Understanding the geometry of high-dimensional data through the reach

GESDA 2022 — October 4, 2022

Clément Berenfeld (CEREMADE)

Joint work with Eddie Aamari and Clément Levrard (LPSM)

High-dim. data → hidden low-dim. geometric structures

- ▶ Physical constraints;
- ▶ Implicit parametrisations.

Figure 1: Cyclooctane conformations (Martin et al., 2010).

High-dim. data → hidden low-dim. geometric structures

- ▶ Physical constraints;
- ▶ Implicit parametrisations.

Figure 1: Data from the Coil-20 dataset (Nene et al., 1996).

High-dim. data → hidden low-dim. geometric structures

- ▶ Physical constraints;
- ▶ Implicit parametrisations.

Figure 1: UMAP representation of Coil-20 (McInnes et al., 2018).

Figure 2: A point cloud and some interpolating shapes.

Figure 2: A point cloud and some interpolating shapes.

Figure 2: A point cloud and some interpolating shapes.

Figure 2: A point cloud and some interpolating shapes.

Figure 2: A point cloud and some interpolating shapes.

Figure 3: The behavior of the interpolating shapes at some scale r > 0.

Figure 3: The behavior of the interpolating shapes at some scale r > 0.

Figure 3: The behavior of the interpolating shapes at some scale r > 0.

Figure 3: The behavior of the interpolating shapes at some scale r > 0.

This resolution is called the *reach* of the support.

- ▶ It appears as a parameter in most statistical procedures;
- ▶ It drives the performance of estimators;
- ▶ Inference is mostly impossible without constraining it;

Goal: estimate the reach of the support of the underlying probability distribution.

What has been done so far:

- Reach estimation on \mathscr{C}^3 -model (Aamari et al., 2019);
- Optimal reach estimation up to the regularity \mathscr{C}^4 (B., Harvey, Hoffmann & Shankar, 2022);
- Universally consistent estimation of the reach (Cholaquidis et al., 2021).

What we will do today:

- Optimal reach estimation on \mathscr{C}^k model;
- Optimal estimation of other scales along the way;
- Optimal metric learning.

What has been done so far:

- Reach estimation on \mathscr{C}^3 -model (Aamari et al., 2019);
- Optimal reach estimation up to the regularity \mathscr{C}^4 (B., Harvey, Hoffmann & Shankar, 2022);
- Universally consistent estimation of the reach (Cholaquidis et al., 2021).

What we will do today:

- Optimal reach estimation on \mathscr{C}^k model;
- Optimal estimation of other scales along the way;
- Optimal metric learning.

The reach: definition and model

- 1. The reach: definition and model
- 2. Estimation strategies for the reach
- 3. Optimal metric learning
- 4. Optimal reach estimation
- 5. Conclusion

The reach (Federer, 1959) of $K \subset \mathbb{R}^D$ is defined as

$$rch(K) := \sup \{r \ge 0 \mid \forall x \in K^r, \exists ! y \in K, d(x, K) = ||x - y|| \}.$$

Figure 4: The rolling ball condition.

A reach constraint tend to discard support that are either too curved or too close to self-intersect.

Figure 5: Quasi-interpolating shape for the point cloud that **does not meet** a reach constraint.

A reach constraint tend to discard support that are either too curved or too close to self-intersect.

Figure 5: Quasi-interpolating shape for the point cloud that **does not meet** a reach constraint.

A reach constraint tend to discard support that are either too curved or too close to self-intersect.

Figure 5: Quasi-interpolating shape for the point cloud that **meets** a reach constraint.

Statistical model

Let Σ_k be the set of probability measures P on \mathbb{R}^D such that

- 1. *P* is supported on *M*, a *d*-dimensional, compact and \mathscr{C}^k submanifold of \mathbb{R}^D ;
- 2. The reach of *M* is lower-bounded by $\tau > 0$;
- 3. The density of P wrt to $\mathcal{H}^d|_M$ is bounded from above and below.

