Overcoming the curse of dimensionality with deep neural networks

Sophie Langer Paris, 03 October 2022 Based on joint work with Alina Braun, Adam Krzyżak, Michael Kohler, Harro Walk

UNIVERSITY OF TWENTE.

Deep learning is amazing...

https://azati.ai/image-detection-recognition-and-classification-withmachine-learning/

...and sometimes pretty easy to fool

	Grann iPod library pizza toaste dough
iPod	Grann <mark>iPod</mark> library pizza toaste

Granny Smith	85.6%
iPod	0.4%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.1%

1	iPod	-
1	The	

Granny Smith	0.1%
iPod	99.7%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.0%

https://openai.com/blog/multimodal-neurons/

Computers are now able to learn on their own, but why?

- Lack of explainability and transparency leads to an unreliable method
- Decisions potentially made by deep learning methods often result in legal and ethical implications
 - Autonomous driving
 - Diagnostic imaging
- Theoretical analysis could improve methods in practice
- Better structure for existing results

The problem

Explaining the procedure is a highly complex task

Three aspects

$$X = \{Images\}$$

$$\xrightarrow{f: X \to Y} Y = \{Muffin, Chiwawa\}$$

 $X = \{Images\}$

$$\xrightarrow{f: X \to Y} Y = \{Muffin, Chiwawa\}$$

Mathematical problem

X={Images}

Model

Mathematical problem

X={Images}

Model

In practice, the loss is minimized using (variants of) gradient descent.

Mathematical problem

How fast does the estimated network converge to the truth function f as sample size increases?

Prediction problem

- Given a ℝ^d × ℝ-valued random vector (X, Y) with E{Y²} < ∞
 Functional relation between X and Y?
- Choose $f^*: \mathbb{R}^d \to \mathbb{R}$ such that

$$\mathsf{E}\left\{|f^*(\mathsf{X})-Y|^2\right\} = \min_{f:\mathbb{R}^d \to \mathbb{R}} \mathsf{E}\left\{|f(\mathsf{X})-Y|^2\right\}.$$

• One can show that $f^*(\mathbf{x}) = m(\mathbf{x}) = \mathbf{E}\{Y|\mathbf{X} = \mathbf{x}\} \rightsquigarrow$ regression function

Nonparametric regression

- Problem: Distribution of (**X**, *Y*) is unknown
- But: We have given *n* copies of (**X**, *Y*)
 → D_n = {(**X**₁, *Y*₁), ..., (**X**_n, *Y*_n)} (i.i.d.)
- Aim: Construct an estimator

$$m_n(\cdot) = m_n(\cdot, \mathcal{D}_n) : \mathbb{R}^d \to \mathbb{R},$$

such that the L_2 risk

$$\int |m_n(\mathbf{x}) - m(\mathbf{x})|^2 d\mathbf{x}$$

is *small*.

Activation function $\sigma:\mathbb{R}\to\mathbb{R}$

We study the ReLU activation function σ(x) = max{x,0}

Network architecture (L, \mathbf{k})

- Positive integer *L* denoting the *number of hidden layers*
- width vector $\mathbf{k} = (k_1, \dots, k_L) \in \mathbb{N}^L$

Neural network with network architecture (L, \mathbf{k})

$$f: \mathbb{R}^d \to \mathbb{R}, \quad \mathbf{x} \mapsto W_{L+1} \sigma_{\mathbf{v}_L} W_L \sigma_{\mathbf{v}_{L-1}} \cdots W_2 \sigma_{\mathbf{v}_1} W_1 \mathbf{x}$$

Network parameters

- W_i is a $k_i \times k_{i-1}$ matrix
- $\mathbf{v}_i \in \mathbb{R}^{k_i}$

Graphical equivalence

Neural network with network architecture (2,(5,5))

