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Multivariate density estimation

We consider an n-sample X1, . . . ,Xn with Xi = (Xi1, . . . ,Xid) ∈ Rd . We denote by
f : Rd 7−→ R+ the density of the Xi ’s to be estimated.

We consider K a bounded kernel function, so that K ∈ L1 and it satisfies∫
Rd

K(x)dx = 1

The kernel density estimator f̂H is given, for all x ∈ Rd , by

f̂H(x) =
1

ndet(H)

n∑
i=1

K
(
H−1(x− Xi )

)
=

1

n

n∑
i=1

KH(x− Xi )

where the matrix H is the kernel bandwidth belonging to a fixed grid H of invertible
matrices and

KH(x) =
1

det(H)
K
(
H−1x

)
One of main critical points is the choice of the bandwidth.
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Choice of the bandwidth (univariate illustration)

8 1 Nonparametric estimators

Undersmoothing Oversmoothing

Correct smoothing

Figure 1.2. Undersmoothing, oversmoothing, and correct smoothing.
The circles indicate the sample points Xi.

The minimum with respect to h of the right hand side of (1.8) is attained
at

h∗
n =

(
C1

2βC2
2

) 1
2β+1

n− 1
2β+1 .

Therefore, the choice h = h∗
n gives

MSE(x0) = O
(
n− 2β

2β+1

)
, n → ∞,

uniformly in x0. We have the following result.

too small bandwidth too large bandwidth
overfitting
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Multivariate density estimation

The kernel density estimator, f̂H , is given, for all x ∈ Rd , by

f̂H(x) =
1

n

n∑
i=1

KH(x− Xi )

One of main critical points is the choice of the bandwidth H
We denote by ‖.‖ the L2 norm

We wish to select Ĥ ∈ H so that

1. f̂Ĥ is optimal in the oracle setting meaning that with large probability

‖f̂Ĥ − f ‖2 ≤ min
H∈H
‖f̂H − f ‖2 + negligible terms

2. the selection of Ĥ is free-tuning
3. the computational cost is reasonable
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Classical approaches for (univariate) density estimation

V -fold Cross-validation based on the least-squares contrast: Split {1, . . . , n} into V
subsets, B1, . . . ,BV and compute for each Bk the kernel rule on the training set
((Xi )i∈B`) 6̀=k

ĥ = argmin
h∈H

1

V

V∑
k=1

LSCBk (f̂
(−Bk )
h )

Plug-in methods based on the minimisation of the asymptotic expansion of the
MISE

The classical Lepski’s method consists in selecting the bandwidth ĥ by using the rule

ĥ = max
{
h ∈ H : ‖f̂h′ − f̂h‖2 ≤ V1(h′) for any h′ ∈ H s.t. h′ ≤ h

}
The Goldenshluger-Lepski’s methodology is a variation of the Lepski’s procedure:

ĥ = argmin
h∈H

{A(h) + V2(h)} ,

A(h) = sup
h′∈H

{
‖f̂h′ − Kh ? f̂h′‖2 − V2(h′)

}
+
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Classical approaches for density estimation

V -fold Cross-validation based on the least-squares contrast

Plug-in methods, minimisation of the asymptotic expansion of the MISE

The classical Lepski’s method
or the Goldenshluger-Lepski’s methodology

These approaches are

hard to tune,

or not optimal in the oracle setting,

or time-consuming.

↪→ New method PCO (Penalized Comparison to Overfitting):

an alternative based on comparisons to the overfitting estimator
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Heuristic, for d = 1

f̂h(x) = 1
n

∑n
i=1 Kh(x − Xi )

fh := E(f̂h) = Kh ? f
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Oracle inequality in the univariate case

We consider H a finite set of positive reals and hn = minH. We set

ĥ = argmin
h∈H

{
‖f̂hn − f̂h‖2 − ‖Khn − Kh‖2

n
+ λ
‖Kh‖2

n

}
Theorem

Assume that ‖f ‖∞ <∞ and hn ≥ ‖K‖∞‖K‖1/n. Let ε ∈ (0, 1). If λ > 0,
∀x ≥ 1, with probability larger than 1− c|H|e−x ,