Hausdorff distance between two subsets $A, B \subset \mathbb{R}^D$:

$$d_{\mathrm{H}}(A,B) = \sup_{a \in A} d(a,B) \vee \sup_{b \in B} d(b,A).$$

Figure 6: The Hausdorff distance between *A* and *B*.

Hausdorff distance between two subsets $A, B \subset \mathbb{R}^D$:

$$d_{\mathrm{H}}(A,B) = \sup_{a \in A} d(a,B) \vee \sup_{b \in B} d(b,A).$$

Theorem Aamari & Levrard (2019)

There exists an estimator \widehat{M} such that such that for any $k \ge 3$,

$$\sup_{P\in\Sigma_k}\mathbb{E}_{P^{\otimes n}}[\mathrm{d}_{\mathrm{H}}(\widehat{M},M))] \preccurlyeq n^{-k/d},$$

and \widehat{M} is obtained through local polynomial patching.

As a comparison:

- $\widehat{M} = \{X_1, \dots, X_n\}$ has a risk of $n^{-1/d}$;
- \widehat{M} = good triangulation has a risk of $n^{-2/d}$.

Remark: The reach is Hausdorff unstable.

Figure 6: A small Hausdorff perturbation, a significant change in reach.

- ▶ In particular, $rch(\widehat{M}) \approx 0$ most of the time
- ▶ Naive plug-in won't work.

Remark: The reach is Hausdorff **unstable**.

Figure 6: A small Hausdorff perturbation, a significant change in reach.

- ▶ In particular, $rch(\widehat{M}) \approx 0$ most of the time.
- ▶ Naive plug-in won't work.

Remark: The reach is Hausdorff **unstable**.

Figure 6: A small Hausdorff perturbation, a significant change in reach.

- ▶ In particular, $rch(\widehat{M}) \approx 0$ most of the time.
- ▶ Naive plug-in won't work.

Estimation strategies for the reach

- 1. The reach: definition and mode
- 2. Estimation strategies for the reach
- 3. Optimal metric learning
- 4. Optimal reach estimation
- 5. Conclusion

Reach decomposition

General idea: Leverage the decomposition result of

Theorem Aamari et al. (2019)

For any submanifold M, there holds

$$\operatorname{rch}(M) := R_{\ell}(M) \wedge \operatorname{wfs}(M).$$

The **local reach** $R_{\ell}(M)$ is the minimal radius of curvature of M

$$R_{\ell}(M) \coloneqq \inf_{x \in M} \| \operatorname{II}_{x} \|_{\operatorname{op}}^{-1}.$$

The **weak feature size** wfs(M) is an important topological scale introduced by (Chazal and Lieutier, 2004).

wfs(
$$M$$
) := inf $\{r \ge 0 \mid \exists x \in M^r \setminus M, x \in Conv(pr_M(x))\}$.

Reach decomposition

Figure 7: The weak feature size and local reach of a submanifold.

First step: Estimate $R_{\ell}(M)$.

Figure 8: Estimating the local reach.

First step: Estimate $R_{\ell}(M)$.

Figure 8: Estimating the local reach.

First step: Estimate $R_{\ell}(M)$.

Figure 8: Estimating the local reach.

First step: Estimate $R_{\ell}(M)$.

Figure 8: Estimating the local reach.

When applied to a polynomial patching of order k (Aamari and Levrard, 2019), the resulting estimator satisfies:

Theorem Aamari, B. & Levrard (2022)

For any $k \ge 3$,

$$\sup_{P\in\Sigma_k}\mathbb{E}_{P^{\otimes n}}\left[|\widehat{R_\ell}-R_\ell(M)|\right] \preccurlyeq n^{-\frac{k-2}{d}},$$

and this rate is minimax-optimal.

Finding a global scale

Next step: estimate wfs(M).

