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1. Introduction
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Setting

I Goal: from input x ∈ X , predict y ∈ Y as f (x)
I Running example: image classification:

x= y= trailer_truck

I f : X → Y is a function, potentially very complicated
I fθ corresponds to some architecture choice, θ ∈ Θ parameters
I Idea: good choice θ? learned from data
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Example: Inception network

I Example: the InceptionV3 network for image classification1

I here is one block of the architecture:

1Szegedy et al., Rethinking the inception architecture for computer vision, CVPR, 2016
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Example: Inception network, ctd.

I then stack all these modules (159 layers, 24M parameters)
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The need for interpretability
I Fact 1: state-of-the-art = deep neural networks
I often referred to as “black-boxes”:

I even more parameters than previous example (e.g., GPT-3, 175 billions2)
I even more complicated architectures

I Fact 2: machine learning algorithms are now used for critical decisions:
I credit scoring
I college admissions
I ...

I Problem: we have no idea how a specific decision was made
I Example 1: our model achieves good results in the lab, but fails in production (e.g.,

learning artifacts in the image)
I Example 2: social acceptability (“why was I denied a loan?”, possible coming legal

requirement3)
2Brown et al., Language models are few-shot learners, arxiv, 2020
3Wachter, Mittelstadt, Floridi, Why a right to explanation of automated decision-making does not exist in

the general data protection regulation, International Data Privacy Law, 2017
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This talk

I This talk = post hoc, local interpretability
I some recent results about Local Interpretable Model-agnostic Explanations (LIME4)
I Question: can we analyze it and prove / disprove that it makes sense in simple cases?
I in truth, several versions of the method, depending on the nature of the data:

I images (← this talk)
I text data
I tabular data

I complicated operating procedure, but very popular at the moment
I other main contender is SHAP5

I image data: ξ ∈ RH×W×3 an image to explain and f : RH×W×3 → [0, 1] the model
I Example: f is the prediction for a certain class given by InceptionV3

4Ribeiro et al., “Why should I trust you?” Explaining the Prediction of any Classifier, SIGKDD, 2016
5Lundberg and Lee, A unified approach to interpreting model predictions, NeurIPS, 2017
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2. A primer on LIME for images
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Image LIME
I on a high level, Image LIME operates as follows:

1. decompose ξ in d superpixels (small, homogeneous patches);
2. create a number of perturbed samples (= new images) x1, . . . , xn;
3. weight the perturbed samples;
4. query the model, getting predictions yi = f (xi);
5. build a local surrogate model β̂n fitting the yis on the presence or absence of superpixels.

I generally, highlight in the original image the (top 5) positive superpixels:

predicted: trailer_truck (35.2%) LIME explanation
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Step 1: superpixels

I Interpretable features: superpixels J1, . . . , Jd = sets of pixel indices
I ∪kJk = [H]× [W ] and for all j 6= k, Jk ∩ J` = ∅
I by default, quickshift6 is used

I in this example, D = 299× 299× 3 = 268, 203 and d = 65 superpixels

6Vedaldi and Soatto, Quickshift and kernel methods for mode seeking, ECCV, 2008
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Step 2: sampling

I Simple idea: take a replacement color (say black), randomly switch on and off the
superpixels:

x1 x2 xn

I by default, n = 5000
I Potential problem: black can be a meaningful color for the model (we are trying to

remove a feature)
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Step 2: sampling, ctd.
I Idea: compute the mean of the image on each superpixel
I formally,

∀u ∈ Jk , ξu = 1
|Jk |

∑
u∈Jk

ξu .

I channel-wise if RGB image

segmented ξ ξ
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Step 2: sampling, ctd.

I Same idea: replace superpixels randomly by corresponding superpixel of ξ

x1 x2 xn

I Intuition: replace the superpixel with something non-informative, but not too far away
from the local pixel distribution

I this is the default behavior
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Step 3: weights
I to each perturbed sample xi corresponds a binary vector zi ∈ {0, 1}d
I zi,j = 1 iff superpixel j is “switched on”
I 1 corresponds to ξ
I formally, for all 1 ≤ i ≤ n, xi receives the weight

πi ··= exp
(
−δ(zi , 1)2

2ν2

)
,

where δ is the cosine distance and ν > 0 is a bandwidth parameter (default value = 0.25)

Definition: for any two vectors u, v ∈ Rd , define the cosine distance between u and v by

δ(u, v) ··= 1− u>v
‖u‖ · ‖v‖ .
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Step 3: weights, ctd.