Empirical risk minimization

$$\tilde{m}_n(\cdot) = \operatorname{argmin}_{f \in \mathcal{F}(L_n, r_n)} \frac{1}{n} \sum_{i=1}^n |f(\mathbf{X}_i) - Y_i|^2$$

and set $m_n(\mathbf{x}) = T_{c \cdot \log(n)} \tilde{m}_n(\mathbf{x}) = \max\{-c \cdot \log(n), \min\{\mathbf{x}, c \cdot \log(n)\}\}$

Analyse the expected L_2 error

$$\mathbf{E}\int |m_n(\mathbf{x})-m(\mathbf{x})|^2\,\mathbf{P}_{\mathbf{X}}(d\mathbf{x})$$

 \rightsquigarrow Study the dependence of *n* (convergence rate)

- Classical approach: Regression function is (p, C)-smooth
- Optimal rate: $n^{-\frac{2p}{2p+d}}$ (Stone (1982))

- Classical approach: Regression function is (p, C)-smooth
- Optimal rate: $n^{-\frac{2p}{2p+d}}$ (Stone (1982))

 \rightsquigarrow suffers from the curse of dimensionality

- Classical approach: Regression function is (p, C)-smooth
- Optimal rate: n^{-2p/(2p+d)} (Stone (1982))
 → suffers from the curse of dimensionality
- For a better understanding of deep learning, this setting is useless
- Aim: Find a proper structural assumption on *m*, such that neural network estimators can achieve good convergence results even in high dimensions

The choice of the function class

Additive models

• $m(\mathbf{x}) = \sum_{k=1}^{K} g_k(x_k)$ with $g_k : \mathbb{R} \to \mathbb{R}$ (p, C)-smooth Optimal rate $n^{-\frac{2p}{2p+1}}$ (Stone (1985))

The choice of the function class

Additive models

- $m(\mathbf{x}) = \sum_{k=1}^{K} g_k(x_k)$ with $g_k : \mathbb{R} \to \mathbb{R}$ (p, C)-smooth Optimal rate $n^{-\frac{2p}{2p+1}}$ (Stone (1985))
- Interactionmodels

$$m(\mathbf{x}) = \sum_{I \subset \{1,\ldots,d\}, |I| \leq d^*} g_I(x_I)$$

with $g_I(x_I) : \mathbb{R}^{|I|} \to \mathbb{R}$ (p, C)-smooth Optimal rate $n^{-\frac{2p}{2p+d^*}}$ (Stone (1995))

 \rightsquigarrow For both models the rate does not depend on d anymore

Single index model

$$m(\mathbf{x}) = g(\mathbf{a}^T \mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d$$

with $g: \mathbb{R} \to \mathbb{R}$ (p, C)-smooth and $\mathbf{a} \in \mathbb{R}^d$ being a *d*-dimensional vector.

Single index model

$$m(\mathbf{x}) = g(\mathbf{a}^T \mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d$$

with $g : \mathbb{R} \to \mathbb{R}$ (p, C)-smooth and $\mathbf{a} \in \mathbb{R}^d$ being a *d*-dimensional vector.

Projection pursuit model

$$m(\mathbf{x}) = \sum_{k=1}^{K} g_k(\mathbf{a}_k^T \mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d$$

for $K \in \mathbb{N}$, $g_k : \mathbb{R} \to \mathbb{R}$ (p, C)-smooth and $\mathbf{a}_k \in \mathbb{R}^d$ \rightsquigarrow Optimal rate $n^{-\frac{2p}{2p+1}}$ (Györfi et al. (2002))

- With all models one can circumvent the curse of dimensionality
- But: Rates can only be obtained in practice if the true (then unknown) regression function corresponds to this structure
- \rightsquigarrow Goal: Low assumptions on the regression function that allow good rate of convergence results

The choice of the function class

Im many applications the corresponding functions show some sort of a hierarchical structure:

- Image processing: Pixel \rightarrow Edges \rightarrow Local patterns \rightarrow object

Hierarchical composition model:

a) We say that *m* satisfies a *hierarchical composition model of level 0*, if there exists a $K \in \{1, ..., d\}$ such that

 $m(\mathbf{x}) = x_K$ for all $\mathbf{x} \in \mathbb{R}^d$.

