What does LIME really see in images?

Damien Garreau¹, Dina Mardaoui²

¹Université Côte d’Azur, LJAD, Inria
²Polytech Nice

October 7, 2022
Outline

1. Introduction

2. A primer on LIME for images

3. Theoretical analysis

4. Conclusion
1. Introduction
Setting

- **Goal:** from input $x \in \mathcal{X}$, predict $y \in \mathcal{Y}$ as $f(x)$
- **Running example:** image classification:

 $x =$![Image](image.png) \rightarrow $y =$ trailer_truck

- $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a function, potentially very complicated
- f_θ corresponds to some architecture choice, $\theta \in \Theta$ parameters
- **Idea:** good choice θ^* learned from data
Example: Inception network

Example: the InceptionV3 network for image classification

here is one block of the architecture:

1Szegedy et al., *Rethinking the inception architecture for computer vision*, CVPR, 2016
Example: Inception network, ctd.

- then stack all these modules (159 layers, 24M parameters)
The need for interpretability

- **Fact 1**: state-of-the-art = deep neural networks
 - often referred to as “black-boxes”:
 - even more parameters than previous example (e.g., GPT-3, 175 billions²)
 - even more complicated architectures
- **Fact 2**: machine learning algorithms are now used for critical decisions:
 - credit scoring
 - college admissions
 - ...
- **Problem**: we have no idea how a specific decision was made
- **Example 1**: our model achieves good results in the lab, but fails in production (e.g., learning artifacts in the image)
- **Example 2**: social acceptability (“why was I denied a loan?”, possible coming legal requirement³)

²Brown et al., *Language models are few-shot learners*, arxiv, 2020

³Wachter, Mittelstadt, Floridi, *Why a right to explanation of automated decision-making does not exist in the general data protection regulation*, International Data Privacy Law, 2017
This talk

- **This talk** = post hoc, local interpretability
- some recent results about **Local Interpretable Model-agnostic Explanations (LIME)**
- **Question:** can we analyze it and prove / disprove that it makes sense in simple cases?
- in truth, several versions of the method, depending on the nature of the data:
 - images (← this talk)
 - text data
 - tabular data
- complicated operating procedure, but very popular at the moment
- other main contender is SHAP\(^5\)
- image data: \(\xi \in \mathbb{R}^{H \times W \times 3}\) an image to explain and \(f : \mathbb{R}^{H \times W \times 3} \rightarrow [0,1]\) the model
- **Example:** \(f\) is the prediction for a certain class given by InceptionV3

\(^4\)Ribeiro et al., “Why should I trust you?” Explaining the Prediction of any Classifier, SIGKDD, 2016

\(^5\)Lundberg and Lee, A unified approach to interpreting model predictions, NeurIPS, 2017
2. A primer on LIME for images
on a high level, Image LIME operates as follows:

1. decompose ξ in d superpixels (small, homogeneous patches);
2. create a number of perturbed samples ($=\text{new images}$) x_1, \ldots, x_n;
3. weight the perturbed samples;
4. query the model, getting predictions $y_i = f(x_i)$;
5. build a local surrogate model $\hat{\beta}_n$ fitting the y_i's on the presence or absence of superpixels.

generally, highlight in the original image the (top 5) positive superpixels:
Step 1: superpixels

- **Interpretable features:** superpixels J_1, \ldots, J_d = sets of pixel indices
- $\bigcup_k J_k = [H] \times [W]$ and for all $j \neq k$, $J_k \cap J_{\ell} = \emptyset$
- by default, *quickshift*\(^6\) is used

\[D = 299 \times 299 \times 3 = 268,203 \] and \(d = 65 \) superpixels

\(^6\)Vedaldi and Soatto, *Quickshift and kernel methods for mode seeking*, ECCV, 2008
Step 2: sampling

- **Simple idea:** take a replacement color (say black), randomly switch on and off the superpixels:

 - by default, \(n = 5000 \)
 - **Potential problem:** black can be a meaningful color for the model (we are trying to remove a feature)
Step 2: sampling, ctd.

