What does LIME really see in images?

Damien Garreau ${ }^{1}$, Dina Mardaoui ${ }^{2}$

${ }^{1}$ Université Côte d'Azur, LJAD, Inria
${ }^{2}$ Polytech Nice
October 7, 2022

Outline

1. Introduction
2. A primer on LIME for images
3. Theoretical analysis
4. Conclusion

1. Introduction

Setting

- Goal: from input $x \in \mathcal{X}$, predict $y \in \mathcal{Y}$ as $f(x)$
- Running example: image classification:

- $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a function, potentially very complicated
- f_{θ} corresponds to some architecture choice, $\theta \in \Theta$ parameters
- Idea: good choice θ^{\star} learned from data

Example: Inception network

- Example: the InceptionV3 network for image classification ${ }^{1}$
- here is one block of the architecture:

[^0]
Example: Inception network, ctd.

- then stack all these modules (159 layers, 24M parameters)

The need for interpretability

- Fact 1: state-of-the-art = deep neural networks
- often referred to as "black-boxes":
- even more parameters than previous example (e.g., GPT-3, 175 billions 2)
- even more complicated architectures

Fact 2: machine learning algorithms are now used for critical decisions:

- credit scoring
- college admissions
- Problem: we have no idea how a specific decision was made
- Example 1: our model achieves good results in the lab, but fails in production (e.g., learning artifacts in the image)
- Example 2: social acceptability ("why was I denied a loan?", possible coming legal requirement ${ }^{3}$)

[^1]
This talk

- This talk $=$ post hoc, local interpretability
- some recent results about Local Interpretable Model-agnostic Explanations (LIME ${ }^{4}$)
- Question: can we analyze it and prove / disprove that it makes sense in simple cases?
- in truth, several versions of the method, depending on the nature of the data:
- images $(\leftarrow$ this talk)
- text data
- tabular data
- complicated operating procedure, but very popular at the moment
- other main contender is SHAP ${ }^{5}$
- image data: $\xi \in \mathbb{R}^{H \times W \times 3}$ an image to explain and $f: \mathbb{R}^{H \times W \times 3} \rightarrow[0,1]$ the model
- Example: f is the prediction for a certain class given by InceptionV3

[^2]2. A primer on LIME for images

Image LIME

- on a high level, Image LIME operates as follows:

1. decompose ξ in d superpixels (small, homogeneous patches);
2. create a number of perturbed samples ($=$ new images) x_{1}, \ldots, x_{n};
3. weight the perturbed samples;
4. query the model, getting predictions $y_{i}=f\left(x_{i}\right)$;
5. build a local surrogate model $\hat{\beta}_{n}$ fitting the $y_{i} s$ on the presence or absence of superpixels.

- generally, highlight in the original image the (top 5) positive superpixels:

Step 1: superpixels

- Interpretable features: superpixels $J_{1}, \ldots, J_{d}=$ sets of pixel indices
- $\cup_{k} J_{k}=[H] \times[W]$ and for all $j \neq k, J_{k} \cap J_{\ell}=\emptyset$
- by default, quickshift ${ }^{6}$ is used

- in this example, $D=299 \times 299 \times 3=268,203$ and $d=65$ superpixels

[^3]
Step 2: sampling

- Simple idea: take a replacement color (say black), randomly switch on and off the superpixels:

- by default, $n=5000$
- Potential problem: black can be a meaningful color for the model (we are trying to remove a feature)

Step 2: sampling, ctd.

- Idea: compute the mean of the image on each superpixel
- formally,

$$
\forall u \in J_{k}, \quad \bar{\xi}_{u}=\frac{1}{\left|J_{k}\right|} \sum_{u \in J_{k}} \xi_{u} .
$$

- channel-wise if RGB image

Step 2: sampling, ctd.