Hierarchical composition model:

a) We say that *m* satisfies a *hierarchical composition model of level 0*, if there exists a $K \in \{1, ..., d\}$ such that

$$m(\mathbf{x}) = x_{\mathcal{K}}$$
 for all $\mathbf{x} \in \mathbb{R}^d$.

b) We say that *m* satisfies a *hierarchical composition model of level* l + 1, if there exist a $K \in \mathbb{N}$, $g : \mathbb{R}^K \to \mathbb{R}$ and $f_1, \ldots, f_K : \mathbb{R}^d \to \mathbb{R}$ such that f_1, \ldots, f_K satisfy a hierarchical composition model of level l and

$$m(\mathbf{x}) = g(f_1(\mathbf{x}), \dots, f_{\mathcal{K}}(\mathbf{x}))$$
 for all $\mathbf{x} \in \mathbb{R}^d$

Hierarchical composition model - Example

Illustration of a hierarchical composition model of level 2

Example: Additive model

$$m(\mathbf{x}) = \sum_{k=1}^{3} g_k(x_k)$$

If we choose

$$g_1^{(1)}(\mathbf{x}) = g_1(x_1), \quad g_2^{(1)}(\mathbf{x}) = g_2(x_2), \quad g_3^{(1)}(\mathbf{x}) = g_3^{(1)} = g_3(x_3)$$

and $g_1^{(2)}(\mathbf{y}) = \sum_{i=1}^3 y_i$

 \rightsquigarrow Additive models can be written as hierarchical composition models of level 2

The hierarchical composition model satisfies the smoothness and order constraint \mathcal{P} , if

- $\mathcal{P} \subseteq [1,\infty) \times \mathbb{N}$
- all functions g satisfy $g : \mathbb{R}^K \to \mathbb{R}$ and g is (p, C)-smooth for some $(p, K) \in \mathcal{P}$

The hierarchical composition model satisfies the smoothness and order constraint \mathcal{P} , if

- $\mathcal{P} \subseteq [1,\infty) imes \mathbb{N}$
- all functions g satisfy $g : \mathbb{R}^K \to \mathbb{R}$ and g is (p, C)-smooth for some $(p, K) \in \mathcal{P}$

Further assumptions

- all functions g are Lipschitz continuous
- $E(\exp(c \cdot Y^2)) < \infty$ and $\operatorname{supp}(X)$ is bounded

Theorem(Schmidt-Hieber (2020)): If

- $L \asymp \log(n)$
- $r \asymp n^C$, with $C \ge 1$
- network sparsity $\asymp \max_{(p,K)\in\mathcal{P}} n^{\frac{K}{2p+K}} \cdot \log(n).$

the neural network estimator with ReLU activation function achieves the rate of convergence

$$\max_{(p,K)\in\mathcal{P}} n^{-\frac{2p}{2p+K}}.$$

Result of Bauer and Kohler (2019): For a generalized hierarchical interaction model a sparse neural network estimator with sigmoidal activation function achieves a rate of convergence

$$n^{-\frac{2p}{2p+d^*}}$$

Remark

Sparse neural network estimators are able circumvent the curse of dimensionality

Remark

Sparse neural network estimators are able circumvent the curse of dimensionality

Conjecture

In order to achieve good rate of convergence results, one should use neural networks, which are not fully connected.

Remark

Sparse neural network estimators are able circumvent the curse of dimensionality

Conjecture

In order to achieve good rate of convergence results, one should use neural networks, which are not fully connected. \rightsquigarrow This is **not true**!
Result for fully connected neural network estimators

Theorem: If

- number of hidden layer $L_n \asymp \max_{(p,K) \in \mathcal{P}} n^{\frac{K}{2 \cdot (2p+K)}}$
- number of neurons $r_n = \lceil \tilde{c} \rceil$

or

- number of hidden layer $L_n \simeq \log(n)$
- number of neurons $r_n \simeq \max_{(p,K) \in \mathcal{P}} n^{\frac{K}{2 \cdot (2p+K)}}$.

