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Deep learning is amazing...

2



...and sometimes pretty easy to fool

https://openai.com/blog/multimodal-neurons/
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Theory, but why?

Computers are now able to learn on their own, but why?

• Lack of explainability and transparency leads to an unreliable method
• Decisions potentially made by deep learning methods often result in legal and

ethical implications
• Autonomous driving
• Diagnostic imaging

• Theoretical analysis could improve methods in practice
• Better structure for existing results
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The problem

Explaining the procedure is a highly complex task
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Three aspects
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Mathematical problem

X = {Images}

f : X → Y Y = {Muffin,Chiwawa}
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Mathematical problem

In practice, the loss is minimized using (variants of) gradient descent.
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Mathematical problem

How fast does the estimated network converge to the truth function f as
sample size increases?
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Nonparametric regression

Prediction problem

• Given a Rd × R-valued random vector (X,Y ) with E{Y 2} <∞
Functional relation between X and Y ?

• Choose f ∗ : Rd → R such that

E
{
|f ∗(X)− Y |2

}
= min

f :Rd→R
E
{
|f (X)− Y |2

}
.

• One can show that f ∗(x) = m(x) = E{Y |X = x}  regression function
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Nonparametric regression

• Problem: Distribution of (X,Y ) is unknown
• But: We have given n copies of (X,Y )
 Dn = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d.)

• Aim: Construct an estimator

mn(·) = mn(·,Dn) : Rd → R,

such that the L2 risk ∫
|mn(x)−m(x)|2dx

is small.
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Simple feedforward neural networks

Activation function σ : R→ R

• We study the ReLU activation function σ(x) = max{x , 0}

Network architecture (L, k)
• Positive integer L denoting the number of hidden layers
• width vector k = (k1, . . . , kL) ∈ NL

Neural network with network architecture (L, k)

f : Rd → R, x 7→WL+1σvLWLσvL−1 · · ·W2σv1W1x

Network parameters

• Wi is a ki × ki−1 matrix
• vi ∈ Rki
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Graphical equivalence

x1

x2

x3

x4

f (x)

Hidden layers
Input

Output

σ (w tx + w0)

Neural network with network architecture (2,(5,5))
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Neural network estimator

Empirical risk minimization

m̃n(·) = argminf ∈F(Ln,rn)
1
n

n∑
i=1
|f (Xi )− Yi |2

and set mn(x) = Tc·log(n)m̃n(x) = max{−c · log(n),min{x, c · log(n)}}

Analyse the expected L2 error

E
∫
|mn(x)−m(x)|2 PX(dx)

 Study the dependence of n (convergence rate)
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The choice of the function class

• Classical approach: Regression function is (p,C)-smooth
• Optimal rate: n−

2p
2p+d (Stone (1982))

 suffers from the curse of dimensionality
• For a better understanding of deep learning, this setting is useless
• Aim: Find a proper structural assumption on m, such that neural network

estimators can achieve good convergence results even in high dimensions
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The choice of the function class

Additive models

• m(x) = ∑K
k=1 gk(xk) with gk : R→ R (p,C)-smooth

Optimal rate n−
2p

2p+1 (Stone (1985))

• Interactionmodels

m(x) =
∑

I⊂{1,...,d},|I|≤d∗

gI(xI)

with gI(xI) : R|I| → R (p,C)-smooth
Optimal rate n−

2p
2p+d∗ (Stone (1995))

 For both models the rate does not depend on d anymore
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The choice of the function class

Single index model

m(x) = g(aT x), x ∈ Rd

with g : R→ R (p,C)-smooth and a ∈ Rd being a d-dimensional vector.

Projection pursuit model

m(x) =
K∑

k=1
gk(aT

k x), x ∈ Rd

for K ∈ N, gk : R→ R (p,C)-smooth and ak ∈ Rd

 Optimal rate n−
2p

2p+1 (Györfi et al. (2002))
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The choice of the function class

• With all models one can circumvent the curse of dimensionality
• But: Rates can only be obtained in practice if the true (then unknown) regression

function corresponds to this structure
 Goal: Low assumptions on the regression function that allow good rate of

convergence results
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The choice of the function class

Im many applications the corresponding functions show some sort of a hierarchical
structure:

• Image processing: Pixel → Edges → Local patterns → object
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The choice of the function class

Hierarchical composition model:
a) We say that m satisfies a hierarchical composition model of level 0, if there exists a
K ∈ {1, . . . , d} such that

m(x) = xK for all x ∈ Rd .

b) We say that m satisfies a hierarchical composition model of level l + 1, if there exist
a K ∈ N, g : RK → R and f1, . . . , fK : Rd → R such that f1, . . . , fK satisfy a
hierarchical composition model of level l and

m(x) = g(f1(x), . . . , fK (x)) for all x ∈ Rd .
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Hierarchical composition model - Example

g (2)
1

g (1)
1

xπ(1) xπ(2)

g (1)
2

xπ(3) xπ(4) xπ(5)

g (1)
3

xπ(6) xπ(7)

