Scaling ResNets in the large-depth regime

Non-Linear and High Dimensional Inference, IHP, October 3rd 2022

Adeline Fermanian

Joint work with

Gérard Biau

Sorbonne University

Pierre Marion
Sorbonne University

Jean-Philippe Vert
Owkin

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

How most people see the supervised learning problem

Learn how to build an image-recognizing convolutional neural network with Python and Keras in less than 15minutes!

[^0]How machine learners see the supervised learning problem

https://medium.datadriveninvestor.com/depth-estimation-with-deep-neural-networks-part-2-81ee374888eb

How statisticians see the supervised learning problem

$>$ Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.

How statisticians see the supervised learning problem

$>$ Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}}$, i.i.d. $\sim(x, y)$.

How statisticians see the supervised learning problem

$>$ Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}}$, i.i.d. $\sim(x, y)$.
$>$ Model: $\left\{F_{\pi}: \mathbb{R}^{n_{\text {in }}} \mapsto \mathbb{R}^{n_{\text {out }}}, \pi \in \Pi\right\}$.

How statisticians see the supervised learning problem

$>$ Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}}$, i.i.d. $\sim(x, y)$.
$>$ Model: $\left\{F_{\pi}: \mathbb{R}^{n_{\text {in }}} \mapsto \mathbb{R}^{n_{\text {out }}}, \pi \in \Pi\right\}$.
$>$ Loss function $\ell: \mathbb{R}^{n_{\text {out }}} \times \mathbb{R}^{n_{\text {out }}} \rightarrow \mathbb{R}_{+}$.

How statisticians see the supervised learning problem

> Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}, ~ i . i . d . ~} \sim(x, y)$.
$>$ Model: $\left\{F_{\pi}: \mathbb{R}^{n_{\text {in }}} \mapsto \mathbb{R}^{n_{\text {out }}}, \pi \in \Pi\right\}$.
$>$ Loss function $\ell: \mathbb{R}^{n_{\text {out }}} \times \mathbb{R}^{n_{\text {out }}} \rightarrow \mathbb{R}_{+}$.
$>$ Regression: $\ell\left(F_{\pi}(x), y\right)=\left(y-F_{\pi}(x)\right)^{2}$

How statisticians see the supervised learning problem

> Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}, ~ i . i . d . ~} \sim(x, y)$.
$>$ Model: $\left\{F_{\pi}: \mathbb{R}^{n_{\text {in }}} \mapsto \mathbb{R}^{n_{\text {out }}}, \pi \in \Pi\right\}$.
$>$ Loss function $\ell: \mathbb{R}^{n_{\text {out }}} \times \mathbb{R}^{n_{\text {out }}} \rightarrow \mathbb{R}_{+}$.
$>$ Regression: $\ell\left(F_{\pi}(x), y\right)=\left(y-F_{\pi}(x)\right)^{2} \quad$ Binary classification: $\ell\left(F_{\pi}(x), y\right)=\mathbb{1}_{\left[y F_{\pi}(x) \leqslant 0\right]}$.

How statisticians see the supervised learning problem

$>$ Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}}$, i.i.d. $\sim(x, y)$.
$>$ Model: $\left\{F_{\pi}: \mathbb{R}^{n_{\text {in }}} \mapsto \mathbb{R}^{n_{\text {out }}}, \pi \in \Pi\right\}$.
$>$ Loss function $\ell: \mathbb{R}^{n_{\text {out }}} \times \mathbb{R}^{n_{\text {out }}} \rightarrow \mathbb{R}_{+}$.
$>$ Regression: $\ell\left(F_{\pi}(x), y\right)=\left(y-F_{\pi}(x)\right)^{2} \quad$ Binary classification: $\ell\left(F_{\pi}(x), y\right)=\mathbb{1}_{\left[y F_{\pi}(x) \leqslant 0\right]}$.
> Theoretical risk minimization: choose

$$
\pi^{\star} \in \underset{\pi \in \Pi}{\operatorname{argmin}} \mathscr{L}(\pi)=\mathbb{E}\left(\ell\left(F_{\pi}(x), y\right)\right) .
$$

How statisticians see the supervised learning problem

$>$ Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}}$, i.i.d. $\sim(x, y)$.
$>$ Model: $\left\{F_{\pi}: \mathbb{R}^{n_{\text {in }}} \mapsto \mathbb{R}^{n_{\text {out }}}, \pi \in \Pi\right\}$.
$>$ Loss function $\ell: \mathbb{R}^{n_{\text {out }}} \times \mathbb{R}^{n_{\text {out }}} \rightarrow \mathbb{R}_{+}$.
$>$ Regression: $\ell\left(F_{\pi}(x), y\right)=\left(y-F_{\pi}(x)\right)^{2} \quad$ Binary classification: $\ell\left(F_{\pi}(x), y\right)=\mathbb{1}_{\left[y F_{\pi}(x) \leqslant 0\right]}$.
> Theoretical risk minimization: choose

$$
\pi^{\star} \in \underset{\pi \in \Pi}{\operatorname{argmin}} \mathscr{L}(\pi)=\mathbb{E}\left(\ell\left(F_{\pi}(x), y\right)\right) .
$$

> Empirical risk minimization: choose

$$
\pi_{n} \in \underset{\pi \in \Pi}{\operatorname{argmin}} \mathscr{L}_{n}(\pi)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(F_{\pi}\left(x_{i}\right), y_{i}\right)
$$

