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An old problem – estimating many means

Consider a many-samples model (sample=“bag”)


X(k)• := (X(k)i )1≤i≤Nk

i.i.d.∼ Pk, k ∈ JBK := {1, . . . ,B};
X(k)i ∈ Rd;

(X(1)• , . . . ,X(B)• ) independent,
µk := EX∼Pk [X] ∈ Rd, k ∈ JBK, unknown.

▶ P1, . . . ,PB: square integrable distributions on Rd (“tasks”)

▶ Goal: estimation of mean vectors (µk)k∈JBK

▶ Sometimes called “multi-task averaging” (MTA) (Feldman et al, 2014)
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The naive estimator

▶ Criterion: single (M)SE,

Lk(µ̂k) := ∥µ̂k − µk∥2; Rk(µ̂k) := E[Lk(µ̂k)];

▶ and compound (M)SE

L
(
µ̂
)

:=
1
B

B
∑
k=1

∥µ̂k − µk∥2 ; R
(
µ̂
)

:= E[L(µ̂)].

▶ The benchmark estimators are the “naive” bag-wise empirical means

µ̂NE
k :=

1
Nk

Nk
∑
i=1

X(k)i .

▶ It holds

Rk(µ̂NE
k ) =

Tr Σk
Nk

=: s2k ,

where Σk := Cov
[
X(k)1

]
is the covariance of Pk .
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Motivations and goals

Motivations:
▶ Many large databases have such a structure.

▶ Kernel mean embedding of distributions (possibly with random features).
Goals
▶ General (old) question: can we improve over the naive estimator?

→ the performance of estimators will be measured via ratios to the naive
estimator risk s2k .

▶ It will turn out that the improvement can be larger in large (effective) dimension,

d•k :=
(Tr Σk)

2

Tr Σ2
k

=
∥Σk∥21
∥Σk∥22

.

→ “Large dimensional asymptotics” rather than large sample asymptotics.
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Stein and Robbins

or d•)

"Stein"

(dimension d

"Robbins" , B tasks

µ1 µ2 µB
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B = 1: the Stein effect

▶ Isotropic Gaussian setting: P1 = N (µ, σ2), known σ.
▶ Shrinkage estimator: ω ∈ [0, 1],

µ̂ω := ωµ̂NE,

with risk
R(µ̂ω) = (1− ω)2∥µ∥2 + ω2s2,

▶ “oracle” Stein improvement factor relative to naive estimator

min
ω∈[0,1]

R(µ̂ω)

s2 =
τJS(µ)

1+ τJS(µ)
,

where

τJS(µ) :=
∥µ∥2

s2 .
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B = 1, JS estimator, dimensional asymptotics

▶ James-Stein (1961) estimator:

µ̂JS := µ̂ω̂JS , with ω̂JS :=

(
1− (d− 2)σ2/N1

∥µ̂NE∥2

)
.

▶ Nonasymptotic risk bound: (see e.g. Tsybakov 2003,2009)

R(µ̂JS)

s2 < min

(
τJS(µ)

1+ τJS(µ)
+
4
d , 1
)

▶ Minimax result of Pinsker (1980): Fix τ ∈ R+ .

lim
d→∞

inf
µ̂

sup
P:τJS(µ)≤τ

R(µ̂)
s2 =

τ

1+ τ
.

▶ The JS estimator asymptotically attains this optimal factor as d → ∞
(without knowing τ)
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B > 1: “Robbins” point of view, and naive Bayes

▶ One can assume an a priori distribution of the means µk
i.i.d∼ Q

▶ . . . and a model for sample distributions (e.g. N (µk, σ2Id))

▶ Independence of bags conditional to their means is essential in this point of view
(more than in Stein’s!)

▶ The Bayes estimator is bag-wise posterior mean, of the form

µ̂
Q−Bayes
• =

(
φQ(µ̂

NE
1 ), . . . , φQ(µ̂

NE
B )

)
.

▶ Empirical Bayes approach initiated by the landmark works of Efron and Morris
(Gaussian prior, 70s), to modern nonparametric extensions (Zhang 1997,2003; Jin
and Zhang, 2009; Brown and Greenshtein, 2009): try to “estimate” φQ. See also
George et al. (2012).

▶ Most efforts in this direction appear to consider d = 1

9 / 33



Returning to many vector means: some goals

▶ Can we take avantage of having many distributions/samples?
What if the true means have some (unknown) “structure”, e.g.:
▶ Clustered
▶ Low dimensional support eg. manifold
▶ Sparse (support is union of low dimensional structures)
▶ Small covering number at some scale

▶ What is the effect of high (effective) dimension?
(Effective) dimensional asymptotics?