Illustration of a hierarchical composition model of level 2
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A more general function class

Example: Additive model

m(x) =
3∑

k=1
gk(xk)

If we choose

g (1)
1 (x) = g1(x1), g (1)

2 (x) = g2(x2), g (1)
3 (x) = g (1)

3 = g3(x3)

and g (2)
1 (y) =

3∑
i=1

yi

 Additive models can be written as hierarchical composition models of level 2
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Hierarchical composition models

The hierarchical composition model satisfies the smoothness and order constraint P, if

• P ⊆ [1,∞)× N

• all functions g satisfy g : RK → R and g is (p,C)-smooth for some (p,K ) ∈ P

Further assumptions

• all functions g are Lipschitz continuous
• E(exp(c · Y 2)) <∞ and supp(X) is bounded
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Results for sparse neural network estimators

Theorem(Schmidt-Hieber (2020)): If

• L � log(n)
• r � nC , with C ≥ 1
• network sparsity � max(p,K)∈P n

K
2p+K · log(n).

the neural network estimator with ReLU activation function achieves the rate of
convergence

max
(p,K)∈P

n−
2p

2p+K .
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Results for sparse neural network estimators

Result of Bauer and Kohler (2019): For a generalized hierarchical interaction model a
sparse neural network estimator with sigmoidal activation function achieves a rate of
convergence

n−
2p

2p+d∗ .
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Is sparsity really necessary?

Remark
Sparse neural network estimators are able circumvent the curse of dimensionality

Conjecture
In order to achieve good rate of convergence results, one should use neural networks,
which are not fully connected.  This is not true!
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Result for fully connected neural network estimators

Theorem: If

• number of hidden layer Ln � max(p,K)∈P n
K

2·(2p+K)

• number of neurons rn = dc̃e

or

• number of hidden layer Ln � log(n)
• number of neurons rn � max(p,K)∈P n

K
2·(2p+K) .

Then

E
∫
|mn(x)−m(x)|2PX(dx) . (log(n))6 · max

(p,K)∈P
n−

2p
2p+K .
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Advantage of full connectivity

Topology of the network is much easier in view of an implementation of a
corresponding estimator:

Listing 1: Python code for fitting of fully connected neural networks to data xlearn and ylearn

model = S e q u e n t i a l ( )
model . add ( Dense ( d , a c t i v a t i o n=” r e l u ” , i n p u t s h a p e =(d , ) ) )
f o r i i n np . a r an ge ( L ) :

model . add ( Dense (K, a c t i v a t i o n=” r e l u ” ) )
model . add ( Dense ( 1 ) )
model . compile ( o p t i m i z e r=”adam” ,

l o s s=” m e a n s q u a r e d e r r o r ” )
model . f i t ( x=x l e a r n , y=y l e a r n )

26



Other possible assumptions

• Kohler, Langer and Krzyżak(2022) assume regression functions with low local
dimensionality d∗ and show a rate n−2p/(2p+d∗) for NN estimators

• Barron(1993,1994) assumes regression functions with∫
‖w‖1|Fm(w)|dw <∞,

where

Fm(ξ) =
∫

e−iξT xm(x)dx

and shows a rate 1/√n for shallow NN estimators
• In case of a mixed smooth Besov space, Suzuki (2018) shows a dimension-free

rate for NN estimators
27



Intrinsic dimensionality

• Results mainly focus on the structure of the underlying regression function
• Less results explore the geometric properties of the data

Are estimators based on networks able to exploit the structure of the input
data?

• Assumption: X is concentrated on some d∗-dimensional Lipschitz-manifold

28



d∗-dimensional Lipschitz-manifold

Formal definition: Let M⊆ Rd be compact and let d∗ ∈ {1, . . . , d}.

a) We say that U1, . . . ,Ur is an open covering of M, if U1, . . . ,Ur ⊂ Rd are open
(with respect to the Euclidean topology on Rd ) and satisfy

M⊆
r⋃

l=1
Ul .

b) We say that
ψ1, . . . , ψr : [0, 1]d∗ → Rd

are bi-Lipschitz functions, if there exists 0 < Cψ,1 ≤ Cψ,2 <∞ such that

Cψ,1 · ‖x1 − x2‖ ≤ ‖ψl (x1)− ψl (x2)‖ ≤ Cψ,2 · ‖x1 − x2‖ (1)

holds for any x1, x2 ∈ [0, 1]d∗ and any l ∈ {1, . . . , r}.
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d∗-dimensional Lipschitz-manifold

c) We say that M is a d∗-dimensional Lipschitz-manifold if there exist bi-Lipschitz
functions ψi : [0, 1]d∗ → Rd (i ∈ {1, . . . , r}), and an open covering U1, . . . ,Ur of M
such that

