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How most people see the supervised learning problem

https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730
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How machine learners see the supervised learning problem

https://medium.datadriveninvestor.com/depth-estimation-with-deep-neural-networks-part-2-81ee374888eb
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How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).

� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.

� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2

Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

6 / 42



How statisticians see the supervised learning problem

� Goal: understand the relationship between x ∈ Rnin and y ∈ Rnout .

� Data: (x1, y1), . . . , (xn, yn) ∈ Rnin × Rnout , i.i.d. ∼ (x, y).
� Model: {Fπ : Rnin 7→ Rnout , π ∈ Π}.
� Loss function ` : Rnout × Rnout → R+.

� Regression: `(Fπ(x), y) = (y−Fπ(x))2 Binary classification: `(Fπ(x), y) = 1[yFπ(x)60].

� Theoretical risk minimization: choose

π? ∈ argmin
π∈Π

L (π) = E(`(Fπ(x), y)).

� Empirical risk minimization: choose

πn ∈ argmin
π∈Π

Ln(π) =
1

n

n∑
i=1

`(Fπ(xi), yi).

7 / 42



Residual neural networks (ResNets)

� Sequence of hidden states h0, . . . , hL ∈ Rd defined by recurrence:
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Original Parametric Simple General ResNet

f (hk, θk+1) = Vk+1 ReLU(Wk+1hk + bk+1)

. ReLU(x) = max(x, 0) = activation function

. θk = (Wk, bk) = weight matrice + bias

. π = (A,B, (Vk)16k6L, (θk)16k6L)
He et al. (2016)
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� Different forms for f : Rd × Rp → Rd = different architectures.

Original Parametric Simple General ResNet

f (hk, θk+1) = Vk+1g(hk, θk+1)

. g : Rd × Rp → Rd

. θk = parameters

. π = (A,B, (Vk)16k6L, (θk)16k6L)
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Residual neural networks (ResNets)
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The revolution of ResNets

Examples from the ImageNet dataset

https://blog.roboflow.com/introduction-to-imagenet
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The revolution of ResNets

ImageNet performance over time

https://semiengineering.com/new-vision-technologies- for-real-world-applications
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Deep learning→ neural ODE← ODE

� Traditional neural networks

hk+1 = f (hk, θk+1)
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New network architectures: Runge-Kutta networks

Benning et al. (2019)
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New network architectures: antisymmetric networks

Chang et al. (2019)
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In summary

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L f (hk, θk+1) dHt = f (Ht,Θt)dt

Fπ(x) = BhT FΠ(x) = BH1

f (h, θ) = Vσ(W h + b)

15 / 42
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Stability at initialization

� Original ResNet:

h0 = Ax
hk+1 = hk + Vk+1 ReLU(Wk+1hk)

Fπ(x) = BhL.

� At initialization: A, B, (Vk)16k6L, and (Wk)16k6L
are i.i.d. Gaussian matrices. 0 20 40 60 80 100

L

101

103

105

107

109

‖hL‖/‖h0‖

+ Solution: batch normalization or scaling.
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Scaling ResNets

� A scaling factor 1/Lβ :

hk+1 = hk +
1

Lβ
Vk+1 ReLU(Wk+1hk).

� Question: choice of β.

� β = 0 (original ResNets)? β = 1 (neural ODE)?

� Many empirical studies, no consensus.

� Our approach: mathematical analysis at initialization.
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Scaling with standard initialization

0 200 400 600 800 1000
L

0.2

0.4

0.6

0.8

(a) ‖hL − h0‖/‖h0‖, β = 1

0 200 400 600 800 1000
L

0

2000
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6000

8000

(b) ‖hL − h0‖/‖h0‖, β = 0.25

0 200 400 600 800 1000
L

1.200

1.225

1.250

1.275

1.300

1.325

1.350

(c) ‖hL − h0‖/‖h0‖, β = 0.5

� With an i.i.d. initialization, the critical value for scaling is β = 1/2.

� Not the ODE scaling!🤔
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Scaling with standard initialization

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then ‖hL − h0‖/‖h0‖
P−−−−→

L→∞
∞. → explosion

3. If β = 1/2

then, with probability at least 1− δ,

exp
(
3

8
−

√
22

dδ

)
− 1 <

‖hL − h0‖2

‖h0‖2
< exp

(
1 +

√
10

dδ

)
+ 1.

→ stability
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Gradients

� Objective: assess the backwards dynamics of the gradients pk = ∂Ln
∂hk
∈ Rd .

� Target: ‖p0 − pL‖/‖pL‖ when L is large.

� Backpropagation formula:

pk = pk+1 +
1

Lβ

∂g(hk, θk+1)
>

∂h
V>

k+1pk+1 → wrong way.

� Our approach: with qk(z) = ∂hk
∂h0

z ,

qk+1(z) = qk(z) +
1

Lβ
Vk+1

∂g(hk, θk+1)

∂h
qk(z) → flow of information =!.

� Conclusion with
‖p0‖2

‖pL‖2
= Ez∼N (0,Id)

(∣∣∣( pL

‖pL‖

)>
qL(z)

∣∣∣2).
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Scaling with standard initialization – Gradients
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(a) ‖p0 − pL‖/‖pL‖, β = 1
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Scaling with standard initialization – Gradients

Theorem

Assumption: the entries of
√

dVk and
√

dWk are symmetric i.i.d. sub-Gaussian.

1. If β > 1/2

then ‖p0 − pL‖/‖pL‖
P−−−−→

L→∞
0. → identity

2. If β < 1/2

then E(‖p0 − pL‖/‖pL‖) −−−−→
L→∞

∞. → explosion

3. If β = 1/2

then

exp
(1
2

)
− 1 6 E

(
‖p0 − pL‖2

‖pL‖2

)
6 exp(4)− 1.

→ stability
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Stability – output/gradients
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How to interpret the critical value β = 1/2?

� Simple ResNet: hk+1 = hk + 1√
L Vk+1σ(hk).

� The entries of Vk are i.i.d. N (0, 1/d).

� For B : [0, 1]→ Rd×d a (d × d)-dimensional Brownian motion

B(k+1)/L,i,j − Bk/L,i,j ∼ N
(
0,

1

L

)
.

� Consequence:

h0 = Ax, h>
k+1 = h>

k +
1√
d
σ(h>

k )(B(k+1)/L − Bk/L), 0 6 k 6 L − 1.
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SDE regime

ResNet Neural SDE

h0 = Ax H0 = Ax

hk+1 = hk + 1√
L Vk+1σ(hk) dH>

t = 1√
dσ(H

>
t )dBt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the entries of Vk are i.i.d. Gaussian N (0, 1/d) and σ is Lipschitz continuous.

Then the SDE has a unique solution H and, for any 0 6 k 6 L,

E
(
‖Hk/L − hk‖

)
6

C√
L
.
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Summary so far

For deep ResNets with i.i.d. initialization:

. the critical value for scaling is β = 1/2

. this value corresponds in the deep limit to a SDE.

Remaining questions:

. Can we obtain other limits? For example ODEs?

. Do they correspond to the same critical value?

Key: link between β and the weight distributions.
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Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization
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Leaving the i.i.d. world behind

� Idea: the weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions.

� (Vk)16k6L ↪→ V : [0, 1]→ Rd×d (θk)16k6L ↪→ Θ : [0, 1]→ Rp.

� Model:

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L − 1,

where Vk = Vk/L and θk = Θk/L.

Assumption: the stochastic processes V andΘ are a.s. Lipschitz continuous and bounded.

� Example: the entries of V and Θ are independent Gaussian processes with zero
expectation and covariance K(x, x ′) = exp(− (x−x′)2

2`2 ).
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Scaling and weight regularity
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ODE regime

ResNet Neural ODE

h0 = Ax H0 = Ax

hk+1 = hk + 1
L Vk+1g(hk, θk+1) dHt = Vtg(Ht,Θt)dt

Fπ(x) = BhL FΠ(x) = BH1

Proposition

Assumption: the function g is Lipschitz continuous on compact sets.

Then the ODE has a unique solution H and, a.s., for any 0 6 k 6 L,

‖Hk/L − hk‖ 6
c
L
.
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Scaling with a smooth initialization
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(a) ‖hL − h0‖/‖h0‖, β = 2
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(b) ‖hL − h0‖/‖h0‖, β = 0.5
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(c) ‖hL − h0‖/‖h0‖, β = 1

� Again 3 cases: identity/explosion/stability.
� With a smooth initialization, the critical scaling is β = 1.
� It is the scaling that corresponds in the deep limit to an ODE.
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Scaling with with a smooth initialization

Theorem

Assumption: V and Θ are a.s. Lipschitz continuous and bounded.

1. If β > 1

then, a.s., ‖hL − h0‖/‖h0‖
L→∞−−−−→ 0. → identity

2. If β = 1

then, a.s., ‖hL − h0‖/‖h0‖ 6 c. → stability

3. If β < 1

+ assumptions, then max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞. → explosion
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Intermediate regimes

� Challenge: describe the transition between the i.i.d. and smooth cases.

� We initialize the weights as increments of a fractional Brownian motion (BH
t )t∈[0,1].

� Recall: BH is Gaussian, starts at zero, has zero expectation, and covariance function

E(BH
s BH

t ) =
1

2
(|s|2H + |t|2H − |t − s|2H), 0 6 s, t 6 1.

� The Hurst index H ∈ (0, 1) describes the raggedness of the process.
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(c) H = 0.8

. H = 1/2: standard Brownian motion (SDE regime).

. H < 1/2: the increments are negatively correlated.

. H > 1/2: the increments are positively correlated.

. When H → 1: the trajectories converge to linear functions (ODE regime).
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A continuum of intermediate regularities

37 / 42



A continuum of intermediate regularities

37 / 42



Agenda

Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

Beyond initialization
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Training

Before training

0 200 400 600 800 1000

−0.0050

−0.0025

0.0000

0.0025

0.0050

After training

0 200 400 600 800 1000

−0.4

−0.2

0.0

0.2

0.4

I.i.d. initialization, β = 1/2

� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.
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Smooth initialization, β = 1

� The weights after training still exhibit a strong structure as functions of the layer.

� Their regularity is influenced by both the initialization and the choice of β.
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Performance after training
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Conclusion

� Deep limits allow to understand scaling and initialization strategies for ResNets.

� With standard initialization the correct scaling is β = 1/2.

� To train very deep ResNets, it is important to adapt scaling to the weight regularity.

� Perspectives: what about training? how should we choose the regularity for a given
problem?

� To know more: arXiv:2206.06929.
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Thank you!

� adeline.fermanian@mines-paristech.fr

� https://afermanian.github.io

42 / 42

mailto:adeline.fermanian@mines-paristech.fr
https://afermanian.github.io

	Learning with ResNets
	Scaling deep ResNets
	Scaling in the continuous-time setting
	Beyond initialization