- **Idea:** compute the *mean* of the image on each superpixel
- formally,

\[\forall u \in J_k, \quad \bar{\xi}_u = \frac{1}{|J_k|} \sum_{u \in J_k} \xi_u. \]

- channel-wise if RGB image

segmented ξ → $\bar{\xi}$
Step 2: sampling, ctd.

- **Same idea:** replace superpixels randomly by corresponding superpixel of ξ

- **Intuition:** replace the superpixel with something non-informative, but not too far away from the local pixel distribution

- this is the *default* behavior
Step 3: weights

- to each perturbed sample x_i corresponds a binary vector $z_i \in \{0, 1\}^d$
- $z_{i,j} = 1$ iff superpixel j is “switched on”
- 1 corresponds to ξ
- formally, for all $1 \leq i \leq n$, x_i receives the weight

$$
\pi_i := \exp \left(\frac{-\delta(z_i, 1)^2}{2\nu^2} \right),
$$

where δ is the cosine distance and $\nu > 0$ is a bandwidth parameter (default value = 0.25)

Definition: for any two vectors $u, v \in \mathbb{R}^d$, define the cosine distance between u and v by

$$
\delta(u, v) := 1 - \frac{u^\top v}{\|u\| \cdot \|v\|}.
$$
Step 3: weights, ctd.

- **Idea:** give more weight to samples near ξ

- Many superpixels “switched off” in x_2
- \Rightarrow far away from the original image
- \Rightarrow small weight
Step 4: query

- compute $y_i = f(x_i)$ for every $i \in \{1, \ldots, n\}$

\[
\begin{align*}
y_1 &= f(x_1) = 0.01 \\
y_2 &= f(x_2) = 0.04 \\
y_n &= f(x_n) = 0.55
\end{align*}
\]

- cost = $\mathcal{O}(n)$ (n calls to the model)
- generally the main computational cost
- **Remark:** can be parallelized
Step 5: local surrogate model

- finally, train a local surrogate model
- by default, weighted ridge regression\(^7\):

\[
\hat{\beta}_n \in \arg \min_{\beta \in \mathbb{R}^{d+1}} \left\{ \sum_{i=1}^{n} \pi_i (y_i - \beta^\top z_i)^2 + \lambda \|\beta\|^2 \right\},
\]

with \(\lambda > 0\) a regularization constant

- each superpixel receives a coefficient \(\beta_j\)
- Intuition: if \(\beta_j \gg 0\), superpixel \(j\) has a positive influence on the prediction
- Computational cost: \(n\) queries, then ridge for \(n \times d\) data with \(n \gg d\): \(O(d^2 n)\)
- Remark: a lot of flexibility in the LIME framework, another model / penalty could be used

\(^7\)Hoerl and Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 1970
3. Theoretical analysis
Main question underlying this work:

LIME operating procedure is complicated, does it make sense for simple models?

complicated question, some simplifications:
- $\lambda = 0$ (no penalty)
- f is bounded

Why is this justified?
- default implementation of ridge is used, $\lambda = 1$
- typically, $n = 5000$ and $d = 50$, thus $\lambda \|\beta\|^2$ is small with respect to the empirical risk
- bounded model is always satisfied by restricting the input space
A first result

we can show that the explanations stabilize around a limit value when n is large

Proposition (G. and Mardaoui, 2021):\(^8\) Assume that $\lambda = 0$ and that f is bounded. Then, as the number of perturbed samples n goes to infinity, $\hat{\beta}_n \xrightarrow{P} \beta$, where $\beta \in \mathbb{R}^{d+1}$ is a vector depending only on $f, \xi,$ and ν.

Idea of the proof: $\hat{\beta}_n$ solution of a weighted least square problem, exploitable closed-form + concentration inequalities.

Consequence: we can focus on β to get insights on LIME

Good news: the expression of β is explicit!

