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Overview

1. Extrinsic Approximation

2. Intrinsic Approximation for manifolds with boundary
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Basic Setup

• (M, g) is a closed Riemannian manifold of dimension d .

• M ⊆ Rn, where n� d .

• A data set X = {x1, . . . , xN} of points sampled i.i.d. from M.

Goal of Manifold Learning

Use the data to construct a matrix which approximates an operator which encodes
information about the manifold.

Example

∆g : C∞(M)→ C∞(M), the Laplace-Beltrami operator. In smooth local coordinates,

∆g f =
−1√
det g

∂

∂θi

(
g ij
√

det g
∂f

∂θj

)
.
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Existing works and our contribution

Pointwise approximation

• The existing literature reports mostly the formulation for operators on functionsa. We extend
it to tensor fields. This includes gradient and divergence of vector fields, divergence of (2, 0)
tensor fields, vector Laplacians (Bochner, Hodge, Licnerowicz), and covariant derivative.

• We develop an improved numerical method to approximate the local tangent bundles.

aNarcowich & Ward, J. Approx. Theory 1991

Weak estimation

Laplace-Beltrami and vector Laplacians (Bochner, Hodge, Licnerowicz).

• Many theoretical issues encountered with the pointwise approximation, which motivate the
weak approximation.

• We prove convergence of eigenvalue and eigenvector/eigenvector-field for the
Laplace-Beltrami and Bochner Laplacian approximations.
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Interpolation, Differentiation, and Projection

Function on M Vector field on M
gradg
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Interpolation, Differentiation, and Projection

Function on M Vector field on M

Function on Rn Vector field on Rn

gradg

Extension

gradRn

Projection
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Interpolation, Differentiation, and Projection
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Interpolation, Differentiation, and Projection

Vector

Function on M Vector field on M

Function on Rn Vector field on Rn

Vector

gradg

Extension

Point evaluation

gradRn

Manifold Learning

Radial Basis Functions

gradg f (x) = PgradRnF (x) ≈ P̂gradRn(Iφs f)(x),

where P = P(x), P̂, and Iφs : RN → Cα(Rn) will be defined below.
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Learning P

• At each x ∈ M, consider TxM ⊆ TxRn.

• There is an n × n matrix orthogonal projection matrix P := TxRn → TxM ⊆ TxRn.

• The entries of P can be written in terms of the Riemanian matrix g and the
embedding (θ1, . . . , θd)→ (X 1, . . . ,X n) :

[P]ij =
∂X i

∂θr
g rs ∂X

j

∂θs
.

• Methods exist for approximating P 2.

2Zhang & Zha J. Approx. Theory 2004, Tyagi, Vural & Frossard, Information and Inference 2013
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Learning P

• Note that if T = (τ1, . . . , τd) denotes a matrix with orthonormal columns that span
TxM, then P := TT>.

• Methods for learning P relate the distance y − x , for points y close to x , to the
directions τi . Denoting (s1, . . . , sd) to be the geodesic normal coordinates of y from
the based point x .

y − x = ι (s)− ι(0) =
d∑

i=1

si
∂ι(0)

∂si
+

1

2

d∑
i ,j=1

si sj
∂2ι(0)

∂si∂sj
+ O(s3). (1)

• We propose a novel, related method which achieves a faster convergence rate by

correcting for curvature. We approximate {si}, the Hessian components ∂2ι(0)
∂si∂sj

, then

y − x − 1

2

d∑
i ,j=1

si sj
∂2ι(0)

∂si∂sj
=

d∑
i=1

si
∂ι(0)

∂si
+ O(s3). (2)
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Second order approximation
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Figure: Mean of Frobenius error ‖P− P̂‖F as a function of N, on the 2D torus in R3. We show
convergence rate of order N−2/d improving from the first-order estimate N−1/d .

14 / 49



Pointwise operator estimation (on a 1D ellipse)

(a) Truth of Lich. Laplacian (b) Truth of ∇uu.
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(c) Error of Lich. Laplacian (d) Error of Covariant Deriv.
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Interpolation using RBFs

• Given function values f := (f (x1), . . . , f (xN))> at X = {xj}Nj=1, the radial basis
function (RBF) interpolant of f at x takes the form

Iφs f(x) :=
N∑

k=1

ckφs (‖x − xk‖) .

• Common choices include Gaussian, inverse-quadratic, Matérn class functions.
• Theoretical advantage with Matérn class kernels is to have Reproducing Kernel

Hilbert Space norm that is equivalent to Sobolev space norms [Fuselier and Wright,
SINUM 2012].
• We extend their result to probabilistic setting, where if {x1, . . . , xN} are random i.i.d.

samples of uniform distribution on M, then if φs is a Matérn kernel with Sobolev

norm of regularity α > n/2, then for any f ∈ Hα− n−d
2 (M), w.p.h. than 1− 1

N ,

‖Iφs f − f ‖L2(M) = O
(
N
−2α+(n−d)

2d

)
.
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Laplace-Beltrami Estimators

• Let G : RN → RnN denote the estimate of gradg ,

Gf = PgradRn Iφs f|X .