How statisticians see the supervised learning problem
\geqslant Goal: understand the relationship between $x \in \mathbb{R}^{n_{\text {in }}}$ and $y \in \mathbb{R}^{n_{\text {out }}}$.
$>$ Data: $\left(x_{1}, y_{1}\right) \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{n_{\text {in }}} \times \mathbb{R}^{n_{\text {out }}}$, i.i.d. $\sim(x, y)$.
$>$ Model: $\left\{F_{\pi}: \mathbb{R}^{n_{\text {in }}} \mapsto \mathbb{R}^{n_{\text {out }}}, \pi \in \Pi\right\}$.
$>$ Loss function
$>$ Regression: $\ell\left(F_{\pi}(x), y\right)=\left(y-F_{\pi}(x)\right)^{2} \quad$ Binary classification: $\ell\left(F_{\pi}(x), y\right)=\mathbb{1}_{\left[y F_{\pi}(x) \leqslant 0\right]}$
$>$ Theoretical risk minimization: choose

```
\mp@subsup{\pi}{}{*}\in\underset{\pi\in\Pi}{\operatorname{argmin}}\mathscr{L}(\pi)=\mathbb{E}(\ell(\mp@subsup{F}{\pi}{}(x),y))
```

> Empirical risk minimization: choose

Residual neural networks (ResNets)

$>$ Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

Residual neural networks (ResNets)

$>$ Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

$$
h_{0}=A x, \quad h_{k+1}=h_{k}+f\left(h_{k}, \theta_{k+1}\right), \quad F_{\pi}(x)=B h_{L} .
$$

Residual neural networks (ResNets)

$>$ Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

$$
h_{0}=A x, \quad h_{k+1}=h_{k}+f\left(h_{k}, \theta_{k+1}\right), \quad F_{\pi}(x)=B h_{L} .
$$

Residual neural networks (ResNets)

$>$ Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

$$
h_{0}=A x, \quad h_{k+1}=h_{k}+f\left(h_{k}, \theta_{k+1}\right), \quad F_{\pi}(x)=B h_{L} .
$$

> Different forms for $f: \mathbb{R}^{d} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}=$ different architectures.

Residual neural networks (ResNets)

> Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

$$
h_{0}=A x, \quad h_{k+1}=\boldsymbol{h}_{k}+f\left(h_{k}, \theta_{k+1}\right), \quad F_{\pi}(x)=B h_{L} .
$$

> Different forms for $f: \mathbb{R}^{d} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}=$ different architectures.

Original Parametric Simple General ResNet

$$
f\left(h_{k}, \theta_{k+1}\right)=V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}+b_{k+1}\right)
$$

$\triangleright \operatorname{ReLU}(x)=\max (x, 0)=$ activation function
$\triangleright \theta_{k}=\left(W_{k}, b_{k}\right)=$ weight matrice + bias
$\triangleright \pi=\left(A, B,\left(V_{k}\right)_{1 \leqslant k \leqslant L},\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}\right)$

He et al. (2016)

Residual neural networks (ResNets)

> Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

$$
h_{0}=A x, \quad h_{k+1}=\boldsymbol{h}_{k}+f\left(h_{k}, \theta_{k+1}\right), \quad F_{\pi}(x)=B h_{L} .
$$

> Different forms for $f: \mathbb{R}^{d} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}=$ different architectures.

Original Parametric Simple General ResNet

$$
f\left(h_{k}, \theta_{k+1}\right)=V_{k+1} \sigma\left(W_{k+1} h_{k}+b_{k+1}\right)
$$

$\triangleright \sigma=$ activation function
$\triangleright \theta_{k}=\left(W_{k}, b_{k}\right)=$ weight matrice + bias
$\triangleright \pi=\left(A, B,\left(V_{k}\right)_{1 \leqslant k \leqslant L},\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}\right)$

He et al. (2016)

Residual neural networks (ResNets)

> Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

$$
h_{0}=A x, \quad h_{k+1}=\boldsymbol{h}_{k}+f\left(h_{k}, \theta_{k+1}\right), \quad F_{\pi}(x)=B h_{L} .
$$

> Different forms for $f: \mathbb{R}^{d} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}=$ different architectures.

Original Parametric Simple General ResNet

$$
f\left(h_{k}, \theta_{k+1}\right)=V_{k+1} \sigma\left(h_{k}\right)
$$

$\triangleright \sigma=$ activation function
$\triangleright \theta_{k}=\emptyset$
$\triangleright \pi=\left(A, B,\left(V_{k}\right)_{1 \leqslant k \leqslant L}\right)$

He et al. (2016)

Residual neural networks (ResNets)

> Sequence of hidden states $h_{0}, \ldots, h_{L} \in \mathbb{R}^{d}$ defined by recurrence:

$$
h_{0}=A x, \quad h_{k+1}=\boldsymbol{h}_{k}+f\left(h_{k}, \theta_{k+1}\right), \quad F_{\pi}(x)=B h_{L} .
$$

> Different forms for $f: \mathbb{R}^{d} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}=$ different architectures.

$$
\begin{aligned}
& \text { Original Parametric Simple General ResNet } \\
& \qquad f\left(h_{k}, \theta_{k+1}\right)=V_{k+1} g\left(h_{k}, \theta_{k+1}\right) \\
& \triangleright g: \mathbb{R}^{d} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{d} \\
& \triangleright \theta_{k}=\text { parameters } \\
& \triangleright \pi=\left(A, B,\left(V_{k}\right)_{1 \leqslant k \leqslant L},\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}\right)
\end{aligned}
$$

He et al. (2016)

Residual neural networks (ResNets)

The revolution of ResNets

Examples from the ImageNet dataset
https://blog.roboflow.com/introduction-to-imagenet