- Same idea: replace superpixels randomly by corresponding superpixel of $\bar{\xi}$

- Intuition: replace the superpixel with something non-informative, but not too far away from the local pixel distribution
- this is the default behavior

Step 3: weights

- to each perturbed sample x_{i} corresponds a binary vector $z_{i} \in\{0,1\}^{d}$
- $z_{i, j}=1$ iff superpixel j is "switched on"
- 1 corresponds to ξ
- formally, for all $1 \leq i \leq n, x_{i}$ receives the weight

$$
\pi_{i}:=\exp \left(\frac{-\delta\left(z_{i}, \mathbf{1}\right)^{2}}{2 \nu^{2}}\right),
$$

where δ is the cosine distance and $\nu>0$ is a bandwidth parameter (default value $=0.25$)

Definition: for any two vectors $u, v \in \mathbb{R}^{d}$, define the cosine distance between u and v by

$$
\delta(u, v):=1-\frac{u^{\top} v}{\|u\| \cdot\|v\|}
$$

Step 3: weights, ctd.

- Idea: give more weight to samples near ξ

- many superpixels "switched off" in x_{2}
- \Rightarrow far away from the original image
- \Rightarrow small weight

Step 4: query

- compute $y_{i}=f\left(x_{i}\right)$ for every $i \in\{1, \ldots, n\}$

- cost $=\mathcal{O}(n)$ (n calls to the model)
- generally the main computational cost
- Remark: can be parallelized

Step 5: local surrogate model

- finally, train a local surrogate model
- by default, weighted ridge regression ${ }^{7}$:

$$
\hat{\beta}_{n} \in \underset{\beta \in \mathbb{R}^{d+1}}{\arg \min }\left\{\sum_{i=1}^{n} \pi_{i}\left(y_{i}-\beta^{\top} z_{i}\right)^{2}+\lambda\|\beta\|^{2}\right\},
$$

with $\lambda>0$ a regularization constant

- each superpixel receives a coefficient β_{j}
- Intuition: if $\beta_{j} \gg 0$, superpixel j has a positive influence on the prediction
- Computational cost: n queries, then ridge for $n \times d$ data with $n \gg d: \mathcal{O}\left(d^{2} n\right)$
- Remark: a lot of flexibility in the LIME framework, another model / penalty could be used

[^4]
3. Theoretical analysis

Image LIME theory

- Main question underlying this work:

LIME operating procedure is complicated, does it make sense for simple models?

- complicated question, some simplifications:
- $\lambda=0$ (no penalty)
- f is bounded
- Why is this justified?
- default implementation of ridge is used, $\lambda=1$
- typically, $n=5000$ and $d=50$, thus $\lambda\|\beta\|^{2}$ is small with respect to the empirical risk
- bounded model is always satisfied by restricting the input space

A first result

- we can show that the explanations stabilize around a limit value when n is large

Proposition (G. and Mardaoui, 2021): ${ }^{8}$ Assume that $\lambda=0$ and that f is bounded. Then, as the number of perturbed samples n goes to infinity, $\hat{\beta}_{n} \xrightarrow{\mathbb{P}} \beta$, where $\beta \in \mathbb{R}^{d+1}$ is a vector depending only on f, ξ, and ν.

- Idea of the proof: $\hat{\beta}_{n}$ solution of a weighted least square problem, exploitable closed-form + concentration inequalities.
- Consequence: we can focus on β to get insights on LIME
- Good news: the expression of β is explicit!

[^5]
Expression of β

- Recall: $z_{i, j}=1$ if superpixel j is "switched on" in example i
- Notation: in the following, z random variable such that the z_{i} s are i.i.d. z, associated x, π

Proposition (G. and Mardaoui, 2021): There exist constants $c_{d}, \sigma_{1}, \sigma_{2}$, and σ_{3} such that,

$$
\forall 1 \leq j \leq d, \quad \beta_{j}^{f}=c_{d}^{-1}\left\{\sigma_{1} \mathbb{E}[\pi f(x)]+\sigma_{2} \mathbb{E}\left[\pi z_{j} f(x)\right]+\sigma_{3} \sum_{\substack{k=1 \\ k \neq j}}^{d} \mathbb{E}\left[\pi z_{k} f(x)\right]\right\}
$$

- $c_{d}, \sigma_{1}, \sigma_{2}$, and σ_{3} can be computed in closed-form and do not depend on f
- Proof: see next slides.