• The classical pointwise approximation to ∆g with

LN := G1G1 + · · ·+ GnGn : RN → RN ,

a non-symmetric matrix.

• In weak form, it is natural to consider∫
M
f ∆M fdVol =

∫
M
〈gradg f , gradg f 〉dVol ≈ 1

N
f>G>Gf

or G>G as a symmetric estimator of ∆M .
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Convergence of Eigenvalues

Theorem

Let λi denote the i-th eigenvalue of ∆M , enumerated λ1 ≤ λ2 ≤ . . . . Suppose that

Iφs : RN → Cα−
n−d
2 (M) is a stable interpolator. For any i , there exists a sequence λ̂

(N)
i of

eigenvalues of G>G such that∣∣∣λi − λ̂(N)
i

∣∣∣ = O

(
1√
N

)
+ O

(
N
−2α+(n−d)

2d

)
.

w.p.h. 1− 12
N as N →∞.

Also, if u denotes any normalized eigenvector of G>G, then
there exists a normalized f eigenfunction of ∆g corresponds to non-simple eigenvalue λ

with geometric multiplicity m such that w.p.h. 1−
(
2m2+4m+24

N

)
,

‖f |X − u‖L2(µN) = O

(
1√
N

)
+ O

(
N
−2α+(n−d)

2d

)
.
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Some remarks

• Proof uses min-max principle and several interpolation error estimates.

• In this case, we have Monte-Carlo rate.

• We also have equivalent result for the estimation of Bochner Laplacian.

• We can also show consistency of the spectral estimates for the non-symmetric
estimator, LN , using a Gershgorin circle argument under appropriate spectral gap
assumption. However, this consistency may break down for d > 4.

• The non-symmetric approximation is numerically suffer from spectral pollution issue
and theoretically needs to be reconsidered differently.
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Numerical Results: Laplace-Beltrami

(a) DM Eigenvalues (b) SRBF Eigenvalues

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

A
bs

ol
ut

e 
E

rr
or

 o
f S

pe
ct

ra

Mode

 

 

DM N=1024
DM N=2500
DM N=5000
DM N=10000

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

A
bs

ol
ut

e 
E

rr
or

 o
f S

pe
ct

ra

Mode

 

 

SRBF P̂, KDE q̃, N=1024

SRBF P̂, KDE q̃, N=2500

SRBF P̂, KDE q̃, N=5000

SRBF P̂, KDE q̃, N=10000

Figure: 2D general torus in R21. Comparison of errors of eigenvalues for (a) DM, (b) SRBF. For each N,
16 independent trials are run and depicted by light color. For each N, the average of all 16 trials are
depicted by dark color.
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Numerical Results: Laplace-Beltrami

(a) DM Eigenfunctions. (b) SRBF Eigenfunctions.
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N, 16 independent trials are run and depicted by light color. For each N, the average of all 16 trials are
depicted by dark color.
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Numerical Results: Vector Laplacians
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Numerical Results
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Graph Laplacian (intrinsic) approach
Let M ⊆ Rn be a compact Riemannian manifold and define,

Gεf (x) := ε−d/2
∫
M

Kε(x , y)dV (y).

with exponentially decaying kernel Kε : M ×M → R.

• For any x ∈ M sufficiently far away from the boundary and f ∈ C 3(M),

Lεf (x) :=
Gεf (x)− f (x)Gε1(x)

ε
:= m2∆g f (x) +O(ε), as ε→ 0,

for some m2 > 0.

• For x ∈ M whose dg (x , ∂M) ≤ εγ , 0 < γ ≤ 1/2,

Lεf (x) =
mε

1(x) ∂f∂ν (x0)
√
ε

+ O(1), as ε→ 0,

where x0 = arg infy∈∂M dg (x , y).
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Existing convergence results

• Closed manifolds
• Pointwise convergence: Belkin & Niyogi 2005, Hein, Audibert, & Von Luxburg 2005,

Singer 2006.
• Spectral convergence: Belkin & Niyogi 2007, Burago-Kurylev 2014, Garcia-Trillos,

Gerlach, Hein & Slepcev 2022, Calder & Garcia-Trillos 2022, Dunson, Wu, & Wu 2021.

• Compact manifolds with boundary
• Weak convergence: Hein 2006, Vaughn, Berry, & Antil 2022.
• Spectral convergence (Neumann Laplacian): Singer & Wu 2017, Lu 2020, Tao & Shi

2020.

