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Introduction

High-dim. data — hidden low-dim. geometric structures

> Physical constraints;

> Implicit parametrisations.
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Figure 1: Cyclooctane conformations (Martin et al., 2010).
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High-dim. data — hidden low-dim. geometric structures

> Physical constraints;

> Implicit parametrisations.

Figure 1: Data from the Coil-20 dataset (Nene et al., 1996).
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Figure 1: UMAP representation of Coil-20 (McInnes et al., 2018).



Introduction

We observe 7 points Xj, ..., X, lying on an unknown submanifold.

Figure 2: A point cloud
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All these shapes have a very different resolution:

Figure 3: The behavior of the interpolating shapes at some scale r > 0.
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Introduction

This resolution is called the reach of the support.

> It appears as a parameter in most statistical procedures;
> It drives the performance of estimators;

> Inference is mostly impossible without constraining it;

Goal: estimate the reach of the support of the underlying
probability distribution.



Introduction

What has been done so far:

e Reach estimation on ¢3-model (Aamari et al., 2019);

* Optimal reach estimation up to the regularity ¢* (B., Harvey,
Hoffmann & Shankar, 2022);

* Universally consistent estimation of the reach (Cholaquidis et
al., 2021).
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What has been done so far:

e Reach estimation on ¢3-model (Aamari et al., 2019);

* Optimal reach estimation up to the regularity ¢* (B., Harvey,
Hoffmann & Shankar, 2022);

* Universally consistent estimation of the reach (Cholaquidis et
al., 2021).
What we will do today:

e Optimal reach estimation on € k model;
e Optimal estimation of other scales along the way;

e Optimal metric learning.
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1. The reach: definition and model



Definition of the reach

The reach (Federer, 1959) of K = RP is defined as

rch(K) :=sup{r=0|Vxe K", 3yeK, dx,K)=x-yl}.

Figure 4: The rolling ball condition.



Definition of the reach

A reach constraint tend to discard support that are either too
curved or too close to self-intersect.
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Figure 5: Quasi-interpolating shape for the point cloud that
does not meet a reach constraint.
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Figure 5: Quasi-interpolating shape for the point cloud that
does not meet a reach constraint.



Definition of the reach

A reach constraint tend to discard support that are either too
curved or too close to self-intersect.
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Figure 5: Quasi-interpolating shape for the point cloud that
meets a reach constraint.



Statistical model

Let X be the set of probability measures P on R such that
1. Pissupported on M, a d-dimensional, compact and €*
submanifold of R?;
2. The reach of M is lower-bounded by 7 > 0;

3. The density of P wrt to %%y, is bounded from above and

below.
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A key result

Hausdorff distance between two subsets A, Bc RP:

du (A B) =supd(a, B) vsupd(b,A).
acA beB

du(A, B)

Figure 6: The Hausdorff distance between A and B.
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A key result

Hausdorff distance between two subsets A, Bc RP:

du (A B) =supd(a, B) vsupd(b,A).
acA beB

There exists an estimator M such that such that for any k= 3,

sup Epse[dg(M, M))] < n= ¥4,
PeXy

and M is obtained through local polynomial patching.

As a comparison:

° H: {Xi,..., X} has arisk of n‘”d;

M = good triangulation has a risk of n=2/%,
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A key result

Remark: The reach is Hausdorff unstable.
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Figure 6: A small Hausdorff perturbation, a significant change in reach.
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A key result

Remark: The reach is Hausdorff unstable.

Figure 6: A small Hausdorff perturbation, a significant change in reach.

> In particular, rch(M) =~ 0 most of the time.

> Naive plug-in won't work.
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Estimation strategies for the reach

2. Estimation strategies for the reach

13



Reach decomposition

General idea: Leverage the decomposition result of

For any submanifold M, there holds

rch(M) := Ry (M) A wis(M).

The local reach Ry(M) is the minimal radius of curvature of M
s -1
R[ (M) o— x}g]& ” Hx ”0p~
The weak feature size wfs(M) is an important topological scale
introduced by (Chazal and Lieutier, 2004).

wis(M) := inf{r=0|3xe M"\ M, x€ Conv (pr(x)}.
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Reach decomposition
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Figure 7: The weak feature size and local reach of a submanifold.
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Curvature estimation

First step: Estimate R, (M).

> Compute the curvatures of a locally smooth support estimator.
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Figure 8: Estimating the local reach.
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Curvature estimation

First step: Estimate R, (M).

> Compute the curvatures of a locally smooth support estimator.
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Figure 8: Estimating the local reach.
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Curvature estimation

When applied to a polynomial patching of order k (Aamari and
Levrard, 2019), the resulting estimator satisfies:

Forany k= 3,

. _k=2
sup Epen [|[Ry—Re(M)|] s n” @,
PeXy

and this rate is minimax-optimal.
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Finding a global scale

Next step: estimate wfs(M).

Forany k= 3,

inf sup Eper [|[Ww—wis(M)|] =1, >0
W Pex;

Vn=1.
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Finding a global scale

Next step: estimate wfs(M).

Forany k= 3,

inf sup Eper [|[Ww—wis(M)|] =1, >0 Vn=1.
W Pex;

Idea: For any other interpolating scale rch(M) < (M) < wfs(M),
rch(M) = Ry (M) AO(M).

