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Learning on Distributions

Many applications where “data point” is a point cloud / distribution

Xk = {x (k)
i }

nk
i=1 ∼ µk ∈ P(Rd ), k ∈ {1, ...,N}

Learning goals remain:
Construct classifier for “classes” of different µk

Clustering / dimension reduction to embed into low dimensional
space

Flow Cytometry Generative Models Images as Densities



Goals of Distribution Statistics

What statistic to map to vector/Hilbert space φ : P→ H
Deploy off the shelf classifiers
Ideally linear / low-complexity classifiers, regression, SVM

Don’t want φ to collapse information too much
Mean or first few moments far from injective

Want to understand geometric structure of latent space
Minimal separation in P guarantees minimal separation in H

Want to be robust to perturbations and simple transformations
shifts / scalings / shearings / deformations
φ should be Lipschitz under these push forwards

Would like ability to do distributed computation
features of data can be distributed across computers with low
communication bandwidth



Comparison of Families of Distributions

Question 1: Given µk ∈ P(Rd ) can we find embedding s.t.

d(µk , µ`) ≈ ‖φµk (·)− φµ`(·)‖?

Statistical distances expensive so want to avoid pairwise
comparisons
How low dimensional can embedding φ be?

Question 2: Given training data (µk , yk ) for yk ∈ C, can we find
classifier

f : P→ C?

Question 3: Can we control the embedding / classification error
from sampling Xk = {x (k)

i }
nk
i=1 ∼ µk as a function of nk ?



Optimal mass transport (OMT)

Natural geometry for probability measures defined on a
geometric space
Move mass from pile into hole in the cheapest way possible
respecting the underlying metric (Monge, 1781)

[Schmitz et al, SIAM J. Imaging Sci, 2018], [Solomon et al, SIGGRAPH, 2015]



Optimal mass transport (OMT)

The Wasserstein-2 distance between distributions µ, ν ∈ P(Rn)
is

W2(µ, ν)2 = min
T∈Πνµ

∫
‖T (x)− x‖2 dµ(x).

with T ∈ Πνµ if T]µ = ν, i.e. µ(T−1(A)) = ν(A).
The argmin is the optimal transport map, denote it by T ν

µ .
Exists and unique subject to regularity assumptions on µ.

Kantorovich relaxation: Allow “mass splitting”, coupling instead
of function.

[Brenier, Commun. Pure Appl. Math., 1991], [Kantorovich, Manag. Sci., 1958],

[Peyré et al, Found. Trends Mach. Learn., 2019]
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Dimensionality of Wasserstein Space
(P,W2) is infinite dimensional Riemannian manifold

Without assumptions on the data model, all hope is lost!
Assumption: Data comes from push-forwards of one (or
several) base distributions

H ? µ = {h]µ : h ∈ H}
(h]µ)(A) = µ(h−1(A))

Assumption: H made up of “simple” transformations (more on
this later)

Push-forwards arc out low dimensional subsets of the Wasserstein
manifold



Linearized Optimal Transformation Features

Instead of distances, think of transport plan as a new set of features
LOT Embedding: fix reference distribution σ

Fσ :P→ L2(Rd , σ)

µ 7→ Tµ
σ

Idea: Define a registration between µi and µj according to how
they are optimally aligned to σ

Hope this isn’t too different than optimal registration of µi and µj

[Rohde et al. 2013, 2016, 2018 (algorithm, theory for CDF, algorithm involving Radon transform)]



Linear optimal transport (LOT)

Distance:

W LOT
2 (µ, ν) = ‖Tµ

σ − T ν
σ ‖σ

Learning:

fµ : P(Rd )→ C
µ 7→ f (Tµ

σ ) for f : L2(Rd , σ)→ C

Questions:
What are natural actions h ∈ H for which f (h#µ) = f (µ) is
efficiently learnable?
What does W LOT

2 (µi , µj ) tell us about W2(µi , µj )?
How stable is LOT w.r.t. perturbation push forwards h and w.r.t.
finite sampling of µi?

[Rohde et al. 2013, 2016, 2018 (algorithm, theory for CDF, algorithm involving Radon transform)],
[Aldroubi, et al. 2020 (Concurrent ArXiv pub., different theory)]
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Compatible Transformations
Need to find families of group actions that “interact nicely” with
optimal transport

Easy to show that (S ◦ Tµσ )#σ = S#µ
Problem: is this the optimal map from σ to S#µ?