Q: How about studying Dirichlet Laplacian?
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Motivations for Dirichlet Laplacian

Solving PDEs on point clouds.
• Mean passage problem, computing committor functions:

• Thiede, Giannakis, Dinner, & Weare 2019, Evans, Cameron, & Tiwary, 2022.

• Elliptic and parabolic PDEs:
• S.W. Jiang and J. Harlim, Ghost Point Diffusion Maps for solving elliptic PDE’s on

Manifolds with Classical Boundary Conditions, Comm. Pure Appl. Math.
https://doi/10.1002/cpa.22035

• Q. Yan, S.W. Jiang, and J. Harlim, Kernel-based methods for solving time-dependent
advection-diffusion equations on manifolds, arXiv:2105.13835.

• Inverse problems:
• J. Harlim, S.W. Jiang, H. Kim, and D. Sanz-Alonso, Graph-based prior and forward

models for inverse problems on manifolds with boundaries, Inverse Problems 38(3)
035006, 2022.
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Symmetrized Gaussian Kernels3

• Given a Gaussian kernel, kε(x , y) = exp
(
−‖x−y‖

2

ε

)
, define a symmetric kernel,

k̂ε(x , y) := ε−d/2kε(x , y)

(
1

2ρ(x)
+

1

2ρ(y)

)
,

where, ρ(x) := ε−d/2
∫
M kε(x , y)dV (y).

• Numerically, given data X = {x1, . . . , xN} ⊂ M, we approximate the kernel k̂ε with,

k̃ε,n(xi , xj) = kε(xi , xj)

(
1

2
n

∑n
k=1 kε(xi , xk)

+
1

2
n

∑n
k=1 kε(xj , xk)

)
.

3J. Wilson Peoples & H, 2021:arXiv:2110.06988.
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Symmetrized Gaussian Kernels3

• Given a Gaussian kernel, kε(x , y) = exp
(
−‖x−y‖

2

ε

)
, define a symmetric kernel,

k̂ε(x , y) := ε−d/2kε(x , y)

(
1

2ρ(x)
+

1

2ρ(y)

)
,

where, ρ(x) := ε−d/2
∫
M kε(x , y)dV (y).

• Numerically, given data X = {x1, . . . , xN} ⊂ M, we approximate the kernel k̂ε with,

k̃ε,n(xi , xj) = kε(xi , xj)

(
1

2
n

∑n
k=1 kε(xi , xk)

+
1

2
n

∑n
k=1 kε(xj , xk)

)
.

3J. Wilson Peoples & H, 2021:arXiv:2110.06988.
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Symmetrized Graph-Laplacian (SGL) matrices

Theorem (Neumann and no boundary Laplacian)

For X = {x1, . . . , xN} ⊂ M, we define the SGL as,

L̃ε,Nu(x) =
2

m2ε

(
u(x)− 1

N

N∑
i=1

k̃ε,N(x , xi )u(xi )

)
.

For closed manifold and manifold with homogeneous Neumann boundaries, given
uniformly sampled X , in high probability,

|λi − λ̃ε,Ni | = O
(
N−

1
2d+6

)
, as N →∞.

where λi and λ̃i are the ith eigenvalues of ∆g and L̃ε,N , respectively.
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Outline of the proof
We use min-max argument on:

‖∇f ‖L2(M) − λ̃
ε,N
i = ‖∇f ‖L2(M) − 〈Lεf , f 〉L2(M)︸ ︷︷ ︸

approximation error

+ 〈Lεf , f 〉L2(M) − λ̃
ε,N
i︸ ︷︷ ︸

discretization error

over i-dim subspace Gi ⊂ C∞(M) ⊂ H1(M), where

Lεf :=
2

m2ε
(f − K̂εf ) =

2

m2ε

(
f −

∫
M

k̂ε(·, y)dV (y)

)
.

1. Bound the approximation error using the weak consistency (Vaughn et al 2019).

2. The main point of choosing K̂ε to be compact, self-adjoint with positive definite kernel allows one to
characterize,

λεi = min
S∈Gi

max
f∈S\{0}

〈Lεf , f 〉L2(M)

‖f ‖2
L2(M)

.

3. Once the min-max is taken, the discretization error can be bounded by

|λεi − λ̃ε,Ni | ≤ |λεi − λε,Ni |︸ ︷︷ ︸
Rosasco et al. 2010

+ |λε,Ni − λ̃ε,Ni |︸ ︷︷ ︸
spectral error of perturbed matrix
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Additional results:

Remarks:

1. For closed manifold, the rate can be improved to O(N−
1

d+4 ), which is equivalent to
results reported by Calder & Garćıa-Trillos, 2022. One can replace the approximation
error with a stronger L2-error bound such as in H, Sanz-Alonso, & Yang, 2020.