\(^8\)Garreau and Mardaoui, *What does LIME really see in images?*, ICML, 2021
Expression of β

- **Recall:** $z_{i,j} = 1$ if superpixel j is “switched on” in example i
- **Notation:** in the following, z random variable such that the z_is are i.i.d. z, associated x, π

Proposition (G. and Mardaoui, 2021): There exist constants c_d, σ_1, σ_2, and σ_3 such that,

$$\forall 1 \leq j \leq d, \quad \beta^f_j = c_d^{-1}\left\{ \sigma_1 \mathbb{E}[\pi f(x)] + \sigma_2 \mathbb{E}[\pi z_j f(x)] + \sigma_3 \sum_{k=1}^{d} \mathbb{E}[\pi z_k f(x)] \right\}.$$

- c_d, σ_1, σ_2, and σ_3 can be computed in closed-form and do not depend on f
- **Proof:** see next slides.
Computing the limit explanation

- **Idea:** with $\lambda = 0$, weighted least squares

- explanations given by

$$\hat{\beta}_n = (Z^\top WZ)^{-1} Z^\top W y,$$

with $Z_{i,j} = z_{i,j}$ and $W_{i,i} = \pi_i$

- when n is large,

$$\frac{1}{n} Z^\top W Z \approx \mathbb{E} [Z^\top W Z] =: \Sigma \quad \text{and} \quad \frac{1}{n} Z^\top W y \approx \mathbb{E} [Z^\top W y] =: \Gamma.$$

- **Key computation:**

$$\Sigma_{j,k} = \mathbb{E} \left[\sum_{i=1}^n \pi_i z_{i,j} z_{i,k} \right].$$

- **Key quantity:**

$$\alpha_p := \mathbb{E} [\pi z_1 \cdots z_p].$$
Computation of the α coefficients

- we can compute the α coefficients in closed-form:

Proposition (G. and Mardaoui, 2021): Let $d \geq 2$ and $p \geq 0$. For any $\nu > 0$, it holds that

$$\alpha_p = \frac{1}{2d} \sum_{s=0}^{d} \binom{d-p}{s} \cdot \exp \left(\frac{-(1 - \sqrt{1 - s/d})^2}{2\nu^2} \right).$$

- **Proof:** conditioning with respect to the number of deletions then combinatorics.

- **large bandwidth:**

$$\alpha_p \approx \frac{1}{2^{p-1}}.$$
Σ matrix

- **Recall:** \(\alpha_p := \mathbb{E}[\pi z_1 \cdots z_p] \)
- with this notation:

\[
\Sigma = \begin{pmatrix}
\alpha_0 & \alpha_1 & \alpha_1 & \cdots & \alpha_1 \\
\alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_3 \\
\alpha_1 & \alpha_3 & \alpha_2 & \cdots & \alpha_3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_1 & \alpha_3 & \cdots & \alpha_3 & \alpha_2
\end{pmatrix}
\]

- **Good news:** we can compute the \(\alpha_p \) in closed-form...
- ...and invert \(\Sigma \), also in closed-form (lot of structure)
Inverting Σ

Proposition (G. and Mardaoui, 2021): Define \(c_d := (d - 1)\alpha_0\alpha_2 - d\alpha_1^2 + \alpha_0\alpha_1 \), \(\sigma_0 = (d - 1)\alpha_2 + \alpha_1, \sigma_1 = -\alpha_1 \),

\[
\sigma_2 = \frac{(d - 2)\alpha_0\alpha_2 - (d - 1)\alpha_1^2 + \alpha_0\alpha_1}{\alpha_1 - \alpha_2}, \quad \text{and} \quad \sigma_3 = \frac{\alpha_1^2 - \alpha_0\alpha_2}{\alpha_1 - \alpha_2}.
\]