Computing the limit explanation

- Idea: with $\lambda=0$, weighted least squares
- explanations given by

$$
\hat{\beta}_{n}=\left(Z^{\top} W Z\right)^{-1} Z^{\top} W y,
$$

with $Z_{i, j}=z_{i, j}$ and $W_{i, i}=\pi_{i}$

- when n is large,

$$
\frac{1}{n} Z^{\top} W Z \approx \mathbb{E}\left[Z^{\top} W Z\right]=: \Sigma \quad \text { and } \quad \frac{1}{n} Z^{\top} W_{y} \approx \mathbb{E}\left[Z^{\top} W y\right]=: \Gamma .
$$

- Key computation:

$$
\Sigma_{j, k}=\mathbb{E}\left[\sum_{i=1}^{n} \pi_{i} z_{i, j} z_{i, k}\right] .
$$

- Key quantity:

$$
\alpha_{p}:=\mathbb{E}\left[\pi z_{1} \cdots z_{p}\right] .
$$

Computation of the α coefficients

- we can compute the α coefficients in closed-form:

Proposition (G. and Mardaoui, 2021): Let $d \geq 2$ and $p \geq 0$. For any $\nu>0$, it holds that

$$
\alpha_{p}=\frac{1}{2^{d}} \sum_{s=0}^{d}\binom{d-p}{s} \cdot \exp \left(\frac{-(1-\sqrt{1-s / d})^{2}}{2 \nu^{2}}\right) .
$$

- Proof: conditioning with respect to the number of deletions then combinatorics.
- large bandwidth:

$$
\alpha_{p} \approx \frac{1}{2^{p-1}} .
$$

Σ matrix

- Recall: $\alpha_{p}:=\mathbb{E}\left[\pi z_{1} \cdots z_{p}\right]$
- with this notation:

$$
\Sigma=\left(\begin{array}{ccccc}
\alpha_{0} & \alpha_{1} & \alpha_{1} & \cdots & \alpha_{1} \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{3} \\
\alpha_{1} & \alpha_{3} & \alpha_{2} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \alpha_{3} \\
\alpha_{1} & \alpha_{3} & \cdots & \alpha_{3} & \alpha_{2}
\end{array}\right)
$$

- Good news: we can compute the α_{p} in closed-form...
- ...and invert Σ, also in closed-form (lot of structure)

Inverting Σ

Proposition (G. and Mardaoui, 2021): Define $c_{d}:=(d-1) \alpha_{0} \alpha_{2}-d \alpha_{1}^{2}+\alpha_{0} \alpha_{1}$, $\sigma_{0}=(d-1) \alpha_{2}+\alpha_{1}, \sigma_{1}=-\alpha_{1}$,

$$
\sigma_{2}=\frac{(d-2) \alpha_{0} \alpha_{2}-(d-1) \alpha_{1}^{2}+\alpha_{0} \alpha_{1}}{\alpha_{1}-\alpha_{2}}, \quad \text { and } \quad \sigma_{3}=\frac{\alpha_{1}^{2}-\alpha_{0} \alpha_{2}}{\alpha_{1}-\alpha_{2}}
$$

Then the previous quantities are well-defined, $c_{d}>0$, and Σ is invertible, with

$$
\Sigma^{-1}=\frac{1}{c_{d}}\left(\begin{array}{ccccc}
\sigma_{0} & \sigma_{1} & \sigma_{1} & \cdots & \sigma_{1} \\
\sigma_{1} & \sigma_{2} & \sigma_{3} & \cdots & \sigma_{3} \\
\sigma_{1} & \sigma_{3} & \sigma_{2} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \sigma_{3} \\
\sigma_{1} & \sigma_{3} & \cdots & \sigma_{3} & \sigma_{2}
\end{array}\right)
$$

- Proof: algebra + four-letter identity.

