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Introduction

High-dim. data → hidden low-dim. geometric structures

. Physical constraints;

. Implicit parametrisations.

Figure 1: Cyclooctane conformations (Martin et al., 2010).
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Introduction

High-dim. data → hidden low-dim. geometric structures

. Physical constraints;

. Implicit parametrisations.

Figure 1: Data from the Coil-20 dataset (Nene et al., 1996).
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Introduction

High-dim. data → hidden low-dim. geometric structures

. Physical constraints;

. Implicit parametrisations.

Figure 1: UMAP representation of Coil-20 (McInnes et al., 2018).
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Introduction

We observe n points X1, . . . ,Xn lying on an unknown submanifold.

Figure 2: A point cloud and some interpolating shapes.
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Introduction

All these shapes have a very different resolution:

Figure 3: The behavior of the interpolating shapes at some scale r > 0.
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Introduction

This resolution is called the reach of the support.

. It appears as a parameter in most statistical procedures;

. It drives the performance of estimators;

. Inference is mostly impossible without constraining it;

Goal: estimate the reach of the support of the underlying

probability distribution.
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Introduction

What has been done so far:

• Reach estimation on C 3-model (Aamari et al., 2019);

• Optimal reach estimation up to the regularity C 4 (B., Harvey,

Hoffmann & Shankar, 2022);

• Universally consistent estimation of the reach (Cholaquidis et

al., 2021).

What we will do today:

• Optimal reach estimation on C k model;

• Optimal estimation of other scales along the way;

• Optimal metric learning.
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The reach: definition and model

1. The reach: definition and model

2. Estimation strategies for the reach

3. Optimal metric learning

4. Optimal reach estimation

5. Conclusion
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Definition of the reach

The reach (Federer, 1959) of K ⊂RD is defined as

rch(K ) := sup
{
r Ê 0 | ∀x ∈ K r , ∃!y ∈ K , d(x,K ) = ‖x−y‖} .

Figure 4: The rolling ball condition.
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Definition of the reach

A reach constraint tend to discard support that are either too

curved or too close to self-intersect.

Figure 5: Quasi-interpolating shape for the point cloud that

does not meet a reach constraint.
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Definition of the reach

A reach constraint tend to discard support that are either too

curved or too close to self-intersect.

Figure 5: Quasi-interpolating shape for the point cloud that

meets a reach constraint.
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Statistical model

Let Σk be the set of probability measures P on RD such that

1. P is supported on M , a d-dimensional, compact and C k

submanifold of RD;

2. The reach of M is lower-bounded by τ> 0;

3. The density of P wrt to H d
M is bounded from above and

below.
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A key result

Hausdorff distance between two subsets A,B ⊂RD:

dH(A,B) = sup
a∈A

d(a,B)∨ sup
b∈B

d(b,A).

Figure 6: The Hausdorff distance between A and B.
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A key result

Hausdorff distance between two subsets A,B ⊂RD:

dH(A,B) = sup
a∈A

d(a,B)∨ sup
b∈B

d(b,A).

Theorem Aamari & Levrard (2019)

There exists an estimator M̂ such that such that for any k Ê 3,

sup
P∈Σk

EP⊗n [dH(M̂ ,M))]4 n−k/d,

and M̂ is obtained through local polynomial patching.

As a comparison:

• M̂ = {X1, . . . ,Xn} has a risk of n−1/d;

• M̂ = good triangulation has a risk of n−2/d. 11



A key result

Remark: The reach is Hausdorff unstable.

Figure 6: A small Hausdorff perturbation, a significant change in reach.

. In particular, rch(M̂) ≈ 0 most of the time.

. Naive plug-in won’t work.
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Estimation strategies for the reach

1. The reach: definition and model

2. Estimation strategies for the reach

3. Optimal metric learning

4. Optimal reach estimation

5. Conclusion
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Reach decomposition

General idea: Leverage the decomposition result of

Theorem Aamari et al. (2019)

For any submanifold M , there holds

rch(M) := R`(M)∧wfs(M).

The local reach R`(M) is the minimal radius of curvature of M

R`(M) := inf
x∈M

‖ IIx ‖−1
op .

The weak feature size wfs(M) is an important topological scale

introduced by (Chazal and Lieutier, 2004).

wfs(M) := inf
{
r Ê 0 | ∃x ∈ Mr \ M , x ∈ Conv

(
prM (x)

)}
.
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Reach decomposition

Figure 7: The weak feature size and local reach of a submanifold.
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Curvature estimation

First step: Estimate R`(M).

. Compute the curvatures of a locally smooth support estimator.

Figure 8: Estimating the local reach.
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Curvature estimation

When applied to a polynomial patching of order k (Aamari and

Levrard, 2019), the resulting estimator satisfies:

Theorem Aamari, B. & Levrard (2022)

For any k Ê 3,

sup
P∈Σk

EP⊗n
[|R̂`−R`(M)|]4 n− k−2

d ,

and this rate is minimax-optimal.
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Finding a global scale

Next step: estimate wfs(M).

Theorem Aamari, B. & Levrard (2022)

For any k Ê 3,

inf
w̃

sup
P∈Σk

EP⊗n [|w̃−wfs(M)|] Ê r∗ > 0 ∀n Ê 1.

Idea: For any other interpolating scale rch(M) É θ(M) É wfs(M),

rch(M) = R`(M)∧θ(M).

