W BtWrBL we(xy) = o)

— wrl(x Y% +wrlx Y2

4
£y = a_Ltliown +b- L

[61 = R"t = gradient @ harmonic & curl}




L1 estimation for Molecular Dynamics data (malonaldehyde)
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Machine Learning 1-Laplacians, topology, vector fields

Analysis of vector fields — Helmholtz-Hodge decomposition



Eigenfunctions of £1 — what are they useful for?

» Helmholtz-Hodge Decomposition classifies eigenfunctions of £

C1 2R 2 Im LY @ Null £, & Im LIP
Ne— N —

gradient harmonic curl

» Analysis of vector fields on M

» Decompose onto harmonic, gradient, curl
» Smooth, predict, extend, complete a flow

» Analysis of M
» Hi = NullL; Space of loops on M (1st co-homology space)
» dimH1 = B1 number of (independent loops)
» Find shortest loop basis



Helmholtz-Hodge

decomposition for ocean buoys
data
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Flow Smoothing

1. Smoothed flow: @ = (I + aL§) 'w
2. Obtain vertex-wise vector field by
solving a linear system

Build SC, &
edge flow

2XE 12°W  16W  80°W 100°E 152°W  116°W  80°W 100°E 1B2XW 16W 80w



Flow Completion — Semi-Supervised Learning (SSL)
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Machine Learning 1-Laplacians, topology, vector fields

Harmonic Embedding Spectral Decomposition Algorithm



Connected sum and manifold (prime) decomposition

The connected sum ? M = M1iMo:
removing two d-dimensional “disks” from M; :

1.

and M, (shaded area)
gluing together two manifolds at the

boundaries



Connected sum and manifold (prime) decomposition

The connected sum ? M = M1iMo:
1. removing two d-dimensional “disks” from M; i o
and M, (shaded area) [ \ /M

2. gluing together two manifolds at the

boundaries MM,

Existence of prime decomposition: factorize a manifold M = Mif--- M,
into M;’s so that M; is a prime manifold

» d = 2: classification theorem of surfaces ?

» d = 3: the uniqueness of the prime decomposition was shown by
Kneser-Milnor theorem ?

» d >5: 7 proved the existence of factorization (but they might not be
unique)



The decomposition of the higher-order homology embedding constructed
from the k-Laplacian [Chen,M NeurlPS 2021]

» L1 is ng X ng, operates on edges flows of neighborhood graph
» Null £1 = H1 harmonic space, f1 = dimH1

» Y is basis of H1 harmonic flows

> Y NOT UNIQUE

Harmonic Eigenfunctions Y (raw) vs. Z (decoupled)

1 coordinate  2™%ocordinate 3™ coordinate 4™ coordinate




Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable

manifold
» x-fold connected sum: M = M- M,

> H,(SC) (discrete) and Hx(M,R) M \ /M
(continuous) are isomorphic. Also for every
i
P Works for any consistent method to build £y MitMs
» We use our prior work ? for £;
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Connected sum as a matrix perturbation: Assumptions

1. Points are sampled from a decomposable

manifold
» x-fold connected sum: M = M- M,

> H,(SC) (discrete) and Hx(M,R) M \ /M
(continuous) are isomorphic. Also for every
i
P Works for any consistent method to build £y MitMs
» We use our prior work ? for £;

2. No k-homology class is created/destroyed during the connected sum

> If dim(M) > k, then Hyx(M1iM2) = Hi(M1) & Hi(M2) ?
» [Technical] The eigengap of Ly is the min of each [Ali"):
0 =min{dy,---,0x}

3. Sparsely connected manifold

> Not too many triangles are created/destroyed during connected sum (for
k=1)

» Empirically, the perturbation is small even when M is not sparsely
connected

» [Technical] Perturbations of £-simplex set ¥, are small (e, and €, are small)
forl =k, k—1



Subspace perturbation

Theorem 1
Under Assumptions 1-3

2
< [2\/Q+e; +(1+ ﬁ)z e, +4m} (k+1)% and
IDIFLLP [ < [2/¢f + e + 26 +4\/a]2 (k+2),

and there exists a unitary matrix O € R°<*5« such that

|| DiffLlow™

865 ||| DiffLL™|* + DiffLy? ]
min{d1,---,dx}

R 2
HYNk,: - YNk,:OH S
F



Subspace perturbation

Theorem 1
Under Assumptions 1-3

2
< [2\/Q+e; +(1+ ﬁ)z e, +4m} (k+1)% and
IDIFLLP [ < [2/¢f + e + 26 +4\/a]2 (k+2),

and there exists a unitary matrix O € R°<*5« such that

|| DiffLIo™™

85k [HDifFL‘kl‘“W“H2 + ||Difﬂ_zp||2]
min{d1, - ,dx} '

R 2
HYNk,: _YNk,:OHF S (1)

» Assu. 2: no topology is destroyed/created



Subspace perturbation

Theorem 1
Under Assumptions 1-3

2
< [2\/g+e; +(1+ ﬁ)z e, +4m} (k+1)% and
IDIFLLP [ < [2/¢f + e + 26 +4\/a]2 (k+2),

and there exists a unitary matrix O € R°<*5« such that

|| DiffLlow™

85k [HDifFL‘EO‘V“W + ||DifFijp\|2]
min{d1, -+ ,0.} '

R 2
Y Vo0 < 8

» Assu. 2: no topology is destroyed/created

» Assu. 3: sparsely connected



Subspace perturbation

Theorem 1
Under Assumptions 1-3

2
< [2\/Q+e; +(1+ ﬁ)z e, +4m} (k+1)% and
IDIFLLP [ < [2/¢f + e + 26 +4\/a]2 (k+2),

and there exists a unitary matrix O € R°<*5« such that

|| DiffLlow™

2 8Bk [HDifFL‘iO‘V“W + ||DifFL‘k‘p\|2]

Nicr HF_ min{d1, -+ ,0.}

oo

» Assu. 2: no topology is destroyed/created
» Assu. 3: sparsely connected

» Ny: bound only simplexes that are not altered during connected sum



Harmonic Embedding Spectral Decomposition Algorithm

In Simplicial complex (V, E, T), weights
WV>WE7WT

1. Compute £;

2. Eigendecomposition
,31,Y < NU//([:l)

3. Independent Component Analysis

Z < ICANOPREWHITE(Y)

Out Z
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Machine Learning 1-Laplacians, topology, vector fields

Spectral Shortest Homologous Loop Detection



Spectral Shortest Homologous Loop Detection

In Z =[z1,...25], (V,E), edge lengths dg

forl=1:05

1. Remove edges e with low |Z|, keep top
1/ fraction Ejeep

2. Construct Gy = (V, Ekeep), edge weights de

3. Repeat for a lot of edges in Ejeep

3.1 select e = (t, %) € Ekeep
3.2 find shortest path sp to t
Pe <—DUIKSTRA(V, Ejeep \ {€}, S0, t, dE)

4. C; < argmin, length(loop(P.))
Out loops Ci.,

Yy




Shortest loop basis on real data

RNA single cell sculpture ocean buoys retina




Summary — Manifold Learning beyond embedding algorithm

» Manifolds, vector fields, ...

» historically used for modeling scientific data
> represented analytically
NOW representations learned from data
e machine learning needs to handle new mathematical concepts
e need to output results in scientific language
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Summary — Manifold Learning beyond embedding algorithm

» Manifolds, vector fields, ...
» historically used for modeling scientific data
> represented analytically
NOW representations learned from data
e machine learning needs to handle new mathematical concepts
e need to output results in scientific language

» Generic method for Interpretation in the language of the domain
» by finding coordinates from among domain-specific functions
» non-parametric and non-linear
» Extended manifold learning from scalar functions to vector fields
» first 1-Laplacian estimator
» continuous limit derived
» natural extensions of smoothing, semi-supervised learning to vector field
data
> perturbation result for prime manifold decomposition
» algorithm for shortest loop basis
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Thank you
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