Result for fully connected neural network estimators

Theorem: If

- number of hidden layer $L_n \asymp \max_{(p,K) \in \mathcal{P}} n^{\frac{K}{2 \cdot (2p+K)}}$
- number of neurons $r_n = \lceil \tilde{c} \rceil$

or

- number of hidden layer $L_n \simeq \log(n)$
- number of neurons $r_n \asymp \max_{(p,K) \in \mathcal{P}} n^{\frac{K}{2 \cdot (2p+K)}}$.

Then

$$\mathsf{E}\int |m_n(\mathsf{x})-m(\mathsf{x})|^2 \mathsf{P}_{\mathsf{X}}(d\mathsf{x}) \lesssim (\log(n))^6 \cdot \max_{(p,K)\in\mathcal{P}} n^{-rac{2p}{2p+K}}.$$

Advantage of full connectivity

Topology of the network is much easier in view of an implementation of a corresponding estimator:

Listing 1: Python code for fitting of fully connected neural networks to data x_{learn} and y_{learn}

```
model = Sequential()
model.add(Dense(d, activation="relu", input_shape=(d,)))
for i in np.arange(L):
    model.add(Dense(K, activation="relu"))
model.add(Dense(1))
model.compile(optimizer="adam",
                              loss="mean_squared_error")
model.fit(x=x_learn,y=y_learn)
```

Other possible assumptions

- Kohler, Langer and Krzyżak(2022) assume regression functions with low local dimensionality d* and show a rate n^{-2p/(2p+d*)} for NN estimators
- Barron(1993,1994) assumes regression functions with

 $\int \|\mathbf{w}\|_1 |\mathcal{F}m(\mathbf{w})| d\mathbf{w} < \infty,$

where

$$\mathcal{F}m(\boldsymbol{\xi}) = \int e^{-i\boldsymbol{\xi}^T \mathbf{x}} m(\mathbf{x}) d\mathbf{x}$$

and shows a rate $1/\sqrt{n}$ for shallow NN estimators

 In case of a mixed smooth Besov space, Suzuki (2018) shows a dimension-free rate for NN estimators

- Results mainly focus on the structure of the underlying regression function
- Less results explore the geometric properties of the data Are estimators based on networks able to exploit the structure of the input data?
- Assumption: **X** is concentrated on some d^* -dimensional Lipschitz-manifold

d*-dimensional Lipschitz-manifold

Formal definition: Let $\mathcal{M} \subseteq \mathbb{R}^d$ be compact and let $d^* \in \{1, \ldots, d\}$.

a) We say that U_1, \ldots, U_r is an open covering of \mathcal{M} , if $U_1, \ldots, U_r \subset \mathbb{R}^d$ are open (with respect to the Euclidean topology on \mathbb{R}^d) and satisfy

$$\mathcal{M}\subseteq \bigcup_{I=1}^r U_I.$$

d*-dimensional Lipschitz-manifold

Formal definition: Let $\mathcal{M} \subseteq \mathbb{R}^d$ be compact and let $d^* \in \{1, \ldots, d\}$.

a) We say that U_1, \ldots, U_r is an open covering of \mathcal{M} , if $U_1, \ldots, U_r \subset \mathbb{R}^d$ are open (with respect to the Euclidean topology on \mathbb{R}^d) and satisfy

$$\mathcal{M}\subseteq \bigcup_{l=1}^r U_l.$$

b) We say that

$$\psi_1,\ldots,\psi_r:[0,1]^{d^*}\to\mathbb{R}^d$$

are bi-Lipschitz functions, if there exists 0 < $C_{\psi,1}$ \leq $C_{\psi,2}$ $<\infty$ such that

$$C_{\psi,1} \cdot \|\mathbf{x}_1 - \mathbf{x}_2\| \le \|\psi_l(\mathbf{x}_1) - \psi_l(\mathbf{x}_2)\| \le C_{\psi,2} \cdot \|\mathbf{x}_1 - \mathbf{x}_2\|$$
(1)

holds for any $\mathbf{x}_1, \mathbf{x}_2 \in [0, 1]^{d^*}$ and any $l \in \{1, \dots, r\}$.