▶ Improvement for each single mean and not only for compound R?

▶ Renounce the exact Stein effect (factor always <1) but aim at improvement factor
wrt. naive, with the potential of it being small.
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Plan

▶ Consider simplified situation where some “oracle” information is known:
▶ Estimation error s2k of naive estimators
▶ “τ−”neighboring means

▶ Generic bound error for plug-in principle when oracle information is estimated

▶ Derive suitable estimates for the oracle information
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A simple idea

▶ We want to estimate µ1. For fixed τ > 0 assume an oracle tells us about
“τ-neighboring tasks”

Vτ :=
{
j ∈ JBK :

∥∥µ1 − µj
∥∥2 ≤ τs21

}
.

▶ Consider local shrinkage estimator µ̂ω := ∑k∈Vτ
ωkµ̂

NE
k , ω ∈ SVτ

(|Vτ |-simplex), it holds

R1(µ̂ω) ≤ τ(1− ω1)
2s21 + ∑

k∈Vτ

ω2
k s
2
k .

▶ Optimizing over ω ∈ SVτ
yields

R1(µ̂ω∗
τ
)

s21
≤ ν1(Vτ) + τ

1+ τ
=: B(τ,Vτ), ν1(V) :=

s−21
∑k∈V s−2k

.

▶ In the homogeneous setting, s2k ≡ s21 : ν1(Vτ) = |Vτ |−1.
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Stein setting vs. MTA setting

s

τ = ∥µ∥2
s2

∥µ∥

0

µ̂NE
µ
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Stein setting vs. MTA setting

µ1

s

0
∥µ∥ ≫ s2

: other means

µ̂NE
1

τs

Vτ
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Minimax lower bound

▶ Consider the Gaussian isotropic model in dimension d: Xi ∼ N (µi, σ2Id)
▶ Individual error bound: model Pd(τ):

V means (including the first one) are close to an (unknown) vector µ:

∃ν : ∀k ∈ JBK ∥µk − ν∥2 ≤ τs2.

▶ Then for the estimation of the first mean

lim
d→∞

inf
µ̂

sup
P∈Pd(τ)

R1(µ̂)
s21

≥ τ + V−1

1+ τ
.

▶ Does not quite match the oracle upper bound, but up to a factor 2
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Plug-in procedure

▶ Slight cheating: suppose we have esimates Ṽ, s̃2k of Vτ, s2k on “tilde” independent
data (e.g. use data splitting). Results conditional on “tilde” data and in expectation
with respect to “main”data”. . .

Proposition
Let τ > 0 be fixed. Assume Ṽ ⊆ JBK, s̃2 = (̃s2k )k∈JBK ∈ RB

+ are quantities that are
possibly random but independent of the samples in model (3). Then conditionally to the
event

A :=

{
Vτ′ ⊆ Ṽ ⊆ Vτ,∣∣̃s2k − s2k

∣∣ ≤ εk, for all k ∈ Ṽ,
(1)

if we plug in (Ṽ, s̃2) for (Vτ, s2) into the oracle formula giving rise to weight vector ω̃, it
holds

R1(µ̂ω̃|A)

s21
≤ B(τ, Ṽ) + ζs−21 ≤ B(τ,Vτ′) + ζs−21 (2)

where ζ := τε1 + 2maxk∈Ṽ εk .
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Compound estimation error

Corollary
Let

s2 = max
k∈JBK

s2k .

Then under the same eventA (for independent estimates) as previously, it holds

R(µ̂ω̃|A)

s2
≤
(

τ + N
B

1+ τ

)
+ ζ/s2,

whereN is the covering number of the means at scale
√

τ′s2/2,

N = N
(
{µi, i ∈ JBK},

√
τ′s2/2

)
:

Proof: ∑k∈JBK|Vτ′ |−1 ≤ N
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Minimax lower bound for compound error

▶ Consider the Gaussian isotropic model in dimension d: Xi ∼ N (µi, σ2Id)
▶ Compound error bound: model Pd(N , τ):

there exist (unknown) vectors (νi)i∈JNK, s.t. {µ1, . . . , µB} ⊆ ⋃N
i=1 B(νi,

√
τs2),

lim
d→∞

inf
(µ̂•)

sup
P∈Pd(N ,τ)

