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Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization
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How most people see the supervised learning problem

Learn how to build an image-recognizing convolutional neural
network with Python and Keras in less than 15minutes!

7@\ ) ) ™
@ Fabian Bosler Oct5,2019 - 10 minread * N
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100% cat 97% dog

https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730
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How machine learners see the supervised learning problem
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Regression: £(Fr(z),y) = (y— Fx(x))? Binary classification: {(Fr(z),y) = Liyr, (z)<0]-
Theoretical risk minimization: choose

7 € argmin £ (7) = E({(Fr(z),y)).
mell

Y Empirical risk minimization: choose

T, € argmin £, () = %Zﬁ(Fw(:ci), Yi)-

mell
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How statisticians see the supervised learning problem

> Model: {F, : R™ s R 7 € II}.
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Original ResNet

»

f(hk, ekﬂ) = Vk+l RGLU( Wk;+lflk 4 bk+l) F(x) <
identity
> ReLU(z) = max(z,0) = activation function Fx)+x @
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> Different forms for f : R% x R? — R¢ = different architectures.

Simple ResNet N

weight layer
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> o = activation function Fx)+x @
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CNEICIRNESNES N

weight layer

f(hey Ok1) = Viy19(he, O11) F(x) <
identity
> g:R%x RP — R Fx)+x @

> 0, = parameters

> = (4, B, (Vi)igk<r, (0r)1<k<r)
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Residual neural networks (ResNets)
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The revolution of ResNets

mammal — placental —— carnivore

L G- ma zﬁm
SHE ~E

\
vehicle craft — watercraft —— sailingvessel ——  sailboat —  trimaran

Examples from the ImageNet dataset
https://blog.roboflow.com/introduction-to-imagenet
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The revolution of ResNets

28% AlexNet, 8 layers

ZF, 8 layers
; VGG, 19 layers
GooglLeNet, 22 layers
;S ¢ ResNet, 152 layers

_(Ensemble)

shallow

2010 2011 2012 2013 2014 2015 2018 2017
ImageNet performance over time

https://semiengineering.com/new-vision-technologies-for-real-world-applications
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The revolution of ResNets
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Deep learning —

¥ Traditional neural networks

hit1 = f(he, Ory1)
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Deep learning —

¥ Traditional neural networks

hit1 = f(he, Ory1)

¥ Residual neural networks (He et al., 2016)
1
b1 = b + zf(hkv Ok+1)

2 Neural ODE (Chen et al., 2018)

dH; = f(H;, ©4)dt
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Deep learning —

Depth
o = N w » w w
> Traditional neural networks &J .
>—o—o~—.———/ g
hir1 = f(hy Or41) 0& o
[¢]
2 Residual neural networks (He et al., 2016) wﬁ §
=3
1
hk+1 = hk + zf(hkv 9k+l) o = NDeptvPlJ s w
WLl
2 Neural ODE (Chen et al., 2018) F\_'_.___"_r,// s
° o)
o =
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New network architectures: Runge-Kutta networks
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Benning et al. (2019)
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New network architectures: antisymmetric networks
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(a) Vanilla RNN with a (b) Vanilla RNN with an (c) Vanilla RNN with
random weight matrix. identity weight matrix. a random orthogonal
weight matrix (seed = 0).
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(e) RNN with feedback (f) RNN with feedback (g) RNN with feedback
with positive eigenvalues. with negative eigenval- with imaginary eigenval-
ues. ues.

Chang et al. (2019)
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(d) Vanilla RNN with
a random orthogonal
weight matrix (seed = 1).

(h) RNN with feedback
with imaginary eigenval-
ues and diffusion.
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ResNet Neural ODE

h() = Az H() = Az

Merr = i+ 1 f(hi,Os1) | dHy = f(Hy, ©)dt

Fr(z) = Bhyp Fn(z) = BH;

F(h,0) = Va(Wh+b)
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Scaling deep ResNets
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Stability at initialization

> Original ResNet:
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Stability at initialization

¥ Original ResNet: 100
ho = Az 107
hi+1 = hi + Vi RGLU( Wk+l}l/k) el Hmr’
L ]
Fﬂ-(z) = BhL.
103
10!