I Idea: give more weight to samples near ξ

original image ξ x1 x2

I many superpixels “switched off” in x2

I ⇒ far away from the original image
I ⇒ small weight
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Step 4: query

I compute yi = f (xi) for every i ∈ {1, . . . , n}

y1= f(x1) = 0.01 y2= f(x2) = 0.04 yn= f(xn) = 0.55

I cost = O (n) (n calls to the model)
I generally the main computational cost
I Remark: can be parallelized
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Step 5: local surrogate model

I finally, train a local surrogate model
I by default, weighted ridge regression7:

β̂n ∈ arg min
β∈Rd+1

{ n∑
i=1

πi(yi − β>zi)2 + λ ‖β‖2
}
,

with λ > 0 a regularization constant
I each superpixel receives a coefficient βj
I Intuition: if βj � 0, superpixel j has a positive influence on the prediction
I Computational cost: n queries, then ridge for n × d data with n� d : O

(
d2n
)

I Remark: a lot of flexibility in the LIME framework, another model / penalty could be used

7Hoerl and Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 1970
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3. Theoretical analysis
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Image LIME theory

I Main question underlying this work:

LIME operating procedure is complicated, does it make sense for simple models?

I complicated question, some simplifications:
I λ = 0 (no penalty)
I f is bounded

I Why is this justified?
I default implementation of ridge is used, λ = 1
I typically, n = 5000 and d = 50, thus λ ‖β‖2 is small with respect to the empirical risk
I bounded model is always satisfied by restricting the input space

20



A first result

I we can show that the explanations stabilize around a limit value when n is large

Proposition (G. and Mardaoui, 2021):8 Assume that λ = 0 and that f is bounded.
Then, as the number of perturbed samples n goes to infinity, β̂n

P−→ β, where β ∈ Rd+1 is
a vector depending only on f , ξ, and ν.

I Idea of the proof: β̂n solution of a weighted least square problem, exploitable closed-form
+ concentration inequalities.

I Consequence: we can focus on β to get insights on LIME
I Good news: the expression of β is explicit!

8Garreau and Mardaoui, What does LIME really see in images?, ICML, 2021
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Expression of β

I Recall: zi,j = 1 if superpixel j is “switched on” in example i
I Notation: in the following, z random variable such that the zis are i.i.d. z , associated x , π

Proposition (G. and Mardaoui, 2021): There exist constants cd , σ1, σ2, and σ3 such
that,

∀1 ≤ j ≤ d , βfj = c−1
d

{
σ1E [πf (x)] + σ2E [πzj f (x)] + σ3

d∑
k=1
k 6=j

E [πzk f (x)]
}
.

I cd , σ1, σ2, and σ3 can be computed in closed-form and do not depend on f
I Proof: see next slides.
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Computing the limit explanation
I Idea: with λ = 0, weighted least squares
I explanations given by

β̂n = (Z>WZ )−1Z>Wy ,

with Zi,j = zi,j and Wi,i = πi
I when n is large,

1
nZ>WZ ≈ E

[
Z>WZ

]
=: Σ and 1

nZ>Wy ≈ E
[
Z>Wy

]
=: Γ .

I Key computation:

Σj,k = E

[ n∑
i=1

πizi,jzi,k

]
.

I Key quantity:
αp ··= E [πz1 · · · zp] .
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Computation of the α coefficients

I we can compute the α coefficients in closed-form:

Proposition (G. and Mardaoui, 2021): Let d ≥ 2 and p ≥ 0. For any ν > 0, it holds
that

αp = 1
2d

d∑
s=0

(
d − p

s

)
· exp

(
−(1−

√
1− s/d)2

2ν2

)
.

I Proof: conditioning with respect to the number of deletions then combinatorics.
I large bandwidth:

αp ≈
1

2p−1 .
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Σ matrix

I Recall: αp ··= E [πz1 · · · zp]
I with this notation:

Σ =


α0 α1 α1 · · · α1
α1 α2 α3 · · · α3

α1 α3 α2
. . .

...
...