Then the previous quantities are well-defined, \(c_d > 0 \), and \(\Sigma \) is invertible, with

\[
\Sigma^{-1} = \frac{1}{c_d} \begin{pmatrix}
\sigma_0 & \sigma_1 & \sigma_1 & \cdots & \sigma_1 \\
\sigma_1 & \sigma_2 & \sigma_3 & \cdots & \sigma_3 \\
\sigma_1 & \sigma_3 & \sigma_2 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_1 & \sigma_3 & \cdots & \cdots & \sigma_3 \\
\end{pmatrix}.
\]

Proof: algebra + four-letter identity.
Consequences

- **First consequence:** up to noise from the sampling, the explanations are linear in the model:
 \[\beta_{f+g} \approx \beta_f + \beta_g. \]

- Good property: we can split the explanations for additive models (linear models, random forests, kernel-based, ...)

- **Second consequence:** simple expression in the large bandwidth limit \((\nu \to +\infty)\):
 \[\beta_j \approx 2 \left(\mathbb{E}[f(x) \mid z_j = 1] - \mathbb{E}[f(x)] \right). \]

- **Intuition:** large value if the model takes significantly larger values when superpixel \(j\) is present in the image

- this corresponds to our intuition
Shape detectors

we can be more precise for specific models, for instance shape detectors:

\[f(x) = \prod_{u \in S} 1_{x_u > \tau}, \]

where \(S \) is a given set of pixels and \(\tau \) is a positive threshold

\(f \) takes value 1 if the shape \(S \) is lit up in image \(x \)

we define the set of superpixels intersecting \(S \) as

\[E := \{ j \in \{1, \ldots, d\} \text{ s.t. } J_j \cap S \neq \emptyset \}, \]

which we split in two parts:

\[E_+ := \{ j \in E \text{ s.t. } \bar{\xi}_j > \tau \}, \text{ and } E_- := \{ j \in E \text{ s.t. } \bar{\xi}_j \leq \tau \}. \]

for a given \(\xi \), we also define

\[S_+ := \{ u \in S \text{ s.t. } \xi_u > \tau \}, \text{ and } S_- := \{ u \in S \text{ s.t. } \xi_u \leq \tau \}. \]
with these notations in hand, we can compute β:

Proposition (G. and Mardaoui, 2021): Assume that $\forall j \in E_+, J_j \cap S_- = \emptyset$ and let $p := |E_-|$. Assume that, for all $j \in E_-, J_j \cap S_- = \emptyset$. Then, for any $j \in E_-$,

$$\beta^f_j = c_d^{-1} \{\sigma_1 \alpha_p + \sigma_2 \alpha_p + (p - 1) \sigma_3 \alpha_p + (d - p) \sigma_3 \alpha_{p+1}\}$$

and for any $j \in \{1, \ldots, d\} \setminus E_-$,

$$\beta^f_j = c_d^{-1}\{\sigma_1 \alpha_p + \sigma_2 \alpha_{p+1} + p \sigma_3 \alpha_p + (d - p - 1) \sigma_3 \alpha_{p+1}\}$$

simplifications when ν is large: $\beta_j \approx 1/2^{p-1}$ for an intersecting superpixel, 0 otherwise

Intuition: LIME puts equal positive weights for superpixels intersecting S
Shape detection example

Example: rectangular shape, MNIST dataset, zero replacement:
Example: same digit, S intersects one superpixel:
Shape detection example, ctd.

Example: same digit, S intersects two superpixels:

Take-away: splitting the explanation between intersected superpixels
Linear models

Question: what about linear models?

Let us set

\[f(x) = \sum_{u=1}^{D} \lambda_u x_u + b. \]

Proposition (G. and Mardaoui, 2021): assume that \(f \) is linear. Then

\[\forall 1 \leq j \leq d, \quad \beta_j = \sum_{u \in J_j} \lambda_u \cdot (\xi_u - \bar{\xi}_u), \]

where \(\bar{\xi} \) is the replacement image.

Intuition: sum of gradient \(\times \) input on the superpixels\(^9\)

\(^9\)Ancona et al., *Towards better understanding of gradient-based attribution methods for deep neural networks*, ICLR, 2018
Example: linear function on MNIST with arbitrary coefficients:
Example: linear function on ILSVRC with arbitrary coefficients:
More complex models

- unsurprisingly difficult to extend the analysis
- **However**, if we replace f by a linear approximation, we see empirically that

$$\beta_j \approx \sum_{u \in J_j} IG_u \cdot (\xi_u - \bar{\xi}_u),$$

where IG is the integrated gradients\(^\text{10}\)

- \approx averaged gradients of the model on a line joining ξ and a reference image

\(^{10}\)Sundararajan, Taly, Qan, *Axiomatic attribution for deep networks*, ICML 2017
Integrated gradients

- **Idea:** average the gradient on a path between $\bar{\xi}$ and ξ and define11

 $$\forall u \in \{1, \ldots, D\}, \quad IG_u := \int_0^1 \frac{\partial f((1 - \alpha)\xi + \alpha\bar{\xi})}{\partial x_u} d\alpha$$

- approximate with Riemann sum:

 $$IG_u^{\text{approx}} := \frac{1}{m} \sum_{k=1}^{m} \frac{\partial f((1 - \frac{k}{m})\xi + \frac{k}{m}\bar{\xi})}{\partial x_u}.$$

- linear approximation of f given by

 $$f(x) \approx f(\bar{\xi}) + (x - \bar{\xi})^\top IG^{\text{approx}}.$$

11Sundararajan et al., *Axiomatic attribution for deep networks*, ICML, 2017
More qualitative results

lion (conf. 36%)

studio couch (conf. 9%)

abaya (conf. 65%)

goldfish (conf. 99%)
More qualitative results, ctd.

- **Trailer truck** (conf. 35%)
 - Segmentation
 - LIME
 - Int. gradient
 - Linear approx.

- **Pomegranate** (conf. 94%)
 - Segmentation
 - LIME
 - Int. gradient
 - Linear approx.

- **Anole** (conf. 65%)
 - Segmentation
 - LIME
 - Int. gradient
 - Linear approx.

- **Stethoscope** (conf. 47%)
 - Segmentation
 - LIME
 - Int. gradient
 - Linear approx.
4. Conclusion
Some problems with LIME

- **Problem 1: the sampling**
- if the superpixel is very similar to the replacement superpixel, switching on and off does not change much
- LIME cannot learn that this pixel is important for the prediction
- even though it may be!

predicted: Band_Aid (25.4%)
LIME explanation
Some problems with LIME, ctd.

- **Problem 2: the bandwidth**
- ν is essentially the only free parameter of the method
- **Question:** what happens when we vary it?

Figure: explanation for superpixel 13, ILSVRC dataset, InceptionV3 model, 10 repetitions for each ν, default is 0.25 (in red)

- **Undesirable behavior:** explanation changes sign when ν varies
Conclusion

- **In this talk:**
 - analysis of LIME for images
 - uncovering good properties (linearity, large bandwidth behavior)
 - but also less desirable ones, even for simple models *proceed with caution!*

- **Not in this talk:**
 - analysis for text\(^\text{12}\) and tabular data\(^\text{13,14}\)
 - similar message

- **Future directions:**
 - other methods, *e.g.*, Anchors\(^\text{15}\) (\(\approx\) rule extraction with similar sampling scheme)
 - general results for random local perturbation

\(^{12}\)Mardaoui and Garreau, *An analysis of LIME for text data*, AISTATS, 2021

\(^{13}\)Garreau and von Luxburg, *Explaining the explainer, a first theoretical analysis of LIME*, AISTATS, 2020

\(^{14}\)Garreau and von Luxburg, *Looking deeper into tabular LIME*, arxiv, 2020

\(^{15}\)Ribeiro et al., *Anchors: high-precision model-agnostic explanations*, AAAI, 2018
Thank you for your attention!