c) We say that \mathcal{M} is a d^* -dimensional Lipschitz-manifold if there exist bi-Lipschitz functions $\psi_i : [0,1]^{d^*} \to \mathbb{R}^d$ ($i \in \{1,\ldots,r\}$), and an open covering U_1,\ldots,U_r of \mathcal{M} such that

$$\psi_l((0,1)^{d^*}) = \mathcal{M} \cap U_l$$

holds for all $l \in \{1, ..., r\}$. Here we call $\psi_1, ..., \psi_r$ the *parametrizations* of the manifold.

Theorem: If

- X is concentrated on a d^* -dimensional Lipschitz manifold $\mathcal M$
- $L_n \asymp \log(n)$
- $r_n \asymp n^{d^*/(2(2p+d^*))}$

Then

$$\mathbf{E}\int |m_n(\mathbf{x})-m(\mathbf{x})|^2 \mathbf{P}_{\mathbf{X}}(d\mathbf{x}) \lesssim (\log n)^6 \cdot n^{-rac{2p}{2p+d^*}}.$$

On the proof

Oracle inequality + Bound on the covering number

$$\mathbf{E}\int |m_n(\mathbf{x}) - m(\mathbf{x})|^2 \mathbf{P}_{\mathbf{X}}(d\mathbf{x}) \lesssim \inf_{f \in \mathcal{F}(L_n, r_n)} \|m - f\|_{\infty}^2 + \frac{(\log n)^3 \log(L_n \cdot r_n^2) \cdot L_n^2 \cdot r_n^2}{n}$$

 shows the trade-off between approximation power and complexity of the network class

Due to its compositional structure, functions of the form

$$f = g_K \circ \cdots \circ g_0$$

can be approximated by deep networks

Rough idea:

- Use results of Telgarsky (2016), Yarotsky (2017) to approximate $f(x) = x^2$
- Approximate polynomials with neural networks
- Use that smooth functions can be approximated by Taylor polynomials

- Neural networks are able to circumvent the curse of dimensionality if
 - structural assumptions on the regression function hold
 - geometric properties on the input components hold
- All these results hold without any sparsity constraint
- At least from a theoretical point of view, sparsity is not the answer for the success of neural networks

The chicken or the egg dilemma

Fundamental research topics of Deep Learning

- Approximation properties of DNNs
- Generalization results of DNNs
- But: Results did not take into account the optimization, i.e., the training of the networks
- → Hard to implement a corresponding estimator

For an all-encompassing understanding we need to analyze all three aspects simultaneously!

- Braun et al. (2022): Analysis of shallow networks learned by gradient descent
 - Good rate of convergence results
 - Improved performance on simulated data

Activation function

$$\sigma(u) = 1/(1 + \exp(-u))$$

Function class

$$\mathcal{F}_n = \left\{ \sum_{k=1}^{\lceil \sqrt{n} \rceil} \alpha_k \cdot \sigma(\beta_k \cdot \mathbf{x} + \gamma_k) : \alpha_k, \gamma_k \in \mathbb{R}, \beta_k \in \mathbb{R}^d, \sum_{k=0}^{K_n} |\alpha_k| \le L_n \right\},\$$

Least squares estimator

$$m_n(\cdot) = \arg\min_{f\in\mathcal{F}_n} \frac{1}{n} \sum_{i=1}^n |Y_i - f(\mathbf{X}_i)|^2$$

Activation function

$$\sigma(u) = 1/(1 + \exp(-u))$$

Function class

$$\mathcal{F}_n = \left\{ \sum_{k=1}^{\lceil \sqrt{n} \rceil} \alpha_k \cdot \sigma(\beta_k \cdot \mathbf{x} + \gamma_k) : \alpha_k, \gamma_k \in \mathbb{R}, \beta_k \in \mathbb{R}^d, \sum_{k=0}^{K_n} |\alpha_k| \le L_n \right\},\$$