> Example of such scale: the p-reach (Chazal et al., 2006).
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Finding a global scale

Figure 9: Two half-lines meeting with an angle a € (0, 7].
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Finding a global scale
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Figure 10: The instability of the p-reach in a simple example.
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Finding a global scale

Idea: Leverage the result

For any submanifold M,
rch(M) =sup{r|Vx,ye M, |lx-yl <2r = du(xy) <dsrnxp}

where d o (x,y) := 2rarcsin ( L o Ll ) is the spherical distance.

> Estimating the reach of M boils down to comparing the
intrinsic distance on M with the spherical distances.
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Spherical distortion radius

We define for any A > 0,

sdra(M) :=sup{r|Vx,ye M, A<|x-yll <2r = dm(xy) <dzp(x))}.

There holds, forany 0 < A < &Dﬂ) wis(M),

rch(M) < sdra (M) < wis(M).

> To estimate sdra (M), one can estimate M and d,.

> Need to ensure stability of sdr with respect to (M, d ).
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Spherical distortion radius

Figure 11: The stability of the sdr in a simple example.
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Spherical distortion radius

sdra (Ka)
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Figure 11: The stability of the sdr in a simple example.
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Optimal metric learning

3. Optimal metric learning
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Metric learning

Isomap (Bernstein et al., 2000):

1. From the point cloud, build a neighborhood graph G;
2. Estimate d(x, ) =dgxy).
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Metric learning

Isomap (Bernstein et al., 2000):

1. From the point cloud, build a neighborhood graph G;
2. Estimate d(x, ) =dgxy).

For a wisely chosen connectivity radius, one can get

1- En)a(x,y) <dpm () <1+ gn)d(x, ),

with high probability and with €,, = n=%/3¢

Bodart, 2018).

, as shown in (Aaron &

> There is room for improvement.
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Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

26



Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

26



Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

26



Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

26



Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

26



Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).
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Metric learning

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

> The accuracy becomes ¢, ~ n~!/%: that’s better.
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Metric learning

More generally, building upon polynomial patches instead of
metric graphs, one can get:

There exists an estimator d such that, for any P € 3, uni-
formly for any x, y€ M where M = supp P, there holds

1 —e)dx,y) <dy(xy) <1 +e)dx,y)

with high probability and with &,, = n=*/9.

Furthermore, this accuracy is optimal.
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Optimal reach estimation

4. Optimal reach estimation
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Estimating the distortion radius

Idea: plug-in estimation of the sdr.

sdr == sup{r| Vx,ye M, A<|x—yll<2r = d(xy) < ds ()}

> The sdr needs to be stable with respect to small perturbations
of (M,dy).

29



Estimating the distortion radius

Idea: plug-in estimation of the sdr.

sdr == sup{r| Vx,ye M, A<|x—yll<2r = d(xy) < ds ()}

> The sdr needs to be stable with respect to small perturbations
of (M 5 d M)

Two embedded spaces (K, d) and (K’,d’) are (&, v)-close if

1. dy(K,K') < ¢
2. VYx,ye K that are A-apart

1-vd',y) <dxy <1+wd'(,y)
for all x’, Y’ among the nearest neighbors of x and y in K.
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Estimating the distortion radius

For any reasonable embedded metric space (K, d) (e.g. (M,d)
where M is a submanifold):

For any other space (K’,d’) that is (g, v)-close to (K,d), there
holds

EV AV
A4

|sdra (K, d) —sdra(K',d)| <

> We show that if diy (M, M) < € and d is the estimator described
before, then (M, d) is (e,e/A)-close to (M, dpy).
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Optimal reach estimation

Using local polynomial patching (Aamari and Levrard, 2019) yields:

For any k = 3, there exists an estimator sdr such that

sup Epsn [ls/d\r— sdrA(M)I] < A'4n'§,
PeZy

and this rate is minimax-optimal.

> Faster rate than for the local reach !

> Diverging risk as A — 0 (which is expected since
sdra (M) — rch(M) then).
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Optimal reach estimation

Letting £} be the submodel on which
Ry (M) —wfs(M) = «a,

there holds for the estimator

rch = 1/’?; A sdr,

For any k = 3, adaptively on a € R,

Va >0, suplEpsn [|ﬁ—rch(M)|] < n_lﬁc,
Pexy

Va<0, supEpen [Iﬁ—rch(M)I] <n'7T,
PEZZ

and these rates are minimax-optimal.
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Conclusion

5. Conclusion

33



Summary of the strategy

Figure 13: The
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Summary of the strategy

Support Distance
M )
Curvature Distortion
AR
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Figure 13: The optimal reach estimation pipeline
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Conclusion and prospects

To sum up:

> Optimal estimation rates for the reach;
> Estimation of other geometric quantities along the way;

> Optimal estimation of geodesic lengths.
Possible developments:

> Computationally efficient estimation procedures;

> Geometric estimations under additive noise.
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Thank you for your attention!

> Aamari, B. & Levrard (2022). Optimal Reach Estimation and
Metric Learning. arXiv preprint arXiv:2207.06074.
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