. Example of such scale: the µ-reach (Chazal et al., 2006).
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Finding a global scale

Figure 9: Two half-lines meeting with an angle α ∈ (0,π].
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Finding a global scale

Figure 10: The instability of the µ-reach in a simple example.
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Finding a global scale

Idea: Leverage the result

Theorem Boissonnat, Lieutier & Wintraecken (2019)

For any submanifold M ,

rch(M) = sup
{
r | ∀x,y ∈ M , ‖x−y‖ É 2r ⇒ dM (x,y) É dS (r)(x,y)

}
where dS (r)(x,y) := 2r arcsin

( ‖x−y‖
2r

)
is the spherical distance.

. Estimating the reach of M boils down to comparing the

intrinsic distance on M with the spherical distances.
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Spherical distortion radius

We define for any ∆> 0,

sdr∆(M) := sup
{
r | ∀x,y ∈ M , ∆É‖x−y‖ É 2r ⇒ dM (x,y) É dS (r)(x,y)

}
.

Theorem Aamari, B. & Levrard (2022)

There holds, for any 0 É∆É
√

2(D+1)
D wfs(M),

rch(M) É sdr∆(M) É wfs(M).

. To estimate sdr∆(M), one can estimate M and dM .

. Need to ensure stability of sdr with respect to (M ,dM ).
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Spherical distortion radius

Figure 11: The stability of the sdr in a simple example.
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Spherical distortion radius

Figure 11: The stability of the sdr in a simple example.
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Optimal metric learning

1. The reach: definition and model

2. Estimation strategies for the reach

3. Optimal metric learning

4. Optimal reach estimation

5. Conclusion
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Metric learning

Isomap (Bernstein et al., 2000):

1. From the point cloud, build a neighborhood graph Ĝ;

2. Estimate d̂(x,y) := dĜ(x,y).

For a wisely chosen connectivity radius, one can get

(1−εn)d̂(x,y) É dM (x,y) É (1+εn)d̂(x,y),

with high probability and with εn ≈ n−2/3d, as shown in (Aaron &

Bodart, 2018).

. There is room for improvement.
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Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

. The accuracy becomes εn ≈ n−1/d: that’s better.
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Metric learning

More generally, building upon polynomial patches instead of

metric graphs, one can get:

Theorem Aamari, B. & Levrard (2022)

There exists an estimator d̂ such that, for any P ∈ Σk, uni-

formly for any x,y ∈ M where M = suppP, there holds

(1−εn)d̂(x,y) É dM (x,y) É (1+εn)d̂(x,y)

with high probability and with εn ≈ n−k/d.

Furthermore, this accuracy is optimal.
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Optimal reach estimation

1. The reach: definition and model

2. Estimation strategies for the reach

3. Optimal metric learning

4. Optimal reach estimation

5. Conclusion
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Estimating the distortion radius

Idea: plug-in estimation of the sdr.

ŝdr := sup
{
r | ∀x,y ∈ M̂ , ∆É ‖x−y‖ É 2r ⇒ d̂(x,y) É dS (r)(x,y)

}
.

. The sdr needs to be stable with respect to small perturbations

of (M ,dM ).

Two embedded spaces (K ,d) and (K ′,d′) are (ε,ν)-close if

1. dH(K ,K ′) É ε;

2. ∀x,y ∈ K that are ∆-apart

(1−ν)d′(x′,y′) É d(x,y) É (1+ν)d′(x′,y′)

for all x′,y′ among the nearest neighbors of x and y in K .
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Estimating the distortion radius

For any reasonable embedded metric space (K ,d) (e.g. (M ,dM )

where M is a submanifold):

Proposition

For any other space (K ′,d′) that is (ε,ν)-close to (K ,d), there

holds

|sdr∆(K ,d)− sdr∆(K ′,d′)|4 ε∨∆ν
∆4 .

. We show that if dH(M ,M̂) É ε and d̂ is the estimator described

before, then (M̂ , d̂) is (ε,ε/∆)-close to (M ,dM ).
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Optimal reach estimation

Using local polynomial patching (Aamari and Levrard, 2019) yields:

Theorem Aamari, B. & Levrard (2022)

For any k Ê 3, there exists an estimator ŝdr such that

sup
P∈Σk

EP⊗n

[
|ŝdr− sdr∆(M)|

]
4∆−4n− k

d ,

and this rate is minimax-optimal.

. Faster rate than for the local reach !

. Diverging risk as ∆→ 0 (which is expected since

sdr∆(M) → rch(M) then).
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Optimal reach estimation

Letting Σαk be the submodel on which

R`(M)−wfs(M) Êα,

there holds for the estimator

r̂ch = R̂`∧ ŝdr,

Theorem Aamari, B. & Levrard (2022)

For any k Ê 3, adaptively on α ∈R,

∀α> 0, sup
P∈Σαk

EP⊗n

[
|r̂ch− rch(M)|

]
4 n− k

d ,

∀αÉ 0, sup
P∈Σαk

EP⊗n

[
|r̂ch− rch(M)|

]
4 n− k−2

d ,

and these rates are minimax-optimal.
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Conclusion
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Summary of the strategy

Figure 13: The optimal reach estimation pipeline
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Conclusion and prospects

To sum up:

. Optimal estimation rates for the reach;

. Estimation of other geometric quantities along the way;

. Optimal estimation of geodesic lengths.

Possible developments:

. Computationally efficient estimation procedures;

. Geometric estimations under additive noise.
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Thank you for your attention!

. Aamari, B. & Levrard (2022). Optimal Reach Estimation and

Metric Learning. arXiv preprint arXiv:2207.06074.
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