Least squares estimator

$$m_n(\cdot) = rgmin_{f\in\mathcal{F}_n} rac{1}{n}\sum_{i=1}^n |Y_i - f(\mathbf{X}_i)|^2$$

If $\int \|\mathbf{w}\|_1 |\mathcal{F}m(\mathbf{w})| d\mathbf{w} < \infty$,

$$\mathsf{E}\int |m_n(\mathsf{x}) - m(\mathsf{x})|^2 \, \mathsf{P}_{\mathsf{X}}(d\mathsf{x}) \lesssim (\log n)^5 \cdot rac{1}{\sqrt{n}}$$

An estimator learned by gradient descent

Is that also true for NN estimators trained by gradient descent?

Is that also true for NN estimators trained by gradient descent?

Shallow neural networks

$$f_{net,\mathbf{w}}(\mathbf{x}) = \alpha_0 + \sum_{j=1}^{K_n} \alpha_j \cdot \sigma(\beta_j^T \cdot \mathbf{x} + \gamma_j)$$

where

$$\mathbf{w} = (\alpha_0, \alpha_1, \ldots, \alpha_{K_n}, \beta_1, \ldots, \beta_{K_n}, \gamma_1, \ldots, \gamma_{K_n}),$$

Is that also true for NN estimators trained by gradient descent?

Shallow neural networks

$$f_{net,\mathbf{w}}(\mathbf{x}) = \alpha_0 + \sum_{j=1}^{K_n} \alpha_j \cdot \sigma(\beta_j^T \cdot \mathbf{x} + \gamma_j)$$

where

$$\mathbf{w} = (\alpha_0, \alpha_1, \ldots, \alpha_{K_n}, \beta_1, \ldots, \beta_{K_n}, \gamma_1, \ldots, \gamma_{K_n}),$$

Loss function

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} |Y_i - f_{net,\mathbf{w}}(\mathbf{X}_i)|^2 + \frac{c_2}{K_n} \cdot \sum_{k=0}^{K_n} \alpha_k^2.$$

An estimator learned by gradient descent

Initial weights

$$\mathbf{w}(0) = (\alpha_0(0), \ldots, \alpha_{K_n}(0), \beta_1(0), \ldots, \beta_{K_n}(0), \gamma_1(0), \ldots, \gamma_{K_n}(0))$$

with

$$\alpha_0(0) = \alpha_1(0) = \cdots = \alpha_{K_n}(0) = 0$$

Initial weights

$$\mathbf{w}(0) = (\alpha_0(0), \ldots, \alpha_{K_n}(0), \beta_1(0), \ldots, \beta_{K_n}(0), \gamma_1(0), \ldots, \gamma_{K_n}(0))$$

with

$$\alpha_0(0) = \alpha_1(0) = \cdots = \alpha_{K_n}(0) = 0$$

and $\beta_1(0), \ldots, \beta_{\mathcal{K}_n}(0), \gamma_1(0), \ldots, \gamma_{\mathcal{K}_n}(0)$ independently randomly chosen such that

- $\beta_k(0)$ are uniformly distributed on a sphere with radius B_n
- $\gamma_j(0)$ are uniformly distributed on $[-B_n \cdot \sqrt{d}, B_n \cdot \sqrt{d}].$

Initial weights

$$\mathbf{w}(0) = (\alpha_0(0), \ldots, \alpha_{K_n}(0), \beta_1(0), \ldots, \beta_{K_n}(0), \gamma_1(0), \ldots, \gamma_{K_n}(0))$$

with

$$\alpha_0(0) = \alpha_1(0) = \cdots = \alpha_{K_n}(0) = 0$$

and $\beta_1(0), \ldots, \beta_{\mathcal{K}_n}(0), \gamma_1(0), \ldots, \gamma_{\mathcal{K}_n}(0)$ independently randomly chosen such that