‖f̂ĥ − f ‖2 ≤ C0(ε, λ) min
h∈H
‖f̂h − f ‖2

+C1(ε, λ)‖fhn − f ‖2 + C2(ε,K , λ)
‖f ‖∞x3

n

with the oracle constant C0(ε, λ) = λ+ ε if λ ≥ 1, C0(ε, λ) = 1/λ+ ε if 0 < λ ≤ 1

In particular, the choice λ = 1 leads to an optimal estimate in the oracle setting.
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Elements of the proof

For any h ∈ H, a fast computation leads to

‖f̂ĥ − f ‖2 ≤ ‖f̂h − f ‖2 +
(
penλ(h)− 2〈f̂h − f , f̂hn − f 〉

)
−
(
penλ(ĥ)− 2〈f̂ĥ − f , f̂hn − f 〉

)
↪→ control 〈f̂h − f , f̂hn − f 〉 = 〈f̂h − fh, f̂hn − fhn 〉+ ...

control the U-statistic

U(h, hn) =
∑
i 6=j

〈Kh(.− Xi )− fh,Khn (.− Xj)− fhn 〉

↪→ concentration inequality from Houdré and Reynaud-Bouret (2003)

control the empirical sum V (h, h′) =< f̂h − fh, fh′ − f >

↪→ Bernstein’s inequality

use of the following lower bound

‖f − fh‖2 +
‖Kh‖2

n
≤ (1 + ε)‖f − f̂h‖2 +

C(K , ‖f ‖∞)x2

ε3n
w.h.p.

from Lerasle et al. (2015)
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Minimal penalty

Oracle inequality is obtained when the penalty it tuned with λ > 0, with

penλ(h) =
λ‖Kh‖2 − ‖Khn − Kh‖2

n

Take hn so that for some β > 0,

‖K‖∞‖K‖1

n
≤ hn ≤

(log n)β

n

and assume nhn‖fhn − f ‖2 = o(1) (Bias(hn)� Variance(hn))

If λ < 0, then, with probability larger than 1− c|H| exp(−(n/ log n)1/3),

ĥ ≤ C(λ)hn ≤ C(λ)
(log n)β

n

where c is an absolute constant and C(λ) = 2.1− 1/λ. This penalty leads to an
overfitting estimator and

lim inf
n→+∞

E
[
‖f̂ĥ − f ‖2

]
> 0 (risk explosion)

PCO is tuned by using λ = 1 leading to the optimal penalty

penopt(h) =
2〈Kh,Khn 〉

n
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The multivariate case: oracle setting

Previous oracle inequalities can be extended to the multivariate case where
f : Rd 7−→ R+ is the density of the Xi ’s with Xi = (Xi1, . . . ,Xid) ∈ Rd .

We consider H, a finite set of symmetric positive-definite d × d matrices. Set
Hn = h̄Id and

Ĥ = arg min
H∈H

{
‖f̂Hn − f̂H‖2 − ‖KHn − KH‖2

n
+ λ
‖KH‖2

n

}
Theorem

Assume that ‖f ‖∞ <∞ and h̄d ≥ ‖K‖∞‖K‖1/n. Let ε ∈ (0, 1). If λ > 0,
∀x ≥ 1, with probability larger than 1− c|H|e−x ,

‖f̂Ĥ − f ‖2 ≤ C0(ε, λ) min
H∈H
‖f̂H − f ‖2

+C1(ε, λ)‖fHn − f ‖2 + C2(ε,K , λ)

(
‖f ‖∞x2

n
+

x3

n2 det(Hn)

)
,

with C0(ε, λ) = λ+ ε if λ ≥ 1, C0(ε, λ) = 1/λ+ ε if 0 < λ ≤ 1.

In particular, the choice λ = 1 leads to an optimal estimate in the oracle setting.
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The multivariate case: minimax setting

We consider the minimax setting and construct a set of bandwidths leading to an
optimal kernel estimate based on the PCO methodology.