2. Following the method of proof from Calder & Garćıa-Trillos paper, we deduce the

convergence of eigenvectors in L2(µN) with rate N−
1

8d+20 , which again can be
improved for closed manifolds.

3. For non-uniformly sampled data, the error rate for eigenvalue estimation is of

order-N−
1

4d+6 . The extra factor N−
1
2d is due to the estimation of non-uniform

sampling density. For the eigenvectors estimation is of order-N−
1

16d+20 .
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Truncated SGL matrices

Definition

Define Mr := {x ∈ M : infy∈∂M dg (x , y) > r}. Let N1 = |X ∩Mr |.

Let’s re-order the data to {xi}N1
i=1 ⊂ M r and define a truncated SGL matrix of size

N1 × N1 as, (
Lrε,N

)
ij

:=
(
L̃ε,N

)
ij
, i , j = 1, . . . ,N1,

where we truncate components of SGL matrix L̃ε,N corresponding to data points whose
distance from the boundary is less than some parameter r > 0.

40 / 49



Truncated SGL matrices

Definition

Define Mr := {x ∈ M : infy∈∂M dg (x , y) > r}. Let N1 = |X ∩Mr |.
Let’s re-order the data to {xi}N1

i=1 ⊂ M r and define a truncated SGL matrix of size
N1 × N1 as, (

Lrε,N

)
ij

:=
(
L̃ε,N

)
ij
, i , j = 1, . . . ,N1,

where we truncate components of SGL matrix L̃ε,N corresponding to data points whose
distance from the boundary is less than some parameter r > 0.
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Convergence results for truncated SGL:

Theorem (eigenvalue)

Let λi be the ith eigenvalue of Dirichlet Laplacian,

∆gϕi = λiϕi , ϕi |∂M = 0,

and λr ,ε,ni be the ith eigenvalue of the truncated SGL matrix Lrε,n. For r ≥ cε
d+3
2d , in high

probability,

|λi − λ̃r ,ε,ni | = O
(
N
− 1

2d+6

1

)
, as N1 →∞.
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Outline of the proof

• In this case, Dirichlet Laplacian eigenfunction ϕi corresponding to eigenvalue λi is
attained on span{ϕ1, . . . , ϕi} ⊂ C∞0 (M) ⊂ H1

0 (M).

• Consider

Lcε f :=
2

m2ε

(
f −

∫
Mr

k̂cε (·, y)dV (y)

)
,

where k̂c : M ×M → R is supported in Mr ×Mr and its L2-distance to k̂ε is small, ε3.

• By design, its eigenfunctions vanish on M\Mr for all r > 0, so

λc,εi = min
Si⊂C∞0 (M)

max
f ∈Si ,‖f ‖=1

〈Lcε f , f 〉L2(M).
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Outline of the proof
Then we consider min-max over C∞0 (M) on,

‖∇f ‖2L2(M) − λ̃
r,ε,n
i = ‖∇f ‖2L2(M) − 〈Lεf , f 〉L2(M)︸ ︷︷ ︸

(I )

+ 〈Lεf , f 〉L2(M) − 〈L
c
εf , f 〉L2(M)︸ ︷︷ ︸

(II )

+ 〈Lc
εf , f 〉L2(M) − λ̃

r,ε,n
i︸ ︷︷ ︸

(III )

.

• To bound term (I), we use the weak covergence result of Vaughn et al 2019.

• To bound term (III), we need to show |λc,ε
i − λ

r,ε
i | = O(ε1/2), then use Rosasco et al. 2010 to bound

|λr,ε
i − λ

r,ε,n
i | and the matrix perturbation theory to bound |λr,ε,n

i − λ̃r,ε,n
i |.

• As for term (II), one can deduce that

|〈Lε − Lc
εf , f 〉L2(M)| = O(ε1/2) +

∫
M

f (x)
2

m2ε

∫
M\Mr

k̂(x , y)f (y)dV (y),

which suggests that Vol(M\Mr ) = ε
d+3
2 .

• This implies that r > cε
d+3
2d and N − N1 := N0 ∼ ε

d+3
2 N.
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Homogeneous Dirichlet Laplacian example
(a) well-sampled (b) randomly sampled (c) spectra
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Figure: Semi-Torus Example, uniform sampling distribution.

Remarks

• The theoretical predicted eigenvalue is O
(
N−

1
2d+6

)
.

• In this numerical experiment, we set r =
√
ε.
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N = 642. Mode 10 (row 1) and mode 20 (row 2).
Truncated SGL Nyström Semi-Analytic
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