- $\beta_k(0)$ are uniformly distributed on a sphere with radius B_n
- $\gamma_j(0)$ are uniformly distributed on $[-B_n \cdot \sqrt{d}, B_n \cdot \sqrt{d}]$.

 t_n gradient descent steps

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \lambda_n \cdot \nabla_{\mathbf{w}} F(\mathbf{w}(t)) \quad (t = 0, \dots, t_n - 1).$$

The estimator

$$\tilde{m}_n(\cdot) = f_{net,\mathbf{w}(t_n)}(\cdot)$$
 and $m_n(\mathbf{x}) = T_{c \cdot \log n} \tilde{m}_n(\mathbf{x})$

where $T_L z = \max\{\min\{z, L\}, -L\}$ for $z \in \mathbb{R}$ and $L \ge 0$.

The estimator

$$\tilde{m}_n(\cdot) = f_{net, \mathbf{w}(t_n)}(\cdot)$$
 and $m_n(\mathbf{x}) = T_{c \cdot \log n} \tilde{m}_n(\mathbf{x})$

where $T_L z = \max\{\min\{z, L\}, -L\}$ for $z \in \mathbb{R}$ and $L \ge 0$.

Main assumption

$$|\mathcal{F}m(\omega)| \leq \frac{\tilde{c}}{\|\omega\|^{d+1} \cdot (\log \|\omega\|)^2} \quad (\omega \in \mathbb{R}^d \setminus \{0\})$$
(2)

for some $\tilde{c} > 0$.

Theorem: If

- Fourier transform $\mathcal{F}m$ satisfies (2)
- number of neurons $K_n \approx \sqrt{n}$
- $B_n \approx n^{5/2}$
- learning rate $\lambda_n \approx n^{-1.25}$
- gradient descent steps $t_n \approx n^{1.75}$

Then

$$\mathsf{E}\int |m_n(x)-m(x)|^2\mathsf{P}_X(dx)\lesssim (\log n)^4\cdot rac{1}{\sqrt{n}}.$$

On the proof

Set $\tilde{K}_n = \lceil K_n / (\log n)^4 \rceil$. It can be shown that with high probability $\mathbf{w}(0) = (\alpha_0(0), \dots, \alpha_{K_n}(0), \beta_1(0), \dots, \beta_{K_n}(0), \gamma_1(0), \dots, \gamma_{K_n}(0))$

is chosen such that

$$\int \left|\sum_{k=1}^{\tilde{K}_n} \bar{\alpha}_{i_k} \cdot \sigma(\beta_{i_k}(0)^T \cdot \mathbf{x} + \gamma_{i_k}(0)) - m(\mathbf{x})\right|^2 \mathbf{P}_{\mathbf{X}}(d\mathbf{x})$$

is small for some (random) $1 \leq i_1 < \cdots < i_{\tilde{K}_n}$ and some (random) $\bar{\alpha}_{i_1}, \ldots, \bar{\alpha}_{i_{\tilde{K}_n}} \in \mathbb{R}$,

On the proof

Set $\tilde{K}_n = \lceil K_n / (\log n)^4 \rceil$. It can be shown that with high probability $\mathbf{w}(0) = (\alpha_0(0), \dots, \alpha_{K_n}(0), \beta_1(0), \dots, \beta_{K_n}(0), \gamma_1(0), \dots, \gamma_{K_n}(0))$

is chosen such that

$$\int \left|\sum_{k=1}^{\tilde{K}_n} \bar{\alpha}_{i_k} \cdot \sigma(\beta_{i_k}(0)^{\mathsf{T}} \cdot \mathbf{x} + \gamma_{i_k}(0)) - m(\mathbf{x})\right|^2 \mathsf{P}_{\mathsf{X}}(d\mathsf{x})$$

is small for some (random) $1 \leq i_1 < \cdots < i_{\tilde{K}_n}$ and some (random) $\bar{\alpha}_{i_1}, \ldots, \bar{\alpha}_{i_{\tilde{K}_n}} \in \mathbb{R}$, and that during the gradient descent the inner weights

$$\beta_{i_1}(0), \gamma_{i_1}(0), \ldots, \beta_{i_{\tilde{\kappa}_n}}(0), \gamma_{i_{\tilde{\kappa}_n}}(0)$$

change only slightly.