> At initialization: A, B, (Vk)lgkgLy and (Wk>1<k<L
are i.i.d. Gaussian matrices.

1 Solution: batch normalization or scaling.
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Scaling ResNets

> Ascaling factor 1/1.7:

1
b1 = hy + 7 Vig1 ReLU( Wy ).
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Scaling ResNets

> Ascaling factor 1/1.7:
1
hi1 = by + 7 Vi1t ReLU( Wi 1 hi).

> Question: choice of /7.
> 7 — 0 (original ResNets)? 7 — 1 (neural ODE)?
> Many empirical studies, no consensus.

¥ Our approach: mathematical analysis at initialization.
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Scaling with standard initialization

0.8

0.6

0.4

0.2

0 200 400 600
L

@) [|P = holl/l[holl,

800

1000

8000
6000
4000
2000

0
0 200 400 600
L

(B) [z = Roll/llholl;

800

1000

0 200 400 600
L

© 1~z = Roll/lloll,

800

1000

19/42



Scaling with standard initialization

0.8
0.6
0.4
0.2
0 200 400 600 800 1000
L
@) Ih = holl/llholl,
> With an

8000
6000
4000
2000

0
0 200 400 600 800 1000
L

(B) [z = Roll/llholl;

, the critical value for scaling is

0 200 400 600
L

© 1~z = Roll/lloll,

800

1000

19/42



Scaling with standard initialization
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Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

20/42



Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If B > 1/2
2. If B < 1/2

3. Ifg=1/2

20/42



Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If B > 1/2 then ||hy — holl/||ho]| = 0.
L—oo
2. fp <12

3. Ifg=1/2

20/42



Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If B> 1/2 then ||hg, — holl /|| o] —— 0. — identity
L—oo

2. Ifg <12

3. Ifg=1/2

20/42



Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If B> 1/2 then ||hg, — holl /|| o] —— 0. — identity
L—oo
2. 1f B < 1/2 then |[hg, — holl/|l kol LL> .
— 00

3. Ifg=1/2

20/42



Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If B> 1/2 then ||hg, — holl /|| o] —— 0. — identity
L—oo
2. 1f B < 1/2 then |[hg, — holl/|l kol LL> 0. —s explosion
— 00
3. Ifg=1/2

20/42



Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If B> 1/2 then ||hg, — holl /|| o] —— 0. — identity
L—oo
2. 1f B < 1/2 then |[hg, — holl/|l kol LL> 0. —s explosion
— 00

3. If 5 = 1/2 then, with probability at least 1 — 4,

3 [22 iz — o2 /10
exp<§ %) 1<W<exp 1+ % +1

20/42



Scaling with standard initialization

Assumption: the entries of v/d V}, and v/d W, are symmetric i.i.d. sub-Gaussian.

1. If B> 1/2 then ||hg, — holl /|| o] —— 0. — identity
L—oo
2. 1f B < 1/2 then |[hg, — holl/|l kol LL> 0. —s explosion
— 00

3. If 5 = 1/2 then, with probability at least 1 — 4,

3 22 |hr — holl? 10 .
exp<§_ %)—1<W<exp 1+ T + 1. — stability

20/42



> Objective: assess the backwards dynamics of the gradients pj, = %f; € R4

21/42



> Objective: assess the backwards dynamics of the gradients pj, = %f; € R4

> Target: [|po — prll/|lprl| when Lis large.

21/42



> Objective: assess the backwards dynamics of the gradients pj, = %f; € R4

> Target: [|po — prll/|lprl| when Lis large.

¥ Backpropagation formula:

1 Og(hi, Ox1) "
Dk = Pk+1 + T% VkT.HPkH

21/42



> Objective: assess the backwards dynamics of the gradients pj, = %f; € R4

> Target: [|po — prll/|lprl| when Lis large.

¥ Backpropagation formula:

1 0g(hy, Oy T
Pk = Prt+1 + Tg(aih“) Vii1Pksi1  — wrong way.

21/42



> Objective: assess the backwards dynamics of the gradients pj, = %f; € R4

> Target: [|po — prll/|lprl| when Lis large.