Theorem Aamari, B. & Levrard (2022)

For any $k \ge 3$,

$$\inf_{\widetilde{w}} \sup_{P \in \Sigma_k} \mathbb{E}_{P^{\otimes n}} \left[|\widetilde{w} - \mathsf{wfs}(M)| \right] \ge r_* > 0 \qquad \forall n \ge 1.$$

Idea: For any other interpolating scale $rch(M) \le \theta(M) \le wfs(M)$,

$$\operatorname{rch}(M) = R_{\ell}(M) \wedge \theta(M).$$

 \triangleright Example of such scale: the μ -reach (Chazal et al., 2006).

Next step: estimate wfs(M).

Theorem Aamari, B. & Levrard (2022)

For any $k \ge 3$,

$$\inf_{\widetilde{w}} \sup_{P \in \Sigma_k} \mathbb{E}_{P^{\otimes n}} \left[|\widetilde{w} - \mathsf{wfs}(M)| \right] \ge r_* > 0 \qquad \forall \, n \ge 1.$$

Idea: For any other interpolating scale $rch(M) \le \theta(M) \le wfs(M)$,

$$\operatorname{rch}(M) = R_{\ell}(M) \wedge \theta(M).$$

 \triangleright Example of such scale: the μ -reach (Chazal et al., 2006).

Figure 9: Two half-lines meeting with an angle $\alpha \in (0, \pi]$.

Figure 10: The instability of the μ -reach in a simple example.

Idea: Leverage the result

Theorem Boissonnat, Lieutier & Wintraecken (2019)

For any submanifold M,

$$\operatorname{rch}(M) = \sup \left\{ r \mid \forall x, y \in M, \ \|x - y\| \leq 2r \ \Rightarrow \ \operatorname{d}_M(x, y) \leq \operatorname{d}_{\mathcal{S}(r)}(x, y) \right\}$$

where $d_{\mathscr{S}(r)}(x, y) \coloneqq 2r \arcsin\left(\frac{\|x-y\|}{2r}\right)$ is the spherical distance.

► Estimating the reach of *M* boils down to comparing the intrinsic distance on *M* with the spherical distances.

Spherical distortion radius

We define for any $\Delta > 0$,

$$\operatorname{sdr}_{\Delta}(M) := \sup \left\{ r \mid \forall x, y \in M, \ \Delta \leq \|x - y\| \leq 2r \ \Rightarrow \ \operatorname{d}_{M}(x, y) \leq \operatorname{d}_{\mathscr{S}(r)}(x, y) \right\}.$$

Theorem Aamari, B. & Levrard (2022)

There holds, for any $0 \le \Delta \le \sqrt{\frac{2(D+1)}{D}}$ wfs(M),

$$rch(M) \leq sdr_{\Delta}(M) \leq wfs(M)$$
.

- ▶ To estimate $\operatorname{sdr}_{\Delta}(M)$, one can estimate M and d_{M} .
- \triangleright Need to ensure stability of sdr with respect to (M, d_M) .

Spherical distortion radius

Figure 11: The stability of the sdr in a simple example.

Spherical distortion radius

 $\textbf{Figure 11:} \ \textbf{The stability of the sdr in a simple example.}$

Optimal metric learning

- 1. The reach: definition and mode
- 2. Estimation strategies for the reach
- 3. Optimal metric learning
- 4. Optimal reach estimation
- 5. Conclusion

Isomap (Bernstein et al., 2000):

- 1. From the point cloud, build a neighborhood graph \widehat{G} ;
- 2. Estimate $\widehat{\mathbf{d}}(x, y) := \mathbf{d}_{\widehat{G}}(x, y)$.

For a wisely chosen connectivity radius, one can get

$$(1 - \varepsilon_n)\widehat{\mathbf{d}}(x, y) \le \mathbf{d}_M(x, y) \le (1 + \varepsilon_n)\widehat{\mathbf{d}}(x, y),$$

with high probability and with $\varepsilon_n \approx n^{-2/3d}$, as shown in (Aaron & Bodart, 2018).

▶ There is room for improvement

Isomap (Bernstein et al., