# Scaling ResNets in the large-depth regime

NON-LINEAR AND HIGH DIMENSIONAL INFERENCE, IHP, OCTOBER 3RD 2022

Adeline Fermanian





# Joint work with



**Gérard Biau** Sorbonne University



Pierre Marion SORBONNE UNIVERSITY



Jean-Philippe Vert OWKIN



Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

**Beyond initialization** 



#### Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

**Beyond initialization** 

# How most people see the supervised learning problem

Learn how to build an image-recognizing convolutional neural network with Python and Keras in less than 15minutes!



Fabian Bosler Oct 5, 2019 · 10 min read \*





https://towardsdatascience.com/cat-dog-or-elon-musk-145658489730

#### How machine learners see the supervised learning problem



https://medium.datadriveninvestor.com/depth-estimation-with-deep-neural-networks-part-2-81ee374888eb

Sol: understand the relationship between  $x \in \mathbb{R}^{n_{in}}$  and  $y \in \mathbb{R}^{n_{out}}$ .

- Soal: understand the relationship between  $x \in \mathbb{R}^{n_{\text{in}}}$  and  $y \in \mathbb{R}^{n_{\text{out}}}$ .
- **>** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .

- Sol: understand the relationship between  $x \in \mathbb{R}^{n_{in}}$  and  $y \in \mathbb{R}^{n_{out}}$ .
- **>** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .
- **>** Model:  $\{F_{\pi} : \mathbb{R}^{n_{\text{in}}} \mapsto \mathbb{R}^{n_{\text{out}}}, \pi \in \Pi\}.$

- Sol: understand the relationship between  $x \in \mathbb{R}^{n_{\text{in}}}$  and  $y \in \mathbb{R}^{n_{\text{out}}}$ .
- **>** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .
- $\mathbf{E} \quad \mathbf{Model:} \ \{F_{\pi}: \mathbb{R}^{n_{\text{in}}} \mapsto \mathbb{R}^{n_{\text{out}}}, \pi \in \Pi\}.$
- **>** Loss function  $\ell : \mathbb{R}^{n_{\text{out}}} \times \mathbb{R}^{n_{\text{out}}} \to \mathbb{R}_+$ .

- Soal: understand the relationship between  $x \in \mathbb{R}^{n_{\text{in}}}$  and  $y \in \mathbb{R}^{n_{\text{out}}}$ .
- **>** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .
- $\mathbf{E} \quad \mathbf{Model:} \ \{F_{\pi}: \mathbb{R}^{n_{\mathsf{in}}} \mapsto \mathbb{R}^{n_{\mathsf{out}}}, \pi \in \Pi\}.$
- **>** Loss function  $\ell : \mathbb{R}^{n_{\text{out}}} \times \mathbb{R}^{n_{\text{out}}} \to \mathbb{R}_+$ .
- **Regression:**  $\ell(F_{\pi}(x), y) = (y F_{\pi}(x))^2$

- Soal: understand the relationship between  $x \in \mathbb{R}^{n_{\text{in}}}$  and  $y \in \mathbb{R}^{n_{\text{out}}}$ .
- **>** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .
- $\mathbf{E} \quad \mathbf{Model:} \ \{F_{\pi}: \mathbb{R}^{n_{\mathsf{in}}} \mapsto \mathbb{R}^{n_{\mathsf{out}}}, \pi \in \Pi\}.$
- **>** Loss function  $\ell : \mathbb{R}^{n_{\text{out}}} \times \mathbb{R}^{n_{\text{out}}} \to \mathbb{R}_+$ .
- **>** Regression:  $\ell(F_{\pi}(x), y) = (y F_{\pi}(x))^2$  Binary classification:  $\ell(F_{\pi}(x), y) = \mathbb{1}_{[yF_{\pi}(x) \leq 0]}$ .

- Soal: understand the relationship between  $x \in \mathbb{R}^{n_{\text{in}}}$  and  $y \in \mathbb{R}^{n_{\text{out}}}$ .
- **>** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .
- $\mathbf{E} \quad \mathbf{Model:} \ \{F_{\pi}: \mathbb{R}^{n_{\mathsf{in}}} \mapsto \mathbb{R}^{n_{\mathsf{out}}}, \pi \in \Pi\}.$
- **>** Loss function  $\ell : \mathbb{R}^{n_{\text{out}}} \times \mathbb{R}^{n_{\text{out}}} \to \mathbb{R}_+$ .
- **>** Regression:  $\ell(F_{\pi}(x), y) = (y F_{\pi}(x))^2$  Binary classification:  $\ell(F_{\pi}(x), y) = \mathbb{1}_{[yF_{\pi}(x) \leq 0]}$ .

Theoretical risk minimization: choose

$$\pi^{\star} \in \operatorname*{argmin}_{\pi \in \Pi} \mathscr{L}(\pi) = \mathbb{E}(\ell(F_{\pi}(x), y)).$$

- Soal: understand the relationship between  $x \in \mathbb{R}^{n_{\text{in}}}$  and  $y \in \mathbb{R}^{n_{\text{out}}}$ .
- **>** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .
- $\mathbf{E} \quad \mathbf{Model:} \ \{F_{\pi}: \mathbb{R}^{n_{\mathsf{in}}} \mapsto \mathbb{R}^{n_{\mathsf{out}}}, \pi \in \Pi\}.$
- **>** Loss function  $\ell : \mathbb{R}^{n_{\text{out}}} \times \mathbb{R}^{n_{\text{out}}} \to \mathbb{R}_+$ .
- **>** Regression:  $\ell(F_{\pi}(x), y) = (y F_{\pi}(x))^2$  Binary classification:  $\ell(F_{\pi}(x), y) = \mathbb{1}_{[yF_{\pi}(x) \leq 0]}$ .

Theoretical risk minimization: choose

$$\pi^{\star} \in \operatorname*{argmin}_{\pi \in \Pi} \mathscr{L}(\pi) = \mathbb{E}(\ell(F_{\pi}(x), y)).$$

Empirical risk minimization: choose

$$\pi_n \in \operatorname*{argmin}_{\pi \in \Pi} \mathscr{L}_n(\pi) = \frac{1}{n} \sum_{i=1}^n \ell(F_\pi(x_i), y_i).$$

- ig> Goal: understand the relationship between  $x\in \mathbb{R}^{n_{ ext{in}}}$  and  $y\in \mathbb{R}^{n_{ ext{out}}}.$
- **)** Data:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{out}}}$ , i.i.d.  $\sim (x, y)$ .
- **>** Model:  $\{F_{\pi} : \mathbb{R}^{n_{\text{in}}} \mapsto \mathbb{R}^{n_{\text{out}}}, \pi \in \Pi\}.$
- **>** Loss function  $\ell : \mathbb{R}^{n_{\text{out}}} \times \mathbb{R}^{n_{\text{out}}} \to \mathbb{R}_+$ .
- **Regression**:  $\ell(F_{\pi}(x), y) = (y F_{\pi}(x))^2$  Binary classification:  $\ell(F_{\pi}(x), y) = \mathbb{1}_{[yF_{\pi}(x) \leq 0]}$ .

> Theoretical risk minimization: choose

$$\pi^* \in \operatorname*{argmin}_{\pi \in \Pi} \mathscr{L}(\pi) = \mathbb{E}(\ell(F_{\pi}(x), y)).$$

**Empirical risk minimization: choose** 

$$\pi_n \in \operatorname*{argmin}_{\pi \in \Pi} \mathscr{L}_n(\pi) = \frac{1}{n} \sum_{i=1}^n \ell(F_\pi(x_i), y_i).$$

Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

$$h_0 = Ax, \quad h_{k+1} = h_k + f(h_k, \theta_{k+1}), \quad F_{\pi}(x) = Bh_L.$$

Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

$$h_0 = Ax, \quad h_{k+1} = \mathbf{h}_k + f(h_k, \theta_{k+1}), \quad F_{\pi}(x) = Bh_L.$$

Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

 $h_0 = Ax, \quad h_{k+1} = \mathbf{h}_k + f(h_k, \theta_{k+1}), \quad F_{\pi}(x) = Bh_L.$ 

**>** Different forms for  $f : \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}^d$  = different architectures.

Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

$$h_0 = Ax, \quad h_{k+1} = \mathbf{h}_k + f(h_k, \theta_{k+1}), \quad F_{\pi}(x) = Bh_L.$$

**>** Different forms for  $f : \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}^d$  = different architectures.

#### **Original Parametric Simple General ResNet**

$$f(\mathbf{h}_{k}, \theta_{k+1}) = V_{k+1} \operatorname{ReLU}(W_{k+1}\mathbf{h}_{k} + b_{k+1})$$

▷ ReLU(x) = max(x, 0) = activation function ▷  $\theta_k = (W_k, b_k)$  = weight matrice + bias ▷  $\pi = (A, B, (V_k)_{1 \le k \le L}, (\theta_k)_{1 \le k \le L})$ 





Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

$$h_0 = Ax, \quad h_{k+1} = \mathbf{h}_k + f(h_k, \theta_{k+1}), \quad F_{\pi}(x) = Bh_L.$$

**>** Different forms for  $f : \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}^d$  = different architectures.

#### Original Parametric Simple General ResNet

$$f(\mathbf{h}_{k},\theta_{k+1}) = V_{k+1}\sigma(W_{k+1}\mathbf{h}_{k} + b_{k+1})$$

 $\triangleright \sigma =$ activation function

- $\triangleright \theta_k = (W_k, b_k) =$ weight matrice + bias
- $\triangleright \ \pi = (A, B, (V_k)_{1 \leq k \leq L}, (\theta_k)_{1 \leq k \leq L})$





Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

$$h_0 = Ax, \quad h_{k+1} = \mathbf{h}_k + f(h_k, \theta_{k+1}), \quad F_{\pi}(x) = Bh_L.$$

**>** Different forms for  $f : \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}^d$  = different architectures.

#### Original Parametric Simple General ResNet

$$f(\mathbf{h}_{\mathbf{k}}, \theta_{k+1}) = V_{k+1}\sigma(\mathbf{h}_{\mathbf{k}})$$

#### $\triangleright \sigma = ext{activation function}$

$$\begin{array}{l} \triangleright \ \theta_k = \emptyset \\ \triangleright \ \pi = (A, B, (V_k)_{1 \leqslant k \leqslant L}) \end{array}$$



He et al. (2016)

Sequence of hidden states  $h_0, \ldots, h_L \in \mathbb{R}^d$  defined by recurrence:

 $h_0 = Ax, \quad h_{k+1} = \mathbf{h}_k + f(h_k, \theta_{k+1}), \quad F_{\pi}(x) = Bh_L.$ 

**>** Different forms for  $f : \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}^d$  = different architectures.

#### Original Parametric Simple General ResNet

$$f(\mathbf{h}_{\mathbf{k}}, \theta_{k+1}) = V_{k+1}g(\mathbf{h}_{\mathbf{k}}, \theta_{k+1})$$

 $\triangleright \ g: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}^d$ 

 $\triangleright \theta_k = \text{parameters}$ 

 $\triangleright \ \pi = (A, B, (V_k)_{1 \leq k \leq L}, (\theta_k)_{1 \leq k \leq L})$ 







#### The revolution of ResNets



Examples from the ImageNet dataset

https://blog.roboflow.com/introduction-to-imagenet

#### The revolution of ResNets



ImageNet performance over time

https://semiengineering.com/new-vision-technologies-for-real-world-applications

#### The revolution of ResNets



ImageNet performance over time

https://semiengineering.com/new-vision-technologies-for-real-world-applications



### Deep learning $\rightarrow$ neural ODE $\leftarrow$ ODE

> Traditional neural networks

 $h_{k+1} = f(h_k, \theta_{k+1})$ 

> Traditional neural networks

 $h_{k+1} = f(h_k, \theta_{k+1})$ 

Residual neural networks (He et al., 2016)

 $h_{k+1} = \mathbf{h}_k + f(h_k, \theta_{k+1})$ 

> Traditional neural networks

 $h_{k+1} = f(h_k, \theta_{k+1})$ 

Residual neural networks (He et al., 2016)

$$h_{k+1} = \mathbf{h}_{k} + \frac{1}{L}f(h_k, \theta_{k+1})$$

> Traditional neural networks

 $h_{k+1} = f(h_k, \theta_{k+1})$ 

Residual neural networks (He et al., 2016)

$$h_{k+1} = \mathbf{h}_{k} + \frac{1}{L}f(h_k, \theta_{k+1})$$

> Neural ODE (Chen et al., 2018)

 $dH_t = f(H_t, \Theta_t) dt$ 

> Traditional neural networks

 $h_{k+1} = f(h_k, \theta_{k+1})$ 

Residual neural networks (He et al., 2016)

 $h_{k+1} = oldsymbol{h}_k + rac{1}{L}f(h_k, heta_{k+1})$ 

> Neural ODE (Chen et al., 2018)

 $dH_t = f(H_t, \Theta_t) dt$ 



#### New network architectures: Runge-Kutta networks



Benning et al. (2019)

#### New network architectures: antisymmetric networks



Chang et al. (2019)

#### In summary

ResNet<br/> $h_0 = Ax$ Neural ODE<br/> $H_0 = Ax$  $h_{k+1} = h_k + \frac{1}{L}f(h_k, \theta_{k+1})$  $H_0 = Ax$  $F_{\pi}(x) = Bh_T$  $dH_t = f(H_t, \Theta_t)dt$  $F_{\pi}(x) = Bh_T$  $F_{\Pi}(x) = BH_1$  $f(h, \theta) = V\sigma(Wh + b)$ 



Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

**Beyond initialization**
### Stability at initialization

### > Original ResNet:

$$egin{aligned} h_0 &= Ax\ h_{k+1} &= h_k + V_{k+1} \operatorname{ReLU}(W_{k+1}h_k)\ F_\pi(x) &= Bh_L. \end{aligned}$$

### > Original ResNet:

$$egin{aligned} h_0 &= Ax\ h_{k+1} &= h_k + V_{k+1} \operatorname{ReLU}(W_{k+1}h_k)\ F_\pi(x) &= Bh_L. \end{aligned}$$

At initialization: A, B,  $(V_k)_{1 \le k \le L}$ , and  $(W_k)_{1 \le k \le L}$  are i.i.d. Gaussian matrices.

> Original ResNet:

$$egin{aligned} h_0 &= Ax\ h_{k+1} &= h_k + V_{k+1} \operatorname{ReLU}(W_{k+1}h_k)\ F_\pi(x) &= Bh_L. \end{aligned}$$

At initialization: A, B,  $(V_k)_{1 \le k \le L}$ , and  $(W_k)_{1 \le k \le L}$  are i.i.d. Gaussian matrices.



> Original ResNet:

$$egin{aligned} h_0 &= Ax\ h_{k+1} &= h_k + V_{k+1} \operatorname{ReLU}(W_{k+1}h_k)\ F_\pi(x) &= Bh_L. \end{aligned}$$

At initialization: A, B, 
$$(V_k)_{1 \le k \le L}$$
, and  $(W_k)_{1 \le k \le L}$  are i.i.d. Gaussian matrices.

Solution: batch normalization or scaling.



# Scaling ResNets

$$h_{k+1} = h_k + \frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}(W_{k+1}h_k).$$

### Scaling ResNets

A scaling factor  $1/L^{\beta}$ :

$$h_{k+1} = h_k + \frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}(W_{k+1}h_k).$$

### **>** Question: choice of $\beta$ .

# Scaling ResNets

$$h_{k+1} = h_k + \frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}(W_{k+1}h_k).$$

- **>** Question: choice of  $\beta$ .
- $\beta = 0$  (original ResNets)?

$$h_{k+1} = h_k + \frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}(W_{k+1}h_k).$$

- **>** Question: choice of  $\beta$ .
- $\beta = 0$  (original ResNets)?  $\beta = 1$  (neural ODE)?

$$h_{k+1} = h_k + \frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}(W_{k+1}h_k).$$

- **>** Question: choice of  $\beta$ .
- $\beta = 0$  (original ResNets)?  $\beta = 1$  (neural ODE)?
- > Many empirical studies, no consensus.

$$h_{k+1} = h_k + \frac{1}{L^{\beta}} V_{k+1} \operatorname{ReLU}(W_{k+1}h_k).$$

- **>** Question: choice of  $\beta$ .
- $\beta = 0$  (original ResNets)?  $\beta = 1$  (neural ODE)?
- > Many empirical studies, no consensus.
- > Our approach: mathematical analysis at initialization.



(a)  $\|h_L - h_0\| / \|h_0\|, \beta = 1$  (b)  $\|h_L - h_0\| / \|h_0\|, \beta = 0.25$  (c)  $\|h_L - h_0\| / \|h_0\|, \beta = 0.5$ 



With an i.i.d. initialization, the critical value for scaling is  $\beta = 1/2$ .



- With an i.i.d. initialization, the critical value for scaling is  $\beta = 1/2$ .
- > Not the ODE scaling! 😌

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

- 1. If  $\beta > 1/2$
- 2. If  $\beta < 1/2$
- 3. If  $\beta = 1/2$

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}} 1_{L \to \infty} 0$ .  
2. If  $\beta < 1/2$ 

3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}}_{L \to \infty} 0.$   $\rightarrow$  identity

2. If  $\beta < 1/2$ 

3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}}{L \to \infty} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}}{L \to \infty} \infty.$   
3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}}{L \to \infty} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}}{L \to \infty} \infty.$   $\rightarrow$  explosion  
3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}} 1_{L \to \infty} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}} 1_{L \to \infty} \infty.$   $\rightarrow$  explosion

3. If  $\beta = 1/2$  then, with probability at least  $1 - \delta$ ,

$$\exp\left(\frac{3}{8} - \sqrt{\frac{22}{d\delta}}\right) - 1 < \frac{\|h_L - h_0\|^2}{\|h_0\|^2} < \exp\left(1 + \sqrt{\frac{10}{d\delta}}\right) + 1.$$

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}} 1_{L \to \infty} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $||h_L - h_0|| / ||h_0|| \xrightarrow{\mathbb{P}} 1_{L \to \infty} \infty.$   $\rightarrow$  explosion

3. If  $\beta = 1/2$  then, with probability at least  $1 - \delta$ ,

$$\exp\left(\frac{3}{8} - \sqrt{\frac{22}{d\delta}}\right) - 1 < \frac{\|h_L - h_0\|^2}{\|h_0\|^2} < \exp\left(1 + \sqrt{\frac{10}{d\delta}}\right) + 1. \quad \to \mathsf{stability}$$



**>** Objective: assess the backwards dynamics of the gradients  $p_k = \frac{\partial \mathscr{L}_n}{\partial h_k} \in \mathbb{R}^d$ .

**>** Objective: assess the backwards dynamics of the gradients  $p_k = \frac{\partial \mathscr{L}_n}{\partial h_k} \in \mathbb{R}^d$ .

**>** Target:  $||p_0 - p_L|| / ||p_L||$  when L is large.

**>** Objective: assess the backwards dynamics of the gradients  $p_k = \frac{\partial \mathscr{L}_n}{\partial h_k} \in \mathbb{R}^d$ .

- Target:  $||p_0 p_L|| / ||p_L||$  when L is large.
- **Backpropagation** formula:

$$p_k = p_{k+1} + rac{1}{L^eta} rac{\partial g(h_k, heta_{k+1})^ op}{\partial h} V_{k+1}^ op p_{k+1}$$

**>** Objective: assess the backwards dynamics of the gradients  $p_k = \frac{\partial \mathscr{L}_n}{\partial h_k} \in \mathbb{R}^d$ .

- Target:  $||p_0 p_L|| / ||p_L||$  when L is large.
- **Backpropagation** formula:

$$p_k = p_{k+1} + rac{1}{L^eta} rac{\partial g(h_k, heta_{k+1})^ op}{\partial h} V_{k+1}^ op p_{k+1} \quad o ext{ wrong way}.$$

**>** Objective: assess the backwards dynamics of the gradients  $p_k = \frac{\partial \mathscr{L}_n}{\partial h_k} \in \mathbb{R}^d$ .

- Target:  $||p_0 p_L|| / ||p_L||$  when L is large.
- **Backpropagation** formula:

$$p_k = p_{k+1} + rac{1}{L^eta} rac{\partial g(h_k, heta_{k+1})^ op}{\partial h} V_{k+1}^ op p_{k+1} \quad o ext{wrong way}.$$

**>** Our approach: with  $q_k(z) = \frac{\partial h_k}{\partial h_0} z$ ,

$$q_{k+1}(z) = q_k(z) + \frac{1}{L^{\beta}} V_{k+1} \frac{\partial g(h_k, \theta_{k+1})}{\partial h} q_k(z)$$

**>** Objective: assess the backwards dynamics of the gradients  $p_k = \frac{\partial \mathscr{L}_n}{\partial h_k} \in \mathbb{R}^d$ .

- Target:  $||p_0 p_L|| / ||p_L||$  when L is large.
- > Backpropagation formula:

$$p_k = p_{k+1} + rac{1}{L^eta} rac{\partial g(h_k, heta_{k+1})^ op}{\partial h} V_{k+1}^ op p_{k+1} \quad o ext{wrong way}.$$

**>** Our approach: with  $q_k(z) = \frac{\partial h_k}{\partial h_0} z$ ,

$$q_{k+1}(z) = q_k(z) + \frac{1}{L^{\beta}} V_{k+1} \frac{\partial g(h_k, \theta_{k+1})}{\partial h} q_k(z) \quad \to \text{flow of information} = \checkmark.$$

**>** Objective: assess the backwards dynamics of the gradients  $p_k = \frac{\partial \mathscr{L}_n}{\partial h_k} \in \mathbb{R}^d$ .

- Target:  $||p_0 p_L|| / ||p_L||$  when L is large.
- > Backpropagation formula:

$$p_k = p_{k+1} + rac{1}{L^eta} rac{\partial g(h_k, heta_{k+1})^ op}{\partial h} V_{k+1}^ op p_{k+1} \quad o ext{wrong way}.$$

**>** Our approach: with  $q_k(z) = \frac{\partial h_k}{\partial h_0} z$ ,

$$q_{k+1}(z) = q_k(z) + \frac{1}{L^{\beta}} V_{k+1} \frac{\partial g(h_k, \theta_{k+1})}{\partial h} q_k(z) \quad \to \text{flow of information} = \checkmark.$$

Conclusion with

$$\frac{\|p_0\|^2}{\|p_L\|^2} = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)} \left( \left| \left( \frac{p_L}{\|p_L\|} \right)^\top q_L(z) \right|^2 \right).$$



#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

#### Theorem

Assumption: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

- 1. If  $\beta > 1/2$
- 2. If  $\beta < 1/2$
- 3. If  $\beta = 1/2$

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||p_0 - p_L|| / ||p_L|| \xrightarrow{\mathbb{P}} L \to \infty 0$ .  
2. If  $\beta < 1/2$ 

3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||p_0 - p_L|| / ||p_L|| \xrightarrow{\mathbb{P}}_{L \to \infty} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$ 

3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $\|p_0 - p_L\| / \|p_L\| \xrightarrow{\mathbb{P}} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $\mathbb{E}(\|p_0 - p_L\| / \|p_L\|) \xrightarrow{L \to \infty} \infty.$   
3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||p_0 - p_L|| / ||p_L|| \xrightarrow{\mathbb{P}} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $\mathbb{E}(||p_0 - p_L|| / ||p_L||) \xrightarrow{L \to \infty} \infty.$   $\rightarrow$  explosion

3. If  $\beta = 1/2$ 

#### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||p_0 - p_L|| / ||p_L|| \xrightarrow{\mathbb{P}} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $\mathbb{E}(||p_0 - p_L|| / ||p_L||) \xrightarrow{L \to \infty} \infty.$   $\rightarrow$  explosion

3. If  $\beta = 1/2$  then

$$\exp\left(\frac{1}{2}\right) - 1 \leqslant \mathbb{E}\left(\frac{\|p_0 - p_L\|^2}{\|p_L\|^2}\right) \leqslant \exp(4) - 1.$$
## Scaling with standard initialization – Gradients

### Theorem

**Assumption**: the entries of  $\sqrt{d} V_k$  and  $\sqrt{d} W_k$  are symmetric i.i.d. sub-Gaussian.

1. If 
$$\beta > 1/2$$
 then  $||p_0 - p_L|| / ||p_L|| \xrightarrow{\mathbb{P}} 0.$   $\rightarrow$  identity  
2. If  $\beta < 1/2$  then  $\mathbb{E}(||p_0 - p_L|| / ||p_L||) \xrightarrow{L \to \infty} \infty.$   $\rightarrow$  explosion

3. If  $\beta = 1/2$  then

$$\exp\left(\frac{1}{2}\right) - 1 \leqslant \mathbb{E}\left(\frac{\|p_0 - p_L\|^2}{\|p_L\|^2}\right) \leqslant \exp(4) - 1. \quad \to \text{stability}$$

## Stability – output/gradients



(a) Distribution of  $\|h_L\|/\|h_0\|$ 



Simple ResNet:  $h_{k+1} = h_k + \frac{1}{\sqrt{L}} V_{k+1} \sigma(h_k)$ .

- Simple ResNet:  $h_{k+1} = h_k + \frac{1}{\sqrt{L}} V_{k+1} \sigma(h_k)$ .
- > The entries of  $V_k$  are i.i.d.  $\mathcal{N}(0, 1/d)$ .

- Simple ResNet:  $h_{k+1} = h_k + \frac{1}{\sqrt{L}} V_{k+1} \sigma(h_k)$ .
- The entries of  $V_k$  are i.i.d.  $\mathcal{N}(0, 1/d)$ .

**>** For  $\mathbf{B}: [0,1] \to \mathbb{R}^{d \times d}$  a  $(d \times d)$ -dimensional Brownian motion

- Simple ResNet:  $h_{k+1} = h_k + \frac{1}{\sqrt{L}} V_{k+1} \sigma(h_k)$ .
- The entries of  $V_k$  are i.i.d.  $\mathcal{N}(0, 1/d)$ .

**>** For  $\mathbf{B}: [0,1] \to \mathbb{R}^{d \times d}$  a  $(d \times d)$ -dimensional Brownian motion

$$\mathbf{B}_{(k+1)/L,i,j} - \mathbf{B}_{k/L,i,j} \sim \mathcal{N}\left(0, \frac{1}{L}\right).$$

- Simple ResNet:  $h_{k+1} = h_k + \frac{1}{\sqrt{L}} V_{k+1} \sigma(h_k)$ .
- The entries of  $V_k$  are i.i.d.  $\mathcal{N}(0, 1/d)$ .
- **>** For  $\mathbf{B}: [0,1] \to \mathbb{R}^{d \times d}$  a  $(d \times d)$ -dimensional Brownian motion

$$\mathbf{B}_{(k+1)/L,i,j} - \mathbf{B}_{k/L,i,j} \sim \mathcal{N}\left(0,\frac{1}{L}\right).$$

> Consequence:

$$h_0 = Ax, \quad h_{k+1}^{\top} = h_k^{\top} + \frac{1}{\sqrt{d}}\sigma(h_k^{\top})(\mathbf{B}_{(k+1)/L} - \mathbf{B}_{k/L}), \quad 0 \leq k \leq L-1.$$

## SDE regime

ResNetNeural SDE
$$h_0 = Ax$$
 $H_0 = Ax$  $h_{k+1} = h_k + \frac{1}{\sqrt{L}}V_{k+1}\sigma(h_k)$  $dH_t^\top = \frac{1}{\sqrt{d}}\sigma(H_t^\top) dB_t$  $F_{\pi}(x) = Bh_L$  $F_{\Pi}(x) = BH_1$ 

## SDE regime

ResNetNeural SDE
$$h_0 = Ax$$
 $H_0 = Ax$  $h_{k+1} = h_k + \frac{1}{\sqrt{L}} V_{k+1} \sigma(h_k)$  $dH_t^\top = \frac{1}{\sqrt{d}} \sigma(H_t^\top) dB_t$  $F_{\pi}(x) = Bh_L$  $F_{\Pi}(x) = BH_1$ 

### Proposition

**Assumption**: the entries of  $V_k$  are i.i.d. Gaussian  $\mathcal{N}(0, 1/d)$  and  $\sigma$  is Lipschitz continuous.

## SDE regime

ResNetNeural SDE
$$h_0 = Ax$$
 $H_0 = Ax$  $h_{k+1} = h_k + \frac{1}{\sqrt{L}} V_{k+1} \sigma(h_k)$  $dH_t^\top = \frac{1}{\sqrt{d}} \sigma(H_t^\top) dB_t$  $F_{\pi}(x) = Bh_L$  $F_{\Pi}(x) = BH_1$ 

### Proposition

Assumption: the entries of  $V_k$  are i.i.d. Gaussian  $\mathcal{N}(0, 1/d)$  and  $\sigma$  is Lipschitz continuous. Then the SDE has a unique solution H and, for any  $0 \le k \le L$ ,

$$\mathbb{E} ig( \|H_{k/L} - h_k\| ig) \leqslant rac{C}{\sqrt{L}}.$$



For deep ResNets with i.i.d. initialization:

## Summary so far

For deep ResNets with i.i.d. initialization:

- $\triangleright$  the critical value for scaling is  $\beta = 1/2$
- $\triangleright\,$  this value corresponds in the deep limit to a SDE.

## Summary so far

For deep ResNets with i.i.d. initialization:

- $\triangleright$  the critical value for scaling is  $\beta = 1/2$
- $\triangleright\,$  this value corresponds in the deep limit to a SDE.

Remaining questions:

- ▷ Can we obtain other limits? For example ODEs?
- ▷ Do they correspond to the same critical value?

## Summary so far

For deep ResNets with i.i.d. initialization:

- $\triangleright$  the critical value for scaling is  $\beta = 1/2$
- $\triangleright$  this value corresponds in the deep limit to a SDE.

Remaining questions:

- ▷ Can we obtain other limits? For example ODEs?
- Do they correspond to the same critical value?

Key: link between  $\beta$  and the weight distributions.



Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

**Beyond initialization** 

ldea: the weights  $(V_k)_{1 \leq k \leq L}$  and  $(\theta_k)_{1 \leq k \leq L}$  are discretizations of smooth functions.

**>** Idea: the weights  $(V_k)_{1 \le k \le L}$  and  $(θ_k)_{1 \le k \le L}$  are discretizations of smooth functions. **>**  $(V_k)_{1 \le k \le L} \hookrightarrow \mathscr{V} : [0, 1] \to \mathbb{R}^{d \times d}$  > Idea: the weights (V<sub>k</sub>)<sub>1≤k≤L</sub> and (θ<sub>k</sub>)<sub>1≤k≤L</sub> are discretizations of smooth functions.
 > (V<sub>k</sub>)<sub>1≤k≤L</sub> → 𝒴 : [0,1] → ℝ<sup>d×d</sup> (θ<sub>k</sub>)<sub>1≤k≤L</sub> → Θ : [0,1] → ℝ<sup>p</sup>.

> Idea: the weights (V<sub>k</sub>)<sub>1≤k≤L</sub> and (θ<sub>k</sub>)<sub>1≤k≤L</sub> are discretizations of smooth functions.
> (V<sub>k</sub>)<sub>1≤k≤L</sub> → 𝒴 : [0,1] → ℝ<sup>d×d</sup> (θ<sub>k</sub>)<sub>1≤k≤L</sub> → Θ : [0,1] → ℝ<sup>p</sup>.
> Model:

$$h_0 = Ax, \quad h_{k+1} = h_k + \frac{1}{L} V_{k+1} g(h_k, \theta_{k+1}), \quad 0 \le k \le L - 1,$$

where  $V_k = \mathscr{V}_{k/L}$  and  $\theta_k = \Theta_{k/L}$ .

> Idea: the weights (V<sub>k</sub>)<sub>1≤k≤L</sub> and (θ<sub>k</sub>)<sub>1≤k≤L</sub> are discretizations of smooth functions.
> (V<sub>k</sub>)<sub>1≤k≤L</sub> → 𝒴 : [0,1] → ℝ<sup>d×d</sup> (θ<sub>k</sub>)<sub>1≤k≤L</sub> → Θ : [0,1] → ℝ<sup>p</sup>.
> Model:

$$h_0 = Ax, \quad h_{k+1} = h_k + \frac{1}{L} V_{k+1} g(h_k, \theta_{k+1}), \quad 0 \le k \le L - 1,$$

where  $V_k = \mathscr{V}_{k/L}$  and  $\theta_k = \Theta_{k/L}$ .

**Assumption:** the stochastic processes  $\mathscr{V}$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

> Idea: the weights (V<sub>k</sub>)<sub>1≤k≤L</sub> and (θ<sub>k</sub>)<sub>1≤k≤L</sub> are discretizations of smooth functions.
> (V<sub>k</sub>)<sub>1≤k≤L</sub> → 𝒴 : [0,1] → ℝ<sup>d×d</sup> (θ<sub>k</sub>)<sub>1≤k≤L</sub> → Θ : [0,1] → ℝ<sup>p</sup>.
> Model:

$$h_0 = Ax, \quad h_{k+1} = h_k + rac{1}{L} V_{k+1} g(h_k, heta_{k+1}), \quad 0 \leqslant k \leqslant L - 1,$$

where  $V_k = \mathscr{V}_{k/L}$  and  $\theta_k = \Theta_{k/L}$ .

**Assumption:** the stochastic processes  $\mathscr{V}$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

**Example:** the entries of  $\mathscr{V}$  and  $\Theta$  are independent Gaussian processes with zero expectation and covariance  $K(x, x') = \exp(-\frac{(x-x')^2}{2\ell^2})$ .





## Scaling and weight regularity



<mark>(a)</mark> l.i.d.

## Scaling and weight regularity



## ODE regime

ResNetNeural ODE
$$h_0 = Ax$$
 $H_0 = Ax$  $h_{k+1} = h_k + \frac{1}{L} V_{k+1} g(h_k, \theta_{k+1})$  $dH_t = \mathscr{V}_t g(H_t, \Theta_t) dt$  $F_{\pi}(x) = Bh_L$  $F_{\Pi}(x) = BH_1$ 

## ODE regime

ResNetNeural ODE
$$h_0 = Ax$$
 $H_0 = Ax$  $h_{k+1} = h_k + \frac{1}{L} V_{k+1} g(h_k, \theta_{k+1})$  $dH_t = \mathscr{V}_t g(H_t, \Theta_t) dt$  $F_{\pi}(x) = Bh_L$  $F_{\Pi}(x) = BH_1$ 

### Proposition

**Assumption**: the function *g* is Lipschitz continuous on compact sets.

## ODE regime

ResNetNeural ODE
$$h_0 = Ax$$
 $H_0 = Ax$  $h_{k+1} = h_k + \frac{1}{L} V_{k+1} g(h_k, \theta_{k+1})$  $dH_t = \mathscr{V}_t g(H_t, \Theta_t) dt$  $F_{\pi}(x) = Bh_L$  $F_{\Pi}(x) = BH_1$ 

### Proposition

**Assumption**: the function *g* is Lipschitz continuous on compact sets.

Then the ODE has a unique solution H and, a.s., for any  $0 \leq k \leq L$ ,

$$\|H_{k/L}-h_k\|\leqslant rac{c}{L}.$$





> Again <u>3 cases</u>: identity/explosion/stability.



Again 3 cases: identity/explosion/stability.
 With a smooth initialization, the critical scaling is β = 1.



- Again <u>3 cases</u>: identity/explosion/stability.
- With a smooth initialization, the critical scaling is  $\beta = 1$ .
- It is the scaling that corresponds in the deep limit to an ODE.

### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

- 1. If  $\beta > 1$
- 2. If  $\beta = 1$

### 3. If $\beta < 1$

#### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

1. If 
$$\beta > 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \xrightarrow{L \to \infty} 0$ .  
2. If  $\beta = 1$ 

### 3. If $\beta < 1$

#### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

1. If 
$$\beta > 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \xrightarrow{L \to \infty} 0.$   $\rightarrow$  identity  
2. If  $\beta = 1$ 

### 3. If $\beta < 1$
#### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

1. If 
$$\beta > 1$$
 then, a.s.,  $\|h_L - h_0\| / \|h_0\| \xrightarrow{L \to \infty} 0.$   $\rightarrow$  identity

2. If 
$$\beta = 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \leq c$ .

#### 3. If $\beta < 1$

#### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

1. If 
$$\beta > 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \xrightarrow{L \to \infty} 0.$   $\rightarrow$  identity

2. If 
$$\beta = 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \leq c$ .  $\rightarrow$  stability

#### 3. If $\beta < 1$

#### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

1. If 
$$\beta > 1$$
 then, a.s.,  $\|h_L - h_0\| / \|h_0\| \xrightarrow{L \to \infty} 0.$   $\rightarrow$  identity

2. If 
$$\beta = 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \leq c$ .  $\rightarrow$  stability

3. If 
$$\beta < 1$$
 + assumptions, then  $\max_k \frac{\|h_k - h_0\|}{\|h_0\|} \xrightarrow{L \to \infty} \infty$ .

#### Theorem

Assumption:  $\mathscr V$  and  $\Theta$  are a.s. Lipschitz continuous and bounded.

1. If 
$$\beta > 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \xrightarrow{L \to \infty} 0.$   $\rightarrow$  identity

2. If 
$$\beta = 1$$
 then, a.s.,  $||h_L - h_0|| / ||h_0|| \leq c$ .  $\rightarrow$  stability

3. If 
$$\beta < 1$$
 + assumptions, then  $\max_k \frac{\|h_k - h_0\|}{\|h_0\|} \xrightarrow{L \to \infty} \infty$ .  $\to$  explosion

#### Intermediate regimes

**Challenge:** describe the transition between the i.i.d. and smooth cases.

- **Challenge:** describe the transition between the i.i.d. and smooth cases.
- We initialize the weights as increments of a fractional Brownian motion  $(B_t^H)_{t \in [0,1]}$ .

- **Challenge:** describe the transition between the i.i.d. and smooth cases.
- We initialize the weights as increments of a fractional Brownian motion  $(B_t^H)_{t \in [0,1]}$ .
- **>** Recall:  $B^H$  is Gaussian, starts at zero, has zero expectation, and covariance function

$$\mathbb{E}(B_s^H B_t^H) = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t - s|^{2H}), \quad 0 \le s, t \le 1.$$

- Challenge: describe the transition between the i.i.d. and smooth cases.
- We initialize the weights as increments of a fractional Brownian motion  $(B_t^H)_{t \in [0,1]}$ .
- **>** Recall:  $B^H$  is Gaussian, starts at zero, has zero expectation, and covariance function

$$\mathbb{E}(B_s^H B_t^H) = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t - s|^{2H}), \quad 0 \le s, t \le 1.$$

The Hurst index  $H \in (0,1)$  describes the raggedness of the process.





 $\triangleright$  H = 1/2: standard Brownian motion (SDE regime).



 $\triangleright$  H = 1/2: standard Brownian motion (SDE regime).

- $\triangleright$  H < 1/2: the increments are negatively correlated.
- $\triangleright$  H > 1/2: the increments are positively correlated.



 $\triangleright$  H = 1/2: standard Brownian motion (SDE regime).

- $\triangleright$  H < 1/2: the increments are negatively correlated.
- $\triangleright$  H > 1/2: the increments are positively correlated.
- $\triangleright$  When  $H \rightarrow 1$ : the trajectories converge to linear functions (ODE regime).

## A continuum of intermediate regularities



## A continuum of intermediate regularities





Learning with ResNets

Scaling deep ResNets

Scaling in the continuous-time setting

**Beyond initialization** 



l.i.d. initialization,  $\beta = 1/2$ 



Smooth initialization,  $\beta = 1$ 



**I.i.d.** initialization,  $\beta = 1$ 



> The weights after training still exhibit a strong structure as functions of the layer.



l.i.d. initialization,  $\beta = 1$ 

The weights after training still exhibit a strong structure as functions of the layer.
Their regularity is influenced by both the initialization and the choice of β.

### Performance after training





(b) On CIFAR-10



> Deep limits allow to understand scaling and initialization strategies for ResNets.



- > Deep limits allow to understand scaling and initialization strategies for ResNets.
- With standard initialization the correct scaling is  $\beta = 1/2$ .

- > Deep limits allow to understand scaling and initialization strategies for ResNets.
- With standard initialization the correct scaling is  $\beta = 1/2$ .
- > To train very deep ResNets, it is important to adapt scaling to the weight regularity.

- > Deep limits allow to understand scaling and initialization strategies for ResNets.
- With standard initialization the correct scaling is  $\beta = 1/2$ .
- > To train very deep ResNets, it is important to adapt scaling to the weight regularity.
- Perspectives: what about training? how should we choose the regularity for a given problem?

- > Deep limits allow to understand scaling and initialization strategies for ResNets.
- With standard initialization the correct scaling is  $\beta = 1/2$ .
- > To train very deep ResNets, it is important to adapt scaling to the weight regularity.
- Perspectives: what about training? how should we choose the regularity for a given problem?
- **>** To know more: arXiv:2206.06929.

# Thank you!



adeline.fermanian@mines-paristech.fr



https://afermanian.github.io