...
. . . . . . α3

α1 α3 · · · α3 α2


I Good news: we can compute the αp in closed-form...
I ...and invert Σ, also in closed-form (lot of structure)
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Inverting Σ

Proposition (G. and Mardaoui, 2021): Define cd ··= (d − 1)α0α2 − dα2
1 + α0α1,

σ0 = (d − 1)α2 + α1, σ1 = −α1 ,

σ2 = (d − 2)α0α2 − (d − 1)α2
1 + α0α1

α1 − α2
, and σ3 = α2

1 − α0α2
α1 − α2

.

Then the previous quantities are well-defined, cd > 0, and Σ is invertible, with

Σ−1 = 1
cd


σ0 σ1 σ1 · · · σ1
σ1 σ2 σ3 · · · σ3

σ1 σ3 σ2
. . .

...
...

...
. . . . . . σ3

σ1 σ3 · · · σ3 σ2

 .

I Proof: algebra + four-letter identity. 26



Consequences

I First consequence: up to noise from the sampling, the explanations are linear in the
model:

βf +g ≈ βf + βg .

I good property: we can split the explanations for additive models (linear models, random
forests, kernel-based,. . . )

I Second consequence: simple expression in the large bandwidth limit (ν → +∞):

βj ≈ 2 (E [f (x) | zj = 1]− E [f (x)]) .

I Intuition: large value if the model takes significantly larger values when superpixel j is
present in the image

I this corresponds to our intuition
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Shape detectors
I we can be more precise for specific models, for instance shape detectors:

f (x) =
∏
u∈S

1xu>τ ,

where S is a given set of pixels and τ is a positive threshold
I f takes value 1 if the shape S is lit up in image x
I we define the set of superpixels intersecting S as

E ··= {j ∈ {1, . . . , d} s.t. Jj ∩ S 6= ∅} ,

which we split in two parts:

E+ ··={j ∈ E s.t. ξj > τ}, and E− ··={j ∈ E s.t. ξj ≤ τ}.

I for a given ξ, we also define

S+ ··={u ∈ S s.t. ξu > τ}, and S− ··={u ∈ S s.t. ξu ≤ τ}.
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Shape detectors, ctd.

I with these notations in hand, we can compute β:

Proposition (G. and Mardaoui, 2021): Assume that ∀j ∈ E+, Jj ∩ S− = ∅ and let
p ··= |E−|. Assume that, for all j ∈ E−, Jj ∩ S− = ∅. Then, for any j ∈ E−,

βfj =c−1
d {σ1αp + σ2αp + (p − 1)σ3αp+(d − p)σ3αp+1}

and for any j ∈ {1, . . . , d} \ E−,

βfj =c−1
d {σ1αp+σ2αp+1 + pσ3αp + (d − p − 1)σ3αp+1}

I simplifications when ν is large: βj ≈ 1/2p−1 for an intersecting superpixel, 0 otherwise
I Intuition: LIME puts equal positive weights for superpixels intersecting S
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Shape detection example

I Example: rectangular shape, MNIST dataset, zero replacement:

1
2

3
4

5
6

78

Digit: 9

1 2 3 4 5 6 7 8
superpixels

0.00

0.20

0.40

0.60

0.80

1.00

Interpretable coefficients
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Shape detection example, ctd.

I Example: same digit, S intersects one superpixel:

1
2

3
4

5
6

78

Digit: 9

1 2 3 4 5 6 7 8
superpixels

0.00

0.20

0.40

0.60

0.80

1.00

Interpretable coefficients
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Shape detection example, ctd.
I Example: same digit, S intersects two superpixels:

1
2

3
4

5
6

78

Digit: 9

1 2 3 4 5 6 7 8
superpixels

0.00

0.20

0.40

0.60

0.80

1.00

Interpretable coefficients

I Take-away: splitting the explanation between intersected superpixels
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Linear models
I Question: what about linear models?
I let us set

f (x) =
D∑

u=1
λuxu + b .

Proposition (G. and Mardaoui, 2021): assume that f is linear. Then

∀1 ≤ j ≤ d , βj =
∑
u∈Jj

λu · (ξu − ξu) ,

where ξ is the replacement image.

I Intuition: sum of gradient × input on the superpixels9

9Ancona et al., Towards better understanding ¨ of gradient-based attribution methods for deep neural
networks, ICLR, 2018
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Linear models, ctd.