R(µ̂•)

s2 ≥
τ + N

B
1+ τ

.
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No oracle? Use tests

▶ Use (Tij)i,j∈JBK family of tests for

(H0) :
∥∥µi − µj

∥∥2 > τs2i , against (H1) :
∥∥µi − µj

∥∥2 ≤ τ′s2i

(τ′ ≤ τ)
▶ The estimated neighboring tasks for task i are

V̂i :=
{
j ∈ JBK : Tij = 1

}
▶ (Note: we assume Tii ≡ 1 so i ∈ V̂i always holds)
▶ Apply shrinkage estimator for estimated neighbors V̂i .
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Local shrinkage

Estimate neighbors Shrink
by testing

▶ Conceptually similar algorithm (using task clustering): Martinez-Rego and Pontil, 2013.
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The story so far

▶ Possible to improve naive estimation for each individual mean if τ ≪ 1

▶ Needed: test to estimate Vτ , estimation of s2k

▶ We want high test power for τ′ = cτ with c close to 1

▶ In low dimension detection distance is of the the order same as estimation error
→ hopeless strategy

▶ But in high dimension, squared detection distance is smaller by a factor of 1/
√
d

than naive MSE! (Nonasymptotic point of view: Baraud, 2002)
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Tests

▶ We consider tests based on the following U-statistics (here forNi = Nj = N)

Uij :=
1

N(N− 1) ∑
k ̸=l∈JNK

(〈
X(i)k ,X(i)l

〉
+
〈
X(j)k ,X(j)l

〉)
− 2
N2 ∑

k,l∈JNK

〈
X(i)k ,X(j)l

〉
.

▶ Unbiased estimate of
∥∥µi − µj

∥∥2
▶ Same statistic used in so-called MMD tests in the kernel setting

▶ (Also possible to use the biased estimate
∥∥µ̂NE

i − µ̂NE
j
∥∥2)
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Tests – Gaussian case

Proposition

Assume the Gaussian setting, and equal covariances & sample sizes across tasks.
Let α ∈ (0, 1), τ > 0 and C ≥ 16 be fixed; put uα := log(8B/α). Let T̃k be given by

T̃k := 1
{
Ũk ≤ (1− 2C−1)τs21

}
. (3)

Assume τ ≥ τmin := 4C2uα/
√
d•1 ; Defining

Ṽ :=
{
k ∈ JBK : T̃k = 1

}
,

then with probability at least 1− α it holds Vκτ ⊆ Ṽ ⊆ Vτ , where κ := (1− 3C−1)2.
(Note that κ ≥ 1

2 under the assumption on C.)
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Gaussian case – Estimating ∥Σk∥p(p = 1, 2)

Proposition

Let s̃2k := 1
Nk(Nk−1) ∑Nk

i=1 ∥X̃
(k)
i − µ̃k∥2, where µ̃k := N−1

k ∑Nk
i=1 X̃

(k)
i , and let

α ∈ (0, 1). Assume the Gaussian setting. Then with probability at least 1− α:

∀k ∈ JBK :
∣∣∣̃s2k − s2k

∣∣∣ ≤ s2k√
d•k

.4

√
log(4Bα−1)

Nk
. (4)

Also there exists aU-statistic W̃k such that with probability 1− α∣∣∣∣√W̃k − ∥Σk∥2
∣∣∣∣ ≲ ∥Σ∥2

(log(55Bα−1))2√
N

.

Important take-out: it sufficesNk ≳ log(Bα−1) to ensure from (0.4) that the remainder
term in the risk is of lower order (1/

√
d•1 ) than the oracle risk when τ ≥ τmin.
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Extending the Gaussian setting

▶ Qualitatively comparable results (for tests and quantile estimation) in the bounded
case relevant for KME with bounded kernel. RequiresN ≳ d• .
▶ Annoyingly bounded does not imply “strongly sub-Gaussian” in high dimension →

specific analysis required

▶ Similar results seem obtainable in the heavy-tailed case (requiring only moments
of order 4) using the Median of Means principle (ongoing)
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Results on Gaussian isotropic data

Ratio of MSE of different methods compared to NE on Gaussian data (lower is better).

Model Dimension JS+ MTA MTA stb STB-0 STB

UNIF
100 0.980 0.930 0.992 0.998 0.992
250 0.952 0.843 0.566 0.578 0.446

1000 0.832 0.573 0.361 0.203 0.187

CLUSTER
25 0.543 0.492 0.301 0.141 0.141
50 0.522 0.490 0.127 0.044 0.044

100 0.509 0.487 0.038 0.022 0.022

SPHERE
100 0.962 0.964 0.571 0.661 0.453
250 0.911 0.910 0.421 0.300 0.256

1000 0.715 0.715 0.259 0.106 0.102

SPARSE
50 0.777 0.838 0.633 0.596 0.558

250 0.463 0.514 0.515 0.469 0.429
1000 0.198 0.211 0.248 0.250 0.215
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Application to Kernel mean embedding (KME)
estimation