Let P an orthogonal matrix. Consider Hn = h̄Id with h̄d = ‖K‖∞‖K‖1/n and
choose for H the following set of bandwidths:

H =

{
H = P−1diag(h1, . . . , hd)P :

d∏
j=1

hj ≥ h̄d and h−1
j ∈ N∗ ∀ j = 1, . . . , d

}

Consider the PCO bandwidth (tuned with λ = 1)

Ĥ = arg min
H∈H

{
‖f̂Hn − f̂H‖2 +

2〈KH ,KHn 〉
n

}
Assume that f ◦ P−1 belongs to the anisotropic Nikol’skii class N2,d(β,L). Assume
that the kernel K is order ` > maxj=1,...,d βj . Then, if for B > 0, ‖f ‖∞ ≤ B,

E
[
‖f̂Ĥ − f ‖2

]
≤ M

(
d∏

j=1

L
1
βj

j

) 2β̄
2β̄+1

n
− 2β̄

2β̄+1 ,

where M is a constant only depending on β, K , B, and d and β̄ = (
∑d

j=1 1/βj)
−1
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Numerical study: benchmark univariate densities
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Numerical study: tuning for the univariate case
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For each benchmark density f , estimated L2-risk of the

PCO estimate by using the Monte Carlo mean over 20

samples in function of the tuning parameter λ, for the

Gaussian kernel with n = 100 observations in the

univariate case

Densities
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Numerical study: tuning for the bivariate case

●
●

●

●

●

●

●

●●

●

●

●
●
●
●

●
●

●●
●●
●
●
●

●
●

●●

●●

●●

●
●●

●
●●
●

●

●●

●
●

●●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●●

●●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●●
●
●●

●

●
●
●

●

●
●

●
●

●

● ●

●

●

●

●●
●●●

●

●
●
●

●
●

●

●●

●
●●●

●
●

●●●
●

●
●

●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

det(H)

|f̂H
−

f|

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●

●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●●

●●

●
●

●
●

●
●

●
●

●
●●
●

●

●

●

●
●

●
●

●
●

●●

●●●●●

●●
●●

●

●

●●

●●

●●

●

●

●●
●●

●

●

●●

●

●

●●

●

●

●
●

●●
●
●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●
●

●

●

●
●
●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

det(H)

|f̂H
−

f|
Square root of the ISE against det(H) for all H ∈ H with H a set of 2× 2 diagonal matrices for

two different densities, with n = 100. The square corresponds to the bandwidth selected by PCO

with λ = 1
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Numerical study: the univariate case

0 2000 6000 10000

1
2

5
10

D1

n

For meth ∈ {RoT,UCV,BCV, SJste,SJdpi,PCO} (implemented in the package ks) with the
Gaussian kernel, graph versus the sample size of the mean over all 19 densities f of the ratio of

rmeth/min(f ) :=
ISE

1/2
meth(f )

minmeth ISE
1/2
meth(f )
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The multivariate case: d ∈ {2, 3, 4} - Diagonal matrices

For meth ∈ {UCV,SCV,PI,PCO} with the Gaussian kernel, graph versus the sample size of the
mean over all 14 densities f of the ratio of

rmeth/min(f ) :=
ISE

1/2
meth(f )

minmeth ISE
1/2
meth(f )
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The multivariate case: d ∈ {2, 3, 4} - Full matrices

For meth ∈ {UCV,SCV,PI,RoT,PCO} with the Gaussian kernel, graph versus the sample size
of the mean over all 14 densities f of the ratio of

rmeth/min(f ) :=
ISE

1/2
meth(f )

minmeth ISE
1/2
meth(f )
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Conclusions from our numerical study

Simulations corroborate what was expected from theory and validate the choice of
the tuning constant λ = 1 in the penalty term.

The choice of the parameter hn is not very sensitive and taking hn = ‖K‖∞‖K‖1/n
is suitable and robust.

These parameters being tuned once for all, PCO becomes a ready to be used
method which is further more easy to compute.

As compared to other methods, PCO has a stable behavior and its performance is
never far from being optimal. PCO is not always the best competitor but it has the
advantage of staying competitive in any situation.
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Conclusions and perspectives

PCO offers several advantages which should be welcome for practitioners:

1. It can be used for moderately high dimensional data
2. PCO is optimal in oracle and minimax settings and achieves nice numerical

performances
3. To a large extent, it is free-tuning
4. Its computational cost is quite reasonable

PCO has been used in various settings: nonparametric regression, deconvolution
and other settings: Comte, Prieur and Samson (2017), Deschatre (2017), Lehéricy

(2018), Pham Ngoc (2019), Halconruy and Marie (2020), Comte and Marie (2020, 2021),

Divol (2021)

Future directions of research: interesting to develop PCO, both from a theoretical
and a practical perspective for other losses than the L2-loss (Hellinger and Lp-losses
for p 6= 2). Work in progress.
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Thank you for your attention!
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