ψl ((0, 1)d∗) =M∩ Ul

holds for all l ∈ {1, . . . , r}. Here we call ψ1, . . . , ψr the parametrizations of the
manifold.
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Main result

Theorem: If

• X is concentrated on a d∗-dimensional Lipschitz manifold M
• Ln � log(n)
• rn � nd∗/(2(2p+d∗))

Then

E
∫
|mn(x)−m(x)|2 PX(dx) . (log n)6 · n−

2p
2p+d∗ .
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On the proof

Oracle inequality + Bound on the covering number

E
∫
|mn(x)−m(x)|2PX(dx) . inf

f ∈F(Ln,rn)
‖m − f ‖2∞ + (log n)3 log(Ln · r2

n ) · L2
n · r2

n
n

• shows the trade-off between approximation power and complexity of the network
class

Berrar, Dubitzky, Overfitting, 2013
32



On the approximation error

Due to its compositional structure, functions of the form

f = gK ◦ · · · ◦ g0

can be approximated by deep networks

Rough idea:

• Use results of Telgarsky (2016), Yarotsky (2017) to approximate f (x) = x2

• Approximate polynomials with neural networks
• Use that smooth functions can be approximated by Taylor polynomials
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Summary

• Neural networks are able to circumvent the curse of dimensionality if
• structural assumptions on the regression function hold
• geometric properties on the input components hold

• All these results hold without any sparsity constraint
• At least from a theoretical point of view, sparsity is not the answer for the success

of neural networks
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The chicken or the egg dilemma

Fundamental research topics of Deep
Learning

• Approximation properties of DNNs
• Generalization results of DNNs
• But: Results did not take into account

the optimization, i.e., the training of
the networks

 Hard to implement a corresponding
estimator

For an all-encompassing understanding we need to analyze all three aspects
simultaneously!
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A promising starting point

• Braun et al. (2022): Analysis of shallow networks learned by gradient descent
• Good rate of convergence results
• Improved performance on simulated data
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Barron’s result

Activation function

σ(u) = 1/(1 + exp(−u))

Function class

Fn =


d
√

ne∑
k=1

αk · σ(βk · x + γk) : αk , γk ∈ R, βk ∈ Rd ,
Kn∑

k=0
|αk | ≤ Ln

 ,
Least squares estimator

mn(·) = arg min
f ∈Fn

1
n

n∑
i=1
|Yi − f (Xi )|2

If
∫
‖w‖1|Fm(w)|dw <∞,

E
∫
|mn(x)−m(x)|2 PX(dx) . (log n)5 · 1√

n
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An estimator learned by gradient descent

Is that also true for NN estimators trained by gradient descent?

Shallow neural networks

fnet,w(x) = α0 +
Kn∑
j=1

αj · σ(βT
j · x + γj)

where
w = (α0, α1, . . . , αKn , β1, . . . , βKn , γ1, . . . , γKn ),

Loss function

F (w) = 1
n

n∑
i=1
|Yi − fnet,w(Xi )|2 + c2

Kn
·

Kn∑
k=0

α2
k .

38



An estimator learned by gradient descent

Is that also true for NN estimators trained by gradient descent?

Shallow neural networks

fnet,w(x) = α0 +
Kn∑
j=1

αj · σ(βT
j · x + γj)

where
w = (α0, α1, . . . , αKn , β1, . . . , βKn , γ1, . . . , γKn ),

Loss function

F (w) = 1
n

n∑
i=1
|Yi − fnet,w(Xi )|2 + c2

Kn
·

Kn∑
k=0

α2
k .

38



An estimator learned by gradient descent

Is that also true for NN estimators trained by gradient descent?

Shallow neural networks

fnet,w(x) = α0 +
Kn∑
j=1

αj · σ(βT
j · x + γj)

where
w = (α0, α1, . . . , αKn , β1, . . . , βKn , γ1, . . . , γKn ),

Loss function

F (w) = 1
n

n∑
i=1
|Yi − fnet,w(Xi )|2 + c2

Kn
·

Kn∑
k=0

α2
k .

38



An estimator learned by gradient descent

Initial weights

w(0) = (α0(0), . . . , αKn (0), β1(0), . . . , βKn (0), γ1(0), . . . , γKn (0))

with
α0(0) = α1(0) = · · · = αKn (0) = 0

and β1(0), . . . , βKn (0), γ1(0), . . . , γKn (0) independently randomly chosen such that

• βk(0) are uniformly distributed on a sphere with radius Bn

• γj(0) are uniformly distributed on [−Bn ·
√

d ,Bn ·
√

d ].

tn gradient descent steps

w(t + 1) = w(t)− λn · ∇wF (w(t)) (t = 0, . . . , tn − 1).
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An estimator learned by gradient descent

The estimator

m̃n(·) = fnet,w(tn)(·) and mn(x) = Tc·log nm̃n(x)

where TLz = max{min{z , L},−L} for z ∈ R and L ≥ 0.