The revolution of ResNets

ImageNet performance over time

[^1]
The revolution of ResNets

ImageNet performance over time

Deep learning \rightarrow neural ODE \leftarrow ODE

Traditional neural networks

$$
h_{k+1}=f\left(h_{k}, \theta_{k+1}\right)
$$

Deep learning \rightarrow neural ODE \leftarrow ODE

Traditional neural networks

$$
h_{k+1}=f\left(h_{k}, \theta_{k+1}\right)
$$

> Residual neural networks (He et al., 2016)

$$
h_{k+1}=\boldsymbol{h}_{\mathbf{k}}+\quad f\left(h_{k}, \theta_{k+1}\right)
$$

Deep learning \rightarrow neural ODE \leftarrow ODE

Traditional neural networks

$$
h_{k+1}=f\left(h_{k}, \theta_{k+1}\right)
$$

> Residual neural networks (He et al., 2016)

$$
h_{k+1}=\boldsymbol{h}_{\mathbf{k}}+\frac{1}{L} f\left(h_{k}, \theta_{k+1}\right)
$$

Deep learning \rightarrow neural ODE \leftarrow ODE

Traditional neural networks

$$
h_{k+1}=f\left(h_{k}, \theta_{k+1}\right)
$$

> Residual neural networks (He et al., 2016)

$$
h_{k+1}=\boldsymbol{h}_{\mathbf{k}}+\frac{1}{L} f\left(h_{k}, \theta_{k+1}\right)
$$

> Neural ODE (Chen et al., 2018)

$$
d H_{t}=f\left(H_{t}, \Theta_{t}\right) d t
$$

Deep learning \rightarrow neural ODE \leftarrow ODE

Traditional neural networks

$$
h_{k+1}=f\left(h_{k}, \theta_{k+1}\right)
$$

Residual neural networks (He et al., 2016)

$$
h_{k+1}=\boldsymbol{h}_{k}+\frac{1}{L} f\left(h_{k}, \theta_{k+1}\right)
$$

> Neural ODE (Chen et al., 2018)

$$
d H_{t}=f\left(H_{t}, \Theta_{t}\right) d t
$$

New network architectures: Runge-Kutta networks

Benning et al. (2019)

New network architectures: antisymmetric networks

(a) Vanilla RNN with a (b) Vanilla RNN with an random weight matrix.

(e) RNN with feedback with positive eigenvalues.

identity weight matrix.

(f) RNN with feedback with negative eigenvalues.

(c) Vanilla RNN with a random orthogonal weight matrix (seed $=0$). \quad weight matrix (seed $=1$).

(g) RNN with feedback with imaginary eigenvalues.

(d) Vanilla RNN with

(h) RNN with feedback with imaginary eigenvalues and diffusion.

Chang et al. (2019)

In summary

$$
\begin{array}{c|c}
\text { ResNet } & \text { Neural ODE } \\
h_{0}=A x & H_{0}=A x \\
h_{k+1}=h_{k}+\frac{1}{L} f\left(h_{k}, \theta_{k+1}\right) & d H_{t}=f\left(H_{t}, \Theta_{t}\right) d t \\
F_{\pi}(x)=B h_{T} & F_{\Pi}(x)=B H_{1} \\
f(h, \theta)=V \sigma(W h+b)
\end{array}
$$

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

Stability at initialization

> Original ResNet:

$$
\begin{aligned}
h_{0} & =A x \\
h_{k+1} & =h_{k}+V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) \\
F_{\pi}(x) & =B h_{L} .
\end{aligned}
$$

Stability at initialization

> Original ResNet:

$$
\begin{aligned}
h_{0} & =A x \\
h_{k+1} & =h_{k}+V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) \\
F_{\pi}(x) & =B h_{L} .
\end{aligned}
$$

> At initialization: $A, B,\left(V_{k}\right)_{1 \leqslant k \leqslant L}$, and $\left(W_{k}\right)_{1 \leqslant k \leqslant L}$ are i.i.d. Gaussian matrices.

Stability at initialization

> Original ResNet:

$$
\begin{aligned}
h_{0} & =A x \\
h_{k+1} & =h_{k}+V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) \\
F_{\pi}(x) & =B h_{L} .
\end{aligned}
$$

> At initialization: $A, B,\left(V_{k}\right)_{1 \leqslant k \leqslant L}$, and $\left(W_{k}\right)_{1 \leqslant k \leqslant L}$ are i.i.d. Gaussian matrices.

Stability at initialization

> Original ResNet:

$$
\begin{aligned}
h_{0} & =A x \\
h_{k+1} & =h_{k}+V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) \\
F_{\pi}(x) & =B h_{L} .
\end{aligned}
$$

> At initialization: $A, B,\left(V_{k}\right)_{1 \leqslant k \leqslant L}$, and $\left(W_{k}\right)_{1 \leqslant k \leqslant L}$ are i.i.d. Gaussian matrices.

Solution: batch normalization or scaling.

Scaling ResNets

> A scaling factor $1 / L^{\beta}$:

$$
h_{k+1}=h_{k}+\frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) .
$$

Scaling ResNets

> A scaling factor $1 / L^{\beta}$:

$$
h_{k+1}=h_{k}+\frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) .
$$

> Question: choice of β.

Scaling ResNets

> A scaling factor $1 / L^{\beta}$:

$$
h_{k+1}=h_{k}+\frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) .
$$

> Question: choice of β.
> $\beta=0$ (original ResNets)?

Scaling ResNets

> A scaling factor $1 / L^{\beta}$:

$$
h_{k+1}=h_{k}+\frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) .
$$

> Question: choice of β.
> $\beta=0$ (original ResNets)? $\beta=1$ (neural ODE)?

Scaling ResNets

> A scaling factor $1 / L^{\beta}$:

$$
h_{k+1}=h_{k}+\frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) .
$$

> Question: choice of β.
> $\beta=0$ (original ResNets)? $\beta=1$ (neural ODE)?
> Many empirical studies, no consensus.

Scaling ResNets

> A scaling factor $1 / L^{\beta}$:

$$
h_{k+1}=h_{k}+\frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}\left(W_{k+1} h_{k}\right) .
$$

> Question: choice of β.
> $\beta=0$ (original ResNets)? $\beta=1$ (neural ODE)?
> Many empirical studies, no consensus.
> Our approach: mathematical analysis at initialization.

Scaling with standard initialization

(a) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=1$

(b) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.25$

(c) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.5$

Scaling with standard initialization

(a) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=1$

(b) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.25$

(c) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.5$
> With an i.i.d. initialization, the critical value for scaling is $\beta=1 / 2$.

Scaling with standard initialization

(a) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=1$

(b) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.25$

(c) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.5$
> With an i.i.d. initialization, the critical value for scaling is $\beta=1 / 2$.
> Not the ODE scaling!

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$
2. If $\beta<1 / 2$
3. If $\beta=1 / 2$

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
2. If $\beta<1 / 2$
3. If $\beta=1 / 2$

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$
3. If $\beta=1 / 2$

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} \infty$.
3. If $\beta=1 / 2$

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} \infty$.
\rightarrow explosion
3. If $\beta=1 / 2$

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} \infty$. $\quad \rightarrow$ explosion
3. If $\beta=1 / 2$ then, with probability at least $1-\delta$,

$$
\exp \left(\frac{3}{8}-\sqrt{\frac{22}{d \delta}}\right)-1<\frac{\left\|h_{L}-h_{0}\right\|^{2}}{\left\|h_{0}\right\|^{2}}<\exp \left(1+\sqrt{\frac{10}{d \delta}}\right)+1
$$

Scaling with standard initialization

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$ then $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} \infty$. $\quad \rightarrow$ explosion
3. If $\beta=1 / 2$ then, with probability at least $1-\delta$,

$$
\exp \left(\frac{3}{8}-\sqrt{\frac{22}{d \delta}}\right)-1<\frac{\left\|h_{L}-h_{0}\right\|^{2}}{\left\|h_{0}\right\|^{2}}<\exp \left(1+\sqrt{\frac{10}{d \delta}}\right)+1 . \quad \rightarrow \text { stability }
$$

Gradients

> Objective: assess the backwards dynamics of the gradients $p_{k}=\frac{\partial \mathscr{L}_{n}}{\partial h_{k}} \in \mathbb{R}^{d}$.

Gradients

> Objective: assess the backwards dynamics of the gradients $p_{k}=\frac{\partial \mathscr{L}_{n}}{\partial h_{k}} \in \mathbb{R}^{d}$.
> Target: $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|$ when L is large.

Gradients

> Objective: assess the backwards dynamics of the gradients $p_{k}=\frac{\partial \mathscr{L}_{n}}{\partial h_{k}} \in \mathbb{R}^{d}$.
> Target: $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|$ when L is large.
> Backpropagation formula:

$$
p_{k}=p_{k+1}+\frac{1}{L^{\beta}} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)^{\top}}{\partial h} V_{k+1}^{\top} p_{k+1}
$$

Gradients

> Objective: assess the backwards dynamics of the gradients $p_{k}=\frac{\partial \mathscr{L}_{n}}{\partial h_{k}} \in \mathbb{R}^{d}$.
> Target: $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|$ when L is large.
> Backpropagation formula:

$$
p_{k}=p_{k+1}+\frac{1}{L^{\beta}} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)^{\top}}{\partial h} V_{k+1}^{\top} p_{k+1} \quad \rightarrow \text { wrong way. }
$$

Gradients

> Objective: assess the backwards dynamics of the gradients $p_{k}=\frac{\partial \mathscr{L}_{n}}{\partial h_{k}} \in \mathbb{R}^{d}$.
> Target: $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|$ when L is large.
> Backpropagation formula:

$$
p_{k}=p_{k+1}+\frac{1}{L^{\beta}} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)^{\top}}{\partial h} V_{k+1}^{\top} p_{k+1} \quad \rightarrow \text { wrong way. }
$$

> Our approach: with $q_{k}(z)=\frac{\partial h_{k}}{\partial h_{0}} z$,

$$
q_{k+1}(z)=q_{k}(z)+\frac{1}{L^{\beta}} V_{k+1} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)}{\partial h} q_{k}(z)
$$

Gradients

> Objective: assess the backwards dynamics of the gradients $p_{k}=\frac{\partial \mathscr{L}_{n}}{\partial h_{k}} \in \mathbb{R}^{d}$.
$>$ Target: $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|$ when L is large.
> Backpropagation formula:

$$
p_{k}=p_{k+1}+\frac{1}{L^{\beta}} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)^{\top}}{\partial h} V_{k+1}^{\top} p_{k+1} \quad \rightarrow \text { wrong way. }
$$

> Our approach: with $q_{k}(z)=\frac{\partial h_{k}}{\partial h_{0}} z$,

$$
q_{k+1}(z)=q_{k}(z)+\frac{1}{L^{\beta}} V_{k+1} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)}{\partial h} q_{k}(z) \quad \rightarrow \text { flow of information }=\checkmark .
$$

Gradients

> Objective: assess the backwards dynamics of the gradients $p_{k}=\frac{\partial \mathscr{L}_{n}}{\partial h_{k}} \in \mathbb{R}^{d}$.
> Target: $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|$ when L is large.
> Backpropagation formula:

$$
p_{k}=p_{k+1}+\frac{1}{L^{\beta}} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)^{\top}}{\partial h} V_{k+1}^{\top} p_{k+1} \quad \rightarrow \text { wrong way. }
$$

> Our approach: with $q_{k}(z)=\frac{\partial h_{k}}{\partial h_{0}} z$,

$$
q_{k+1}(z)=q_{k}(z)+\frac{1}{L^{\beta}} V_{k+1} \frac{\partial g\left(h_{k}, \theta_{k+1}\right)}{\partial h} q_{k}(z) \quad \rightarrow \text { flow of information }=\checkmark .
$$

> Conclusion with

$$
\frac{\left\|p_{0}\right\|^{2}}{\left\|p_{L}\right\|^{2}}=\mathbb{E}_{z \sim \mathcal{N}\left(0, I_{d}\right)}\left(\left|\left(\frac{p_{L}}{\left\|p_{L}\right\|}\right)^{\top} q_{L}(z)\right|^{2}\right)
$$

Scaling with standard initialization - Gradients

(a) $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|, \beta=1$

(b) $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|, \beta=0.25$

(c) $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|, \beta=0.5$

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$
2. If $\beta<1 / 2$
3. If $\beta=1 / 2$

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
2. If $\beta<1 / 2$
3. If $\beta=1 / 2$

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0 . \quad \rightarrow$ identity
2. If $\beta<1 / 2$
3. If $\beta=1 / 2$

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$ then $\mathbb{E}\left(\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|\right) \xrightarrow[L \rightarrow \infty]{ } \infty$.
3. If $\beta=1 / 2$

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
2. If $\beta<1 / 2$ then $\mathbb{E}\left(\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|\right) \xrightarrow[L \rightarrow \infty]{ } \infty$. \quad explosion
3. If $\beta=1 / 2$

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$ then $\mathbb{E}\left(\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|\right) \xrightarrow[L \rightarrow \infty]{ } \infty$. $\quad \rightarrow$ explosion
3. If $\beta=1 / 2$ then

$$
\exp \left(\frac{1}{2}\right)-1 \leqslant \mathbb{E}\left(\frac{\left\|p_{0}-p_{L}\right\|^{2}}{\left\|p_{L}\right\|^{2}}\right) \leqslant \exp (4)-1
$$

Scaling with standard initialization - Gradients

Theorem

Assumption: the entries of $\sqrt{d} V_{k}$ and $\sqrt{d} W_{k}$ are symmetric i.i.d. sub-Gaussian.

1. If $\beta>1 / 2$ then $\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\| \xrightarrow[L \rightarrow \infty]{\mathbb{P}} 0$.
\rightarrow identity
2. If $\beta<1 / 2$ then $\mathbb{E}\left(\left\|p_{0}-p_{L}\right\| /\left\|p_{L}\right\|\right) \xrightarrow[L \rightarrow \infty]{ } \infty$. $\quad \rightarrow$ explosion
3. If $\beta=1 / 2$ then

$$
\exp \left(\frac{1}{2}\right)-1 \leqslant \mathbb{E}\left(\frac{\left\|p_{0}-p_{L}\right\|^{2}}{\left\|p_{L}\right\|^{2}}\right) \leqslant \exp (4)-1 . \quad \rightarrow \text { stability }
$$

Stability - output/gradients

(a) Distribution of $\left\|h_{L}\right\| /\left\|h_{0}\right\|$

(b) Distribution of $\left\|\frac{\partial \mathscr{L}_{n}}{\partial h_{0}}\right\| /\left\|\frac{\partial \mathscr{L}_{n}}{\partial h_{L}}\right\|$

How to interpret the critical value $\beta=1 / 2$?
> Simple ResNet: $h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right)$.

How to interpret the critical value $\beta=1 / 2$?
$>$ Simple ResNet: $h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right)$.
> The entries of V_{k} are i.i.d. $\mathcal{N}(0,1 / d)$.

How to interpret the critical value $\beta=1 / 2$?
> Simple ResNet: $h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right)$.
> The entries of V_{k} are i.i.d. $\mathcal{N}(0,1 / d)$.
> For $\mathbf{B}:[0,1] \rightarrow \mathbb{R}^{d \times d}$ a $(d \times d)$-dimensional Brownian motion

How to interpret the critical value $\beta=1 / 2$?
> Simple ResNet: $h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right)$.
> The entries of V_{k} are i.i.d. $\mathcal{N}(0,1 / d)$.
$>$ For $\mathbf{B}:[0,1] \rightarrow \mathbb{R}^{d \times d} \mathbf{a}(d \times d)$-dimensional Brownian motion

$$
\mathbf{B}_{(k+1) / L, i, j}-\mathbf{B}_{k / L, i, j} \sim \mathcal{N}\left(0, \frac{1}{L}\right) .
$$

How to interpret the critical value $\beta=1 / 2$?
> Simple ResNet: $h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right)$.
$>$ The entries of V_{k} are i.i.d. $\mathcal{N}(0,1 / d)$.
$>$ For $\mathbf{B}:[0,1] \rightarrow \mathbb{R}^{d \times d}$ a $(d \times d)$-dimensional Brownian motion

$$
\mathbf{B}_{(k+1) / L, i, j}-\mathbf{B}_{k / L, i, j} \sim \mathcal{N}\left(0, \frac{1}{L}\right) .
$$

> Consequence:

$$
h_{0}=A x, \quad h_{k+1}^{\top}=h_{k}^{\top}+\frac{1}{\sqrt{d}} \sigma\left(h_{k}^{\top}\right)\left(\mathbf{B}_{(k+1) / L}-\mathbf{B}_{k / L}\right), \quad 0 \leqslant k \leqslant L-1 .
$$

SDE regime

$$
\begin{array}{c|c}
\text { ResNet } & \text { Neural SDE } \\
h_{0}=A x & H_{0}=A x \\
h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right) & d H_{t}^{\top}=\frac{1}{\sqrt{d}} \sigma\left(H_{t}^{\top}\right) d B_{t} \\
F_{\pi}(x)=B h_{L} & F_{\Pi}(x)=B H_{1}
\end{array}
$$

SDE regime

$$
\begin{array}{c|c}
\text { ResNet } & \text { Neural SDE } \\
h_{0}=A x & H_{0}=A x \\
h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right) & d H_{t}^{\top}=\frac{1}{\sqrt{d}} \sigma\left(H_{t}^{\top}\right) d B_{t} \\
F_{\pi}(x)=B h_{L} & F_{\Pi}(x)=B H_{1}
\end{array}
$$

Proposition

Assumption: the entries of V_{k} are i.i.d. Gaussian $\mathcal{N}(0,1 / d)$ and σ is Lipschitz continuous.

SDE regime

$$
\begin{array}{c|c}
\text { ResNet } & \text { Neural SDE } \\
h_{0}=A x & H_{0}=A x \\
h_{k+1}=h_{k}+\frac{1}{\sqrt{L}} V_{k+1} \sigma\left(h_{k}\right) & d H_{t}^{\top}=\frac{1}{\sqrt{d}} \sigma\left(H_{t}^{\top}\right) d B_{t} \\
F_{\pi}(x)=B h_{L} & F_{\Pi}(x)=B H_{1}
\end{array}
$$

Proposition

Assumption: the entries of V_{k} are i.i.d. Gaussian $\mathcal{N}(0,1 / d)$ and σ is Lipschitz continuous. Then the SDE has a unique solution H and, for any $0 \leqslant k \leqslant L$,

$$
\mathbb{E}\left(\left\|H_{k / L}-h_{k}\right\|\right) \leqslant \frac{C}{\sqrt{L}}
$$

Summary so far

For deep ResNets with i.i.d. initialization:

Summary so far

For deep ResNets with i.i.d. initialization:
\triangleright the critical value for scaling is $\beta=1 / 2$
\triangleright this value corresponds in the deep limit to a SDE.

Summary so far

For deep ResNets with i.i.d. initialization:
\triangleright the critical value for scaling is $\beta=1 / 2$
\triangleright this value corresponds in the deep limit to a SDE.
Remaining questions:

- Can we obtain other limits? For example ODEs?
\triangleright Do they correspond to the same critical value?

Summary so far

For deep ResNets with i.i.d. initialization:
\triangleright the critical value for scaling is $\beta=1 / 2$
\triangleright this value corresponds in the deep limit to a SDE.
Remaining questions:

- Can we obtain other limits? For example ODEs?
\triangleright Do they correspond to the same critical value?

Key: link between β and the weight distributions.

Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization

Leaving the i.i.d. world behind

> Idea: the weights $\left(V_{k}\right)_{1 \leqslant k \leqslant L}$ and $\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}$ are discretizations of smooth functions.

Leaving the i.i.d. world behind

> Idea: the weights $\left(V_{k}\right)_{1 \leqslant k \leqslant L}$ and $\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}$ are discretizations of smooth functions.
$>\left(V_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \mathscr{V}:[0,1] \rightarrow \mathbb{R}^{d \times d}$

Leaving the i.i.d. world behind

> Idea: the weights $\left(V_{k}\right)_{1 \leqslant k \leqslant L}$ and $\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}$ are discretizations of smooth functions.
$>\left(V_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \mathscr{V}:[0,1] \rightarrow \mathbb{R}^{d \times d} \quad\left(\theta_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \Theta:[0,1] \rightarrow \mathbb{R}^{p}$.

Leaving the i.i.d. world behind

> Idea: the weights $\left(V_{k}\right)_{1 \leqslant k \leqslant L}$ and $\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}$ are discretizations of smooth functions.
$>\left(V_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \mathscr{V}:[0,1] \rightarrow \mathbb{R}^{d \times d} \quad\left(\theta_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \Theta:[0,1] \rightarrow \mathbb{R}^{p}$.
> Model:

$$
h_{0}=A x, \quad h_{k+1}=h_{k}+\frac{1}{L} V_{k+1} g\left(h_{k}, \theta_{k+1}\right), \quad 0 \leqslant k \leqslant L-1,
$$

where $V_{k}=\mathscr{V}_{k / L}$ and $\theta_{k}=\Theta_{k / L}$.

Leaving the i.i.d. world behind

> Idea: the weights $\left(V_{k}\right)_{1 \leqslant k \leqslant L}$ and $\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}$ are discretizations of smooth functions.
$>\left(V_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \mathscr{V}:[0,1] \rightarrow \mathbb{R}^{d \times d} \quad\left(\theta_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \Theta:[0,1] \rightarrow \mathbb{R}^{p}$.
> Model:

$$
h_{0}=A x, \quad h_{k+1}=h_{k}+\frac{1}{L} V_{k+1} g\left(h_{k}, \theta_{k+1}\right), \quad 0 \leqslant k \leqslant L-1,
$$

where $V_{k}=\mathscr{V}_{k / L}$ and $\theta_{k}=\Theta_{k / L}$.

Assumption: the stochastic processes \mathscr{V} and Θ are a.s. Lipschitz continuous and bounded.

Leaving the i.i.d. world behind

> Idea: the weights $\left(V_{k}\right)_{1 \leqslant k \leqslant L}$ and $\left(\theta_{k}\right)_{1 \leqslant k \leqslant L}$ are discretizations of smooth functions.
$>\left(V_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \mathscr{V}:[0,1] \rightarrow \mathbb{R}^{d \times d} \quad\left(\theta_{k}\right)_{1 \leqslant k \leqslant L} \hookrightarrow \Theta:[0,1] \rightarrow \mathbb{R}^{p}$.
> Model:

$$
h_{0}=A x, \quad h_{k+1}=h_{k}+\frac{1}{L} V_{k+1} g\left(h_{k}, \theta_{k+1}\right), \quad 0 \leqslant k \leqslant L-1,
$$

where $V_{k}=\mathscr{V}_{k / L}$ and $\theta_{k}=\Theta_{k / L}$.

Assumption: the stochastic processes \mathscr{V} and Θ are a.s. Lipschitz continuous and bounded.
> Example: the entries of \mathscr{V} and Θ are independent Gaussian processes with zero expectation and covariance $K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 \ell^{2}}\right)$.

Scaling and weight regularity

Scaling and weight regularity

(a) I.i.d.

(b) Smooth

ODE regime

$$
\begin{array}{c|c}
\text { ResNet } & \text { Neural ODE } \\
h_{0}=A x & H_{0}=A x \\
h_{k+1}=h_{k}+\frac{1}{L} V_{k+1} g\left(h_{k}, \theta_{k+1}\right) & d H_{t}=\mathscr{V}_{t} g\left(H_{t}, \Theta_{t}\right) d t \\
F_{\pi}(x)=B h_{L} & F_{\Pi}(x)=B H_{1}
\end{array}
$$

ODE regime

ResNet

$$
h_{0}=A x
$$

$$
h_{k+1}=h_{k}+\frac{1}{L} V_{k+1} g\left(h_{k}, \theta_{k+1}\right)
$$

$$
F_{\pi}(x)=B h_{L}
$$

Neural ODE

$$
H_{0}=A x
$$

$$
\begin{gathered}
d H_{t}=\mathscr{V}_{t} g\left(H_{t}, \Theta_{t}\right) d t \\
F_{\Pi}(x)=B H_{1}
\end{gathered}
$$

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.

ODE regime

ResNet

$$
h_{0}=A x
$$

$$
h_{k+1}=h_{k}+\frac{1}{L} V_{k+1} g\left(h_{k}, \theta_{k+1}\right)
$$

$$
F_{\pi}(x)=B h_{L}
$$

Neural ODE

$$
H_{0}=A x
$$

$$
\begin{gathered}
d H_{t}=\mathscr{V}_{t} g\left(H_{t}, \Theta_{t}\right) d t \\
F_{\Pi}(x)=B H_{1}
\end{gathered}
$$

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.
Then the ODE has a unique solution H and, a.s., for any $0 \leqslant k \leqslant L$,

$$
\left\|H_{k / L}-h_{k}\right\| \leqslant \frac{c}{L} .
$$

Scaling with a smooth initialization

(a) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=2$

(b) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.5$

(c) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=1$

Scaling with a smooth initialization

(a) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=2$

(b) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.5$

(c) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=1$
> Again 3 cases: identity/explosion/stability.

Scaling with a smooth initialization

(a) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=2$

(b) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.5$

(c) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=1$
> Again 3 cases: identity/explosion/stability.
> With a smooth initialization, the critical scaling is $\beta=1$.

Scaling with a smooth initialization

(a) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=2$

(b) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=0.5$

(c) $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\|, \beta=1$
> Again 3 cases: identity/explosion/stability.
> With a smooth initialization, the critical scaling is $\beta=1$.
>It is the scaling that corresponds in the deep limit to an ODE.

Scaling with with a smooth initialization

Theorem

Assumption: \mathscr{V} and Θ are a.s. Lipschitz continuous and bounded.

Scaling with with a smooth initialization

Theorem

Assumption: $/ /$ and Θ are a.s. Lipschitz continuous and bounded.

1. If $\beta>1$
2. If $\beta=1$
3. If $\beta<1$

Scaling with with a smooth initialization

Theorem

Assumption: $/ /$ and Θ are a.s. Lipschitz continuous and bounded.

1. If $\beta>1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow{L \rightarrow \infty} 0$.
2. If $\beta=1$
3. If $\beta<1$

Scaling with with a smooth initialization

Theorem

Assumption: $/ /$ and Θ are a.s. Lipschitz continuous and bounded.

1. If $\beta>1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow{L \rightarrow \infty} 0$.
\rightarrow identity
2. If $\beta=1$
3. If $\beta<1$

Scaling with with a smooth initialization

Theorem

Assumption: \mathscr{V} and Θ are a.s. Lipschitz continuous and bounded.

1. If $\beta>1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow{L \rightarrow \infty} 0$.
\rightarrow identity
2. If $\beta=1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \leqslant c$.
3. If $\beta<1$

Scaling with with a smooth initialization

Theorem

Assumption: \mathscr{V} and Θ are a.s. Lipschitz continuous and bounded.

1. If $\beta>1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow{L \rightarrow \infty} 0$.
\rightarrow identity
2. If $\beta=1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \leqslant c . \quad \rightarrow$ stability
3. If $\beta<1$

Scaling with with a smooth initialization

Theorem

Assumption: \mathscr{V} and Θ are a.s. Lipschitz continuous and bounded.

1. If $\beta>1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow{L \rightarrow \infty} 0 . \quad \rightarrow$ identity
2. If $\beta=1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \leqslant c . \quad \rightarrow$ stability
3. If $\beta<1+$ assumptions, then $\max _{k} \frac{\left\|h_{k}-h_{0}\right\|}{\left\|h_{0}\right\|} \xrightarrow{L \rightarrow \infty} \infty$.

Scaling with with a smooth initialization

Theorem

Assumption: \mathscr{V} and Θ are a.s. Lipschitz continuous and bounded.

1. If $\beta>1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \xrightarrow{L \rightarrow \infty} 0$.
\rightarrow identity
2. If $\beta=1$ then, a.s., $\left\|h_{L}-h_{0}\right\| /\left\|h_{0}\right\| \leqslant c . \quad \rightarrow$ stability
3. If $\beta<1+$ assumptions, then $\max _{k} \frac{\left\|h_{k}-h_{0}\right\|}{\left\|h_{0}\right\|} \xrightarrow{L \rightarrow \infty} \infty$. \rightarrow explosion

Intermediate regimes

> Challenge: describe the transition between the i.i.d. and smooth cases.

Intermediate regimes

> Challenge: describe the transition between the i.i.d. and smooth cases.
$>$ We initialize the weights as increments of a fractional Brownian motion $\left(B_{t}^{H}\right)_{t \in[0,1]}$.

Intermediate regimes

> Challenge: describe the transition between the i.i.d. and smooth cases.
$>$ We initialize the weights as increments of a fractional Brownian motion $\left(B_{t}^{H}\right)_{t \in[0,1]}$.
> Recall: B^{H} is Gaussian, starts at zero, has zero expectation, and covariance function

$$
\mathbb{E}\left(B_{s}^{H} B_{t}^{H}\right)=\frac{1}{2}\left(|s|^{2 H}+|t|^{2 H}-|t-s|^{2 H}\right), \quad 0 \leqslant s, t \leqslant 1 .
$$

Intermediate regimes

> Challenge: describe the transition between the i.i.d. and smooth cases.
> We initialize the weights as increments of a fractional Brownian motion $\left(B_{t}^{H}\right)_{t \in[0,1]}$.
> Recall: B^{H} is Gaussian, starts at zero, has zero expectation, and covariance function

$$
\mathbb{E}\left(B_{s}^{H} B_{t}^{H}\right)=\frac{1}{2}\left(|s|^{2 H}+|t|^{2 H}-|t-s|^{2 H}\right), \quad 0 \leqslant s, t \leqslant 1 .
$$

> The Hurst index $H \in(0,1)$ describes the raggedness of the process.

(a) $H=0.2$

(b) $H=0.5$

(c) $H=0.8$
$\triangleright H=1 / 2$: standard Brownian motion (SDE regime).

(a) $H=0.2$

(b) $H=0.5$

(c) $H=0.8$
$\triangleright H=1 / 2$: standard Brownian motion (SDE regime).
$\triangleright H<1 / 2$: the increments are negatively correlated.
$\triangleright H>1 / 2$: the increments are positively correlated.

(a) $H=0.2$

(b) $H=0.5$

(c) $H=0.8$
$\triangleright H=1 / 2$: standard Brownian motion (SDE regime).
$\triangleright H<1 / 2$: the increments are negatively correlated.
$\triangleright H>1 / 2$: the increments are positively correlated.
\triangleright When $H \rightarrow$ 1: the trajectories converge to linear functions (ODE regime).

A continuum of intermediate regularities

A continuum of intermediate regularities

Agenda

Learning with ResNets
Scaling deep ResNets
Scaling in the continuous-time setting

Beyond initialization

Training

Before training

After training

I.i.d. initialization, $\beta=1 / 2$

Training

Before training

After training

Smooth initialization, $\beta=1$

Training

Before training

After training

I.i.d. initialization, $\beta=1$

Training

Before training

After training

I.i.d. initialization, $\beta=1$
> The weights after training still exhibit a strong structure as functions of the layer.

Training

Before training

After training

I.i.d. initialization, $\beta=1$
> The weights after training still exhibit a strong structure as functions of the layer.
> Their regularity is influenced by both the initialization and the choice of β.

Performance after training

(a) On MNIST

(b) On CIFAR-10

Conclusion

Deep limits allow to understand scaling and initialization strategies for ResNets.

Conclusion

> Deep limits allow to understand scaling and initialization strategies for ResNets.
$>$ With standard initialization the correct scaling is $\beta=1 / 2$.

Conclusion

> Deep limits allow to understand scaling and initialization strategies for ResNets.
> With standard initialization the correct scaling is $\beta=1 / 2$.
> To train very deep ResNets, it is important to adapt scaling to the weight regularity.

Conclusion

> Deep limits allow to understand scaling and initialization strategies for ResNets.
> With standard initialization the correct scaling is $\beta=1 / 2$.
> To train very deep ResNets, it is important to adapt scaling to the weight regularity.
> Perspectives: what about training? how should we choose the regularity for a given problem?

Conclusion

> Deep limits allow to understand scaling and initialization strategies for ResNets.
> With standard initialization the correct scaling is $\beta=1 / 2$.
> To train very deep ResNets, it is important to adapt scaling to the weight regularity.
> Perspectives: what about training? how should we choose the regularity for a given problem?
> To know more: arXiv:2206.06929.

Thank you!

】 adeline.fermanian@mines-paristech.fr
(2) https://afermanian.github.io

[^0]: https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730

[^1]: https://semiengineering.com/new-vision-technologies-for-real-world-applications