Under the above assumption a much better rate of convergence than $1/\sqrt{n}$ is not possible:

Under the above assumption a much better rate of convergence than $1/\sqrt{n}$ is not possible:

Theorem: Let \mathcal{D} be the class of all distributions of (\mathbf{X}, Y) which satisfy the assumptions of the Theorem before. Then

$$\inf_{\hat{m}_n} \sup_{(X,Y)\in\mathcal{D}} \mathsf{E} \int |\hat{m}_n(\mathsf{x}) - m(\mathsf{x})|^2 \mathsf{P}_{\mathsf{X}}(d\mathsf{x}) \gtrsim n^{-\frac{1}{2} - \frac{1}{d+1}},$$

where the infimum is taken with respect to all estimates \hat{m}_n , i.e., all measurable functions of the data.

Choose

- $\beta_1, \ldots, \beta_{K_n}, \gamma_1, \ldots, \gamma_{K_n}$ i.i.d.
- $\beta_1, \ldots, \beta_{K_n}$ uniformly distributed on $\{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\| = B_n\}$
- $\gamma_1, \ldots, \gamma_{K_n}$ uniformly distributed on $[-B_n \cdot \sqrt{d}, B_n \cdot \sqrt{d}]$

Denote the linear function space by

$$\mathcal{F}_n = \left\{ f : \mathbb{R}^d \to \mathbb{R} : f(\mathbf{x}) = \alpha_0 + \sum_{j=1}^{K_n} \alpha_j \cdot \sigma \left(\beta_j^T \cdot \mathbf{x} + \gamma_j \right) \text{ for some } \alpha_0, \dots, \alpha_{K_n} \in \mathbb{R} \right\}$$

The estimator:

$$\tilde{m}_n = \operatorname{argmin}_{f \in \mathcal{F}_n} \frac{1}{n} \sum_{i=1}^n |Y_i - f(\mathbf{X}_i)|^2 \text{ and } m_n = T_{c \cdot \log n} \tilde{m}_n,$$

where $T_L z = \max\{\min\{z, L\}, -L\}$ for $z \in \mathbb{R}$ and $L \ge 0$.

Theorem: If

- the Fourier transform $\mathcal{F}m$ satisfies (2)
- number of summands $K_n \approx \sqrt{n}$

•
$$B_n = \frac{1}{\sqrt{d}} \cdot (\log n)^2 \cdot K_n \cdot n^2$$
.

Then

$$\mathsf{E}\int |m_n(\mathbf{x}) - m(\mathbf{x})|^2 \mathsf{P}_{\mathbf{X}}(d\mathbf{x}) \lesssim (\log n)^4 \cdot rac{1}{\sqrt{n}}.$$

- Same rate as for the neural network estimate learned by gradient descent, but much faster in computation
- Ability to learn a good hierarchical representation of the data is considered as a key factor of deep learning
 - \rightsquigarrow So-called representation learning (see Goodfellow et al. (2016))
 - Suprisingly: In our estimate it is much more a representation guessing

Generalization to multiple layers

 \rightsquigarrow Not covered by classical statistical learning theory

Why do overparametrized networks learn?

Overparametrized neural networks can generalize well

Overparametrized neural networks can generalize well

Small training error \Rightarrow small test error

Small training error ⇒ small test error

But: Gradient descent algorithms find solutions that generalize well

Is there an implicit regularization effect?

Outlook

Simultaneous analysis of approximation, generalization and optimization should yield a better deep learning

- 1. a better understanding of overparametrized neural networks
- 2. new rate of convergence results for networks trained by (S)GD
- 3. explainable estimators for practical applications

Thank you for your attention!