Consequences

- First consequence: up to noise from the sampling, the explanations are linear in the model:

$$
\beta^{f+g} \approx \beta^{f}+\beta^{g} .
$$

- good property: we can split the explanations for additive models (linear models, random forests, kernel-based,...)
- Second consequence: simple expression in the large bandwidth limit $(\nu \rightarrow+\infty)$:

$$
\beta_{j} \approx 2\left(\mathbb{E}\left[f(x) \mid z_{j}=1\right]-\mathbb{E}[f(x)]\right)
$$

- Intuition: large value if the model takes significantly larger values when superpixel j is present in the image
- this corresponds to our intuition

Shape detectors

- we can be more precise for specific models, for instance shape detectors:

$$
f(x)=\prod_{u \in \mathcal{S}} \mathbb{1}_{x_{u}>\tau},
$$

where \mathcal{S} is a given set of pixels and τ is a positive threshold

- f takes value 1 if the shape \mathcal{S} is lit up in image x
- we define the set of superpixels intersecting \mathcal{S} as

$$
E:=\left\{j \in\{1, \ldots, d\} \text { s.t. } J_{j} \cap \mathcal{S} \neq \emptyset\right\},
$$

which we split in two parts:

$$
E_{+}:=\left\{j \in E \text { s.t. } \bar{\xi}_{j}>\tau\right\}, \text { and } E_{-}:=\left\{j \in E \text { s.t. } \bar{\xi}_{j} \leq \tau\right\} .
$$

- for a given ξ, we also define

$$
S_{+}:=\left\{u \in \mathcal{S} \text { s.t. } \xi_{u}>\tau\right\} \text {, and } S_{-}:=\left\{u \in \mathcal{S} \text { s.t. } \xi_{u} \leq \tau\right\} .
$$

Shape detectors, ctd.

with these notations in hand, we can compute β :

Proposition (G. and Mardaoui, 2021): Assume that $\forall j \in E_{+}, J_{j} \cap S_{-}=\emptyset$ and let $p:=\left|E_{-}\right|$. Assume that, for all $j \in E_{-}, J_{j} \cap S_{-}=\emptyset$. Then, for any $j \in E_{-}$,

$$
\beta_{j}^{f}=c_{d}^{-1}\left\{\sigma_{1} \alpha_{p}+\sigma_{2} \alpha_{p}+(p-1) \sigma_{3} \alpha_{p}+(d-p) \sigma_{3} \alpha_{p+1}\right\}
$$

and for any $j \in\{1, \ldots, d\} \backslash E_{-}$,

$$
\beta_{j}^{f}=c_{d}^{-1}\left\{\sigma_{1} \alpha_{p}+\sigma_{2} \alpha_{p+1}+p \sigma_{3} \alpha_{p}+(d-p-1) \sigma_{3} \alpha_{p+1}\right\}
$$

- simplifications when ν is large: $\beta_{j} \approx 1 / 2^{p-1}$ for an intersecting superpixel, 0 otherwise
- Intuition: LIME puts equal positive weights for superpixels intersecting \mathcal{S}

Shape detection example

- Example: rectangular shape, MNIST dataset, zero replacement:

Shape detection example, ctd.

Example: same digit, \mathcal{S} intersects one superpixel:

Shape detection example, ctd.

- Example: same digit, \mathcal{S} intersects two superpixels:

Take-away: splitting the explanation between intersected superpixels

Linear models

- Question: what about linear models?
- let us set

$$
f(x)=\sum_{u=1}^{D} \lambda_{u} x_{u}+b
$$

Proposition (G. and Mardaoui, 2021): assume that f is linear. Then

$$
\forall 1 \leq j \leq d, \quad \beta_{j}=\sum_{u \in J_{j}} \lambda_{u} \cdot\left(\xi_{u}-\bar{\xi}_{u}\right)
$$

where $\bar{\xi}$ is the replacement image.

- Intuition: sum of gradient \times input on the superpixels ${ }^{9}$
${ }^{9}$ Ancona et al., Towards better understanding "of gradient-based attribution methods for deep neural
networks, ICLR, 2018

Linear models, ctd.

- Example: linear function on MNIST with arbitrary coefficients:

Linear models, ctd.

- Example: linear function on ILSVRC with arbitrary coefficients:

More complex models

- unsurprisingly difficult to extend the analysis
- However, if we replace f by a linear approximation, we see empirically that

$$
\beta_{j} \approx \sum_{u \in J_{j}} \mathrm{IG}_{u} \cdot\left(\xi_{u}-\bar{\xi}_{u}\right),
$$

where IG is the integrated gradients ${ }^{10}$

- \approx averaged gradients of the model on a line joining ξ and a reference image

LIME int. gradient linear approx.

[^6]
Integrated gradients

- Idea: average the gradient on a path between $\bar{\xi}$ and ξ and define ${ }^{11}$

$$
\forall u \in\{1, \ldots, D\}, \quad \mathrm{IG}_{u}:=\int_{0}^{1} \frac{\partial f((1-\alpha) \xi+\alpha \bar{\xi})}{\partial x_{u}} \mathrm{~d} \alpha
$$

- approximate with Riemann sum:

$$
\mathrm{IG}_{u}^{\text {approx }}:=\frac{1}{m} \sum_{k=1}^{m} \frac{\partial f\left(\left(1-\frac{k}{m}\right) \xi+\frac{k}{m} \bar{\xi}\right)}{\partial x_{u}} .
$$

- linear approximation of f given by

$$
f(x) \approx f(\bar{\xi})+(x-\bar{\xi})^{\top} \mathrm{IG}^{\text {approx }} .
$$

[^7]
More qualitative results

More qualitative results, ctd.

pomegranate (conf. 94\%)segmentation

anole (conf. 65\%)

stethoscope (conf. 47\%)segmentation

segmentation

LIME

$\bar{\xi}$

$\bar{\xi}$

int. gradient
int. gradient
linear approx.

int. gradient
linear approx.

int. gradient

4. Conclusion

Some problems with LIME

- Problem 1: the sampling
- if the superpixel is very similar to the replacement superpixel, switching on and off does not change much
- LIME cannot learn that this pixel is important for the prediction
- even though it may be!

Some problems with LIME, ctd.

- Problem 2: the bandwidth
- ν is essentially the only free parameter of the method
- Question: what happens when we vary it?

- Figure: explanation for superpixel 13, ILSVRC dataset, InceptionV3 model, 10 repetitions for each ν, default is 0.25 (in red)
- Undesirable behavior: explanation changes sign when ν varies

Conclusion

- In this talk:
- analysis of LIME for images
- uncovering good properties (linearity, large bandwidth behavior)
- but also less desirable ones, even for simple models proceed with caution!
- Not in this talk:
- analysis for text ${ }^{12}$ and tabular data ${ }^{13,14}$
- similar message
- Future directions:
- other methods, e.g., Anchors ${ }^{15}$ (\approx rule extraction with similar sampling scheme)
- general results for random local perturbation

[^8]Thank you for your attention!

[^0]: ${ }^{1}$ Szegedy et al., Rethinking the inception architecture for computer vision, CVPR, 2016

[^1]: ${ }^{2}$ Brown et al., Language models are few-shot learners, arxiv, 2020
 ${ }^{3}$ Wachter, Mittelstadt, Floridi, Why a right to explanation of automated decision-making does not exist in the general data protection regulation, International Data Privacy Law, 2017

[^2]: ${ }^{4}$ Ribeiro et al., "Why should I trust you?" Explaining the Prediction of any Classifier, SIGKDD, 2016
 ${ }^{5}$ Lundberg and Lee, A unified approach to interpreting model predictions, NeurIPS, 2017

[^3]: ${ }^{6}$ Vedaldi and Soatto, Quickshift and kernel methods for mode seeking, ECCV, 2008

[^4]: ${ }^{7}$ Hoerl and Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 1970

[^5]: ${ }^{8}$ Garreau and Mardaoui, What does LIME really see in images?, ICML, 2021

[^6]: ${ }^{10}$ Sundararajan, Taly, Qan, Axiomatic attribution for deep networks, ICML 2017

[^7]: ${ }^{11}$ Sundararajan et al., Axiomatic attribution for deep networks, ICML, 2017

[^8]: ${ }^{12}$ Mardaoui and Garreau, An analysis of LIME for text data, AISTATS, 2021
 ${ }^{13}$ Garreau and von Luxburg, Explaining the explainer, a first theoretical analysis of LIME, AISTATS, 2020
 ${ }^{14}$ Garreau and von Luxburg, Looking deeper into tabular LIME, arxiv, 2020
 ${ }^{15}$ Ribeiro et al., Anchors: high-precision model-agnostic explanations, AAAI, 2018