Using optimal map basically regularizes the problem so that
choice of a map from σ to µk is well-defined for each µk



LOT Distance on Wasserstein Manifold

Distance between transport maps is distance on tangent plane at
σ

Looking for characterization of when tangent plane distance
similar to Wasserstein distance
NB: Possible to travel “far” from σ and still be near tangent plane



Compatible Action Examples Examples
With no assumptions on τ , σ

Shifts: µ = (Sa)#τ for Sa(x) = x − a
Scalings: µ = (Rc)#τ for Rc(x) = c · x , c > 0
Affine: Combination of shifts and scalings.
Why? They satisfy S = T S#τ

τ (S is already optimal!)
With assumptions on τ , σ

Barycenter: Any measure along OT curve
Principal axis shearing: More on this later

Create tube around “simple” transformations
Perturbations:
Gε,R = {g ∈ L2(Rd ) : ∃h ∈ Aa,c s.t. ‖g − h‖ < ε and ‖h‖ < R}

Open Q: What are interesting deterministic functions in Gε,R?
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Convexity For Group Actions

Fσ is compatible with action H if ∀h ∈ H, Fσ(h ? µ) = h ? Fσ(µ)

Ex: Shifts, scalings, combinations

Convexity (C., Moosmüller 2020)

If H convex and compatible w.r.t. Fσ, then Fσ(H ? µ) is convex.

Fσ is δ−compatible with action H if ∀h ∈ H,

‖Fσ(h ? µ)− h ? Fσ(µ)‖ < δ

Ex: Perturbations of shifts and scalings

Almost Convexity (C., Moosmüller 2020)

If H convex and δ−compatible w.r.t. Fσ, then Fσ(H ? µ) is 2δ−convex.

Means convex sum forms 2δ tube around set
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Distances in LOT embedding space

Theorem (Almost Isometry (C., Moosmüller 2020))

Let σ, µ absolutely continuous and satisfy Caffarelli’s regularity
assumptions (convex supports). Let g,h be ε-perturbations of
elementary transformations. Then we have

0 ≤ W LOT
2 (g#µ, h#µ) − W2(g#µ, h#µ) ≤ Cσ,µ · ε+ Cσ,µ · ε1/2

LOT Euclidean Dist. Wasserstein-2 Dist.

Corollary: If g,h only shear+shift (ε = 0), then LOT is isometry.
Key proof ingredient: 1

2−Hölder type regularity:

W LOT
2 (g#µ,h#µ) ≤ c1‖g − h‖µ + c2‖g − h‖1/2

µ

Basically follows from results by N. Gigli (2011)
Computational improvement: To compute the

(N
2

)
distances

between N distributions gi #µ need only N expensive OTs and(N
2

)
cheap Euclidean distances.
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Learning in LOT embedding space

Theorem (Linear Classifiers for Distributions (C., Moosmüller 2020) )

Let σ absolutely continuous, H convex, and Fσ ε−compatible with µ
and ν orbits from H. If

H ? µ, H ? ν compact, and
minimal separation W2(h1#µ,h2#ν) > δ for δ = O(εc),

then Fσ(H ? µ) and Fσ(H ? ν) are linearly separable.

Theorem (Minimal Separation)

For g1,g2 perturbations of shifts and scalings, and µ, ν satisfying
Caffarelli’s regularity assumptions, δ = max(δ(ε,R, σ, µ), δ(ε,R, σ, ν))
where

δ(ε,R, σ, µ) :=

(√
4R
K σ
µ

+ 2

)
‖fµ‖1/2

∞ ε

+

(
4R ‖fµ‖1/2

∞
W2(σ, µ) + R + ‖Id‖µ

K σ
µ

)1/2

ε1/2



Proof Idea

First version of this result by Rohde et. al. 2018 for d = 1 and
ε = 0 (δ = 0 in this case).
Uses Hahn-Banach theorem. Key proof ingredient: Under
compatibility condition: Convexity of H is preserved via LOT.
Subresult: If H is convex and Fσ is (almost) compatible with
action by H, then Fσ(H]µ) is (almost) convex.



Tailored References and Certain Deformations

Theorem (Conditions on transformations (Khurana, Kannan, C.,
Moosmüller 2022))

Same assumptions as above. If the Jacobian of Tµ
σ has a constant

orthonormal basis given by an orthogonal matrix P (i.e.
JTµσ (x) = P>D(x)P), then

F(P) =

{
x 7→ P>


f1((Px)1)
f2((Px)2)

...
fn((Px)n))

+ b :
fj :R→R is monotonically

increasing and differentiable
and b ∈ Rn

}
.

is the set of transformations for which the compatibility condition
holds.

Means we can shear as long as it respects the eigen-directions
of the transport
Comes down to maintaining convexity of ∇ϕ

Motivated by tailored references, have equivalent theory of
separability for multiple references {σi}
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Tailored References and Certain Deformations
Certain Deformations:

Multiple References:

Khurana, Kannan, C., Moosmüller 2022
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Multiple Sources of Error

Data sets only given through finite samples Xk = {x (k)
i }

nk
i=1 ∼ µk

Not inherently an issue to finding transport map since σ still
absolutely continuous

Must sample {zi}m
i=1 ∼ σ in order to have finite memory storage

of each transport map O(dm)

Solving transport on finite samples of σ leads to mass splitting
and transport coupling PXk

Z ∈ Rm×nk

Need to create approximate transport map T̂ Xk
Z ∈ Rm×d through

barycentric projection

T̂ Xk
Z = D†PXk

Z Xk , where Dii =
∑

j

PXk
Z [i , j]

Goal: Bound
∣∣∣ 1√

m‖T̂
Xk
Z − T̂ X`

Z ‖F − ‖Tµk
σ − Tµ`

σ ‖σ
∣∣∣ <?



Known Rates

Easy Case: supp(µk ) ⊂ B(0,R) and connected
Sampling of σ can be bounded by McDiarmid’s inequality

Transport E‖T Xk
Z − Tµk

σ ‖σ can be bounded for
finding transport through linear programming: Deb et al (2021)
finding transport through Sinkhorn: Niles-Weed et al (2021)

Difficult Case: µk have potentially unbounded support with tail decay
faster than ‖x‖−d−2

Requires need for supp(σ) ⊂ B(0,R)

Construct fictitious compactly supported µ̃k indistinguishable
from µk given samples
Bound distance between transports using Marigot et al (2021)

‖Tµ
σ − T µ̃

σ ‖σ ≤ C ·W1(µ, µ̃)
1
6

Use “small set where r.v. unbounded” alternative to McDiarmid’s
inequality



Finite Sample Bounds

Theorem (Finite LOT Error (Khurana, Moosmüller, Hamm, C. 2022))

Let µk ∈ H ? µ where H are ε−compatible transformations.
Under technical assumptions on the smoothness of the densities of
µk , given a finite sampling of size n and sampling of m points from σ,
then with probability at least 1− δ,

∣∣W2(µi , µj )
2 −W2,LOT (Xj ,Xk )2

∣∣ ≤ CR

(
εc + O(n−1/d ) +

√
2 log(2/δ)

m

)
.

Exponent of n can be ameliorated using kernel smoothing and
smoothness of density

Given above bound:
simply need slightly larger minimal separation between H ? µ and
H ? ν to guarantee linear separability
apply MDS perturbation results to guarantee stable
low-dimensional embedding
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Unsupervised Embedding

Theorem (Low Dimensional Embedding (Khurana, Moosmüller,
Hamm, C. 2022))

Given {µk} ⊂ H ? µ of ε tube around compatible transformations and
that has true low-dimensional embedding Y ⊂ Rd ′

. Then the left
singular vectors U of centered transport maps[

T Xk
Z

]N

k=1
− 1

N
1T

N

[
T Xk

Z

]N

k=1

satisfies, for sufficiently large n and m and with probability 1− δ,

min
Q∈O(d ′)

‖U − YQ‖F ≤ C · N · ‖Y †‖
(
εc + O(n−1/d ) +

√
2 log(2/δ)

m

)
.

Combines finite bound with Wassmap embedding of full
distributions (Hamm et al 2021) and MDS Perturbation bound
(Arias Castro et al 2020)
Means we can reduce to d ′ = C · d embedding near isometrically
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Relevance in Experimental Setting

Classification model

f (h#µ) = f (µ) for h ∈ Gε,R

Hyperplane classifier fθ between H ? µ and H ? ν

Sample σ to project Tµσ to T X
Z

Reduce dimension through:
PCA if data on shared computer
JL-embedding if data on distributed computers



Experimental Validation (shifts and scalings)
MNIST Classification Between 1’s and 2’s

Data sampled from MNIST images
Each image additionally augmented by random shift and scaling
Sample k labeled examples of each class for training
σ is centered normal distribution



Experimental Validation (shifts and scalings)



Experimental Validation (mild shearing)

MNIST Classification Between 7’s and 9’s



Experimental Validation (severe shearing)

MNIST Classification Between 7’s and 9’s



PCA Embedding

supp(µk ) ⊂ R2

H made up of almost compatible transformations

Shifts/Shears Shifts Global Scaling



Flow Cytometry - Preliminary Results

Flow cytometry: each patient is represented by 9D point cloud of cells

Used to tell if people have blood disease

Medical test is to look at every 2D slice

Healthy AML



Flow Cytometry - Preliminary Results

LOT using uniform reference distribution
Sample transport maps and PCA reduce to 25 dimensions
Fit linear SVM

nsick,tr = 15, nhealthy,tr = 50, nsick,te = 28, nhealthy,te = 265

Predicted Sick Predicted Healthy
Sick 0.9286 0.0714

Healthy 0.0113 0.9887



Active Learning - Preliminary Results

Shifted 1s and 2s
Embed into LOT space
PCA Reduce space to lower dimension
Iteratively choose 2 labels per step
Refine sampling based of margin of remaining possible separators



LOT Summary

LOT feature space
Pro: Requires only N OT computations, instead of

(N
2

)
Pro: Well understood geometric structure in embedding space
Pro: Linear separator is efficient to learn

Current research direction involving active learning

Con: Assumes base distributions are absolutely continuous
Current research redefining compatibility to be a function of µ for
measures with atoms
Current research direction involving entropic regularization on fixed
grid



Thank you!

Questions?
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