▶ If ϕ : Z → H is a feature mapping into Hilbert space, define the KME of
probability distribution P on Z as

µP = ϕ(P) := EZ∼P[ϕ(Z)]

▶ (The kernel trick is unimportant here, the above can be seen as a generalized method of
moments; see also: random feature approximation)

▶ Used in many applications for various purposes (e.g. Distribution Regression)

▶ With many samples Z(k)• from distributions P1, . . . ,PB, estimating the KMEs
ϕ(P) is an instance of the MTA problem with X = ϕ(Z)

▶ Common assumption: ϕ is bounded → we are interested in the bounded setup;
effective dimension is more important than dimension.
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KME and Relation to Gram matrix of tasks

▶ The (kernel) Gram matrix of the KMEs plays an important role in many applications
(e.g. distribution regression)

G =
(〈

µPi , µPj

〉
H

)
i,j∈JBK

.

▶ If it is estimated by Ĝ =
(〈

µ̂Pi , µ̂Pj

〉
H

)
i,j∈JBK

, then

∥∥∥∥ 1B(G− Ĝ
)∥∥∥∥2

Fr
≤ 4∥ϕ∥2∞RH(µ̂•).
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Results on toy data for KME
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Results on toy data for KME
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Results on real data (“wine”) for KME

20 50 100 150 200

Bag Size

0

10

20

30

40

D
ec

re
as

e
in

K
M

E
E

rr
or

20 50 100 150 200

Bag Size

0

10

20

30

40

50

60

D
ec

re
as

e
in

K
M

E
E

rr
or

Naive

R-KMSE

STB-0

MTA const

STB theory

MTA stb

STB weight

Decrease in KME estimation error compared to NE in percent on the wine data set for
different bag sizes and kernels. Higher is better.

29 / 33



Further perspective: Q-aggregation

▶ Aim at directly optimizing weights:

ω̂ := Arg Min
ω∈SB

(
L̂1(µ̂ω) +

c0q̂(ω)

)
,

where

L̂1(ω) :=

∥∥∥∥∥ B
∑
i=2

(µ̂NE
i − µ̂NE

1 )

∥∥∥∥∥
2

+ (2ω1 − 1)̂s21 ,

is an unbiased estimate of R1(ω),

and

q̂(ω) :=
1√
N1

B
∑
i=2

ωiq̂i,

where

q̂2i :=
1

N1 − 1

N1
∑
k=1

〈
µ̂NE
1 − µ̂NE

j ,X(i)k − µ̂NE
1

〉2
.

is an unbiased estimate of (µ̂NE
i − µ1)

TΣ1(µ̂
NE
i − µ1) conditional to all samples

except k = 1.
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Further perspectives

▶ Oracle-type inequality:

R(µ̂ω) ≤ (1+ γ1) min
ω∈SB

(∥∥∥ B
∑
i=1

ωiµi − µ1

∥∥∥2 + B
∑
i=1

ω2
i s2i

+ γ2
s1√
deff
1

B
∑
i=2

ωi∥µ1 − µi∥
)
+ γ3 max

i∈JBK

s2i√
d•i

(where γ1 can be made small and γ2,γ3 involve a
√
log B factor)

▶ In the case of homogenous tasks (equal covariances and samples sizes):

R(µ̂ω)

s21
≤ (1+ γ1)min

τ

B(τ,Vτ) + γ2
τ√
deff
1

+
γ3√
d•1
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Some take-home messages

▶ One can take advantage of neighbor means to improve over naive and Stein
estimates for single means

▶ Nonasymptotic guarantees for improvement of estimation of each single mean

▶ Key is the high-dimensional “blessing” that testing separation is faster than
estimation

▶ Can adapt to unknown structure of true means
(e.g. measured via covering numbers at appropriate scale)

▶ Improvement capped at τ ≍
√
log B/d• for this effect

▶ Possible also to choose τ adaptively (based on tradeoff bias/nb of neighbors)

▶ More general approach being developed: optimize directly a suitable upper bound
of the risk for convex combination weights

▶ Open question: more fine-grained minimax rates (so far: only d → ∞, τ ≍ cst.)
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Thank you for your attention

H. Marienwald, J-B. Fermanian, G. Blanchard. High-Dimensional Multi-Task Averaging and
Application to Kernel Mean Embedding. AISTATS 2021

G. Blanchard, J-B. Fermanian. Nonasymptotic one-and two-sample tests in high dimension with
unknown covariance structure. (ArXiv/ To appear in: Festschrift in the honor of V. Spokoiny)
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