¥ Backpropagation formula:

1 0g(hy, 1) "

Pk = Dk+1 + ?T V,;lpkﬂ — wrong way.
¥ Our approach: with g(z) = g—zgz,

| Dg(hn, 0
Be+1(2) = qu(2) + T8 Vk+1%%(2)

21/42



> Objective: assess the backwards dynamics of the gradients pj, = %f; € R4

> Target: [|po — prll/|lprl| when Lis large.

¥ Backpropagation formula:

1 Ag(hw, Oy1) "

Pk = Dk+1 + ?T V,;lpkﬂ — wrong way.
¥ Our approach: with g(z) = g—zgz,

Git1(2) = qu(2) + LL Vk+1%qk(z) —s flow of information = v/.

21/42



> Objective: assess the backwards dynamics of the gradients pj, = %f; € R4

> Target: [|po — prll/|lprl| when Lis large.

¥ Backpropagation formula:

1 Ag(hw, Oy1) "

Pk = Dk+1 + ?T V,;lpkﬂ — wrong way.
¥ Our approach: with g(z) = g—zgz,

1
Git1(2) = qu(2) + 7 Vk+1%qk(z) —s flow of information = v/.

¥ Conclusion with )
HPUH _

PL T 2
=E,.n (‘ — ) qr(z ‘ )
Tk om (| (fprp)
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Scaling with standard initialization — Gradients
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Scaling with standard initialization —

Assumption: the entries of v/d V; and v/d Wj, are symmetric i.i.d. sub-Gaussian.

1. 1§ 3> 12 then ||lpo — poll/|IpLll LL> 0. — identity
—00
2. If 5 < 1/2 then E(||po — prll/llpLll) — o — explosion
—r OO

3. If 5 =1/2 then

1 _ 2
e (") —Is ]E<—Hp0 ng” ) <exp(4) — 1.  — stability
2 oLl
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How to interpret the critical value § = 1/2?

¥ Simple ResNet: hyyq = hy + \—‘I Vierro(hg).
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How to interpret the critical value § = 1/2?

¥ Simple ResNet: hyyq = hy + \—‘I Vie1o(hy).
¥ The entries of Vy, are ii.d. N(0, Y/a).

> ForB:[0,1] = R%4a (d x d)-dimensional Erownian motion

1
B(k+1)/L,i,j - Bk/L,i,j ~ N(O, Z) .

9 Consequence:
1
hy = Az, h‘lj-&-l = h,;r + ﬁU(hZ)(B(}chl)/L - B;c/L), 0<k<L-1.
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SDE regime

ResNet
h@ = Az

}lk+l = h; + \LT Vk+10(}bk)

Fﬂ(l’) = BhL

Neural SDE

Ho = Az
dH," = J-o(H,")dB,
FH(ZL’) = BH1
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SDE regime

ResNet
h@ = Az

Iy = hi + \% Vir10(hg)

Fﬂ(l’) = BhL

Proposition

Neural SDE

HO = Az
dH," = J-o(H,")dB,
FH(ZL’) = BH1

Assumption: the entries of V}, are i.i.d. Gaussian N (0, 1/d) and ¢ is Lipschitz continuous.

Then the SDE has a unique solution H and, forany 0 < k < L,

E (|| Hyy, — hill)

<
\\/E.
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For deep ResNets with i.i.d. initialization:

> the critical value for scaling is 7 = !/2

> this value corresponds in the deep limit to a SDE.

Remaining questions:

> Can we obtain other limits? For example ODEs?
> Do they correspond to the same critical value?

Key: link between [ and the weight distributions.
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Scaling in the continuous-time setting
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> Idea: the weights (V;)1<k<z @and (0;)1<k<r are discretizations of smooth functions.
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Leaving the i.i.d. world behind

> Idea: the weights (V;)1<k<z @and (0;)1<k<r are discretizations of smooth functions.
> (Vi)icksr = 7 1 0,1] = R4 (0)1<hcr < © 1 [0,1] — RP,
> Model:

ho = Az, hgi1 = hp + % Vir19(hg, 0k11), 0< k< L—1,

where V= 7/, and 0, = Oy
Assumption: the stochastic processes 7" and © are a.s. Lipschitz continuous and bounded.