I Example: linear function on MNIST with arbitrary coefficients:

0 10 20

0

5

10

15

20

25

λ

12

3
4

56

Digit: 0

1 2 3 4 5 6
superpixels

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Interpretable coefficients
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0.4

0.6
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Linear models, ctd.

I Example: linear function on ILSVRC with arbitrary coefficients:

1 2 3456 7 8
9 101112

13 14
1516

171819 20 212223 24
252627 28293031

32 3334 35
36 37

38
39 40

4142 43
44

45
464748 49

50 5152 53
54 55 56

segmentation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
superpixels

-7.50

-5.00

-2.50

0.00

2.50

5.00

7.50

first 20 interpretable coefficients
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More complex models
I unsurprisingly difficult to extend the analysis
I However, if we replace f by a linear approximation, we see empirically that

βj ≈
∑
u∈Jj

IGu · (ξu − ξu) ,

where IG is the integrated gradients10

I ≈ averaged gradients of the model on a line joining ξ and a reference image
LIME int. gradient linear approx.

10Sundararajan, Taly, Qan, Axiomatic attribution for deep networks, ICML 2017
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Integrated gradients

I Idea: average the gradient on a path between ξ and ξ and define11

∀u ∈ {1, . . . ,D}, IGu ··=
∫ 1

0

∂f ((1− α)ξ + αξ)
∂xu

dα

I approximate with Riemann sum:

IGapprox
u ··=

1
m

m∑
k=1

∂f ((1− k
m )ξ + k

mξ)
∂xu

.

I linear approximation of f given by

f (x) ≈ f (ξ) + (x − ξ)>IGapprox .

11Sundararajan et al., Axiomatic attribution for deep networks, ICML, 2017
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More qualitative results
lion (conf. 36%) segmentation ξ LIME int. gradient linear approx.

studio_couch (conf. 9%)segmentation ξ LIME int. gradient linear approx.

abaya (conf. 65%) segmentation ξ LIME int. gradient linear approx.

goldfish (conf. 99%) segmentation ξ LIME int. gradient linear approx.
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More qualitative results, ctd.
trailer_truck (conf. 35%)segmentation ξ LIME int. gradient linear approx.

pomegranate (conf. 94%)segmentation ξ LIME int. gradient linear approx.

anole (conf. 65%) segmentation ξ LIME int. gradient linear approx.

stethoscope (conf. 47%)segmentation ξ LIME int. gradient linear approx.
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4. Conclusion
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Some problems with LIME

I Problem 1: the sampling
I if the superpixel is very similar to the replacement superpixel, switching on and off does

not change much
I LIME cannot learn that this pixel is important for the prediction
I even though it may be!

predicted: Band_Aid (25.4%) LIME explanation
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Some problems with LIME, ctd.
I Problem 2: the bandwidth
I ν is essentially the only free parameter of the method
I Question: what happens when we vary it?

0.0 0.2 0.4 0.6 0.8 1.0
ν

−0.015

−0.010

−0.005

0.000

0.005

0.010

β̂ 1
3

Evolution of ̂β13 as a function of ν

I Figure: explanation for superpixel 13, ILSVRC dataset, InceptionV3 model, 10 repetitions
for each ν, default is 0.25 (in red)

I Undesirable behavior: explanation changes sign when ν varies
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Conclusion

I In this talk:
I analysis of LIME for images
I uncovering good properties (linearity, large bandwidth behavior)
I but also less desirable ones, even for simple models proceed with caution!

I Not in this talk:
I analysis for text12 and tabular data13,14

I similar message
I Future directions:

I other methods, e.g., Anchors15 (≈ rule extraction with similar sampling scheme)
I general results for random local perturbation

12Mardaoui and Garreau, An analysis of LIME for text data, AISTATS, 2021
13Garreau and von Luxburg, Explaining the explainer, a first theoretical analysis of LIME, AISTATS, 2020
14Garreau and von Luxburg, Looking deeper into tabular LIME, arxiv, 2020
15Ribeiro et al., Anchors: high-precision model-agnostic explanations, AAAI, 2018
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Thank you for your attention!

44


	Introduction
	A primer on LIME for images
	Theoretical analysis
	Conclusion