Main assumption

|Fm(ω)| ≤ c̃
‖ω‖d+1 · (log ‖ω‖)2 (ω ∈ Rd \ {0}) (2)

for some c̃ > 0.
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An estimator learned by gradient descent

Theorem: If

• Fourier transform Fm satisfies (2)
• number of neurons Kn ≈

√
n

• Bn ≈ n5/2

• learning rate λn ≈ n−1.25

• gradient descent steps tn ≈ n1.75

Then
E
∫
|mn(x)−m(x)|2PX (dx) . (log n)4 · 1√

n .
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On the proof

Set K̃n = dKn/(log n)4e. It can be shown that with high probability

w(0) = (α0(0), . . . , αKn (0), β1(0), . . . , βKn (0), γ1(0), . . . , γKn (0))

is chosen such that
∫ ∣∣∣∣∣∣

K̃n∑
k=1

ᾱik · σ(βik (0)T · x + γik (0))−m(x)

∣∣∣∣∣∣
2

PX(dx)

is small for some (random) 1 ≤ i1 < · · · < iK̃n
and some (random) ᾱi1 , . . . , ᾱiK̃n

∈ R,

and that during the gradient descent the inner weights

βi1(0), γi1(0), . . . , βiK̃n
(0), γiK̃n

(0)

change only slightly.

42



On the proof

Set K̃n = dKn/(log n)4e. It can be shown that with high probability

w(0) = (α0(0), . . . , αKn (0), β1(0), . . . , βKn (0), γ1(0), . . . , γKn (0))

is chosen such that
∫ ∣∣∣∣∣∣

K̃n∑
k=1
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∈ R,
and that during the gradient descent the inner weights

βi1(0), γi1(0), . . . , βiK̃n
(0), γiK̃n

(0)

change only slightly.
42



A lower bound

Under the above assumption a much better rate of convergence than 1/√n is not
possible:

Theorem: Let D be the class of all distributions of (X,Y ) which satisfy the
assumptions of the Theorem before. Then

inf
m̂n

sup
(X ,Y )∈D

E
∫
|m̂n(x)−m(x)|2PX(dx) & n−

1
2−

1
d+1 ,

where the infimum is taken with respect to all estimates m̂n, i.e., all measurable
functions of the data.
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A simplified estimator

Choose

• β1, . . . , βKn , γ1, . . . , γKn i.i.d.
• β1, . . . , βKn uniformly distributed on {x ∈ Rd : ‖x‖ = Bn}
• γ1, . . . , γKn uniformly distributed on [−Bn ·

√
d ,Bn ·

√
d ]

Denote the linear function space by

Fn =
{

f : Rd → R : f (x) = α0 +
Kn∑
j=1

αj · σ
(
βT

j · x + γj
)

for some α0, . . . , αKn ∈ R
}
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A simplified estimator

The estimator:

m̃n = argminf ∈Fn

1
n

n∑
i=1
|Yi − f (Xi )|2 and mn = Tc·log nm̃n,

where TLz = max{min{z , L},−L} for z ∈ R and L ≥ 0.
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A simplified estimator

Theorem: If

• the Fourier transform Fm satisfies (2)
• number of summands Kn ≈

√
n

• Bn = 1√
d · (log n)2 · Kn · n2.

Then

E
∫
|mn(x)−m(x)|2PX(dx) . (log n)4 · 1√

n .
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A simplified estimator

• Same rate as for the neural network estimate learned by gradient descent, but
much faster in computation

• Ability to learn a good hierarchical representation of the data is considered as a
key factor of deep learning
 So-called representation learning (see Goodfellow et al. (2016))
Suprisingly: In our estimate it is much more a representation guessing
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Generalization to multiple layers

Three competing aspects – or maybe not?

 Not covered by classical statistical learning theory

Why do overparametrized networks learn?
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Overparametrized neural networks can generalize well
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Overparametrized neural networks can generalize well
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Overparametrized neural networks can generalize well
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Overparametrized neural networks can generalize well

Small training error ; small test error
49



Overparametrized neural networks can generalize well

Small training error ; small test error
But: Gradient descent algorithms find solutions that generalize well 49



Overparametrized neural networks can generalize well

Is there an implicit regularization effect?
49



Outlook

Simultaneous analysis of approximation, generalization and optimization should
yield a better deep learning

1. a better understanding of overparametrized neural networks
2. new rate of convergence results for networks trained by (S)GD
3. explainable estimators for practical applications

Thank you for your attention!
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