Y Example: the entries of 7" and © are independent Gaussian processes with zero

\2
expectation and covariance K(z, 1) = exp(— (ngz) ).
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Scaling and weight regularity
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ODE regime

ResNet Neural ODE
ho = Az HO = Az

Mer1 = e+ 7 Vi1 9(hi, Opq1) | dHy = Vig(Hy, ©,)dt

F.,,-(JZ) = B}LL FH(I) = BH1
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ODE regime

ResNet Neural ODE
ho = Az HO = Az

Mer1 = e+ 7 Vi1 9(hi, Opq1) | dHy = Vig(Hy, ©,)dt

F.,,-(:ZZ) = BhL FH(.’E) = BH1

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.
Then the ODE has a unique solution H and, a.s.,forany 0 < k < L,

C
By, — Il < <
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Scaling with a smooth initialization
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1
0.005 0.195
0.000 0 0.190
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
L L L
@) Ik — holl/llholl, ®) lhr = holl/llkoll. @ Ilhe, = holl/IlRoll,
> Again : identity/explosion/stability.
> Witha , the critical scaling is

> ltis the scaling that corresponds in the deep limit to an
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Scaling with with a smooth initialization
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Scaling with with a smooth initialization

Assumption: 7 and © are a.s. Lipschitz continuous and bounded.

L—oo

1. If 8 > 1 then, as., ||kt — hol|/||ho|| —— 0. — identity
2. If 5 =1 then, as., ||hr — ho||/||holl < c. — stability
hy; — o0
3. If 6 <1 +assumptions, then max I T|h |Tlo|| Lo
0
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Scaling with with a smooth initialization

Assumption: 7 and © are a.s. Lipschitz continuous and bounded.

L—oo

1. If 8 > 1 then, as., ||kt — hol|/||ho|| —— 0. — identity
2. If 5 =1 then, as., ||hr — ho||/||holl < c. — stability
hi — 0o .
3. If 6 <1 +assumptions, then ml?x I T|h |Tlo|| Lo 0. — explosion
0
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Intermediate regimes

9 Challenge: describe the transition between the i.i.d. and smooth cases.
2 We initialize the weights as increments of a fractional Brownian motion (BtH)te[O,l]-

¥ Recall: B¥ is Gaussian, starts at zero, has zero expectation, and covariance function
1
E(BB) = 5 (s + [t — [t = s*), 0<s,t <1

> The Hurstindex H € (0,1) describes the raggedness of the process.
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> H = 1/2: standard Brownian motion (SDE regime).
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(@) H=0.2 (b) H=10.5

> H = 1/2: standard Brownian motion (SDE regime).

> H < 1/2: the increments are negatively correlated.

> H > 1/2: the increments are positively correlated.
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> H = 1/2: standard Brownian motion (SDE regime).
> H < 1/2: the increments are negatively correlated.
> H > 1/2: the increments are positively correlated.

> When H — 1: the trajectories converge to linear functions (ODE regime).
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A continuum of intermediate regularities

Neural SDE regime
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Beyond initialization
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Before training After training
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l.i.d. initialization, 7 — 1

> The weights after training still exhibit a strong structure as functions of the layer.
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Before training After training

0.0050 4
0.0025 2
0.0000 0
—0.0025 -2
~0.0050 —4
0 200 400 600 800 1000 0 200 400 600 800 1000

l.i.d. initialization, 7 — 1

> The weights after training still exhibit a strong structure as functions of the layer.
> Their regularity is influenced by both the initialization and the choice of /3.
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Performance after training
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> Deep limits allow to understand scaling and initialization strategies for ResNets.
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https://arxiv.org/abs/2206.06929

> Deep limits allow to understand scaling and initialization strategies for ResNets.

¥ With standard initialization the correct scaling is 7 — /2.
> To train very deep ResNets, it is important to adapt scaling to the weight regularity.

> Perspectives: what about training? how should we choose the regularity for a given
problem?

> To know more: arXiv:2206.06929.
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Thank you!

¥ adeline.fermanian@mines-paristech.fr

@ https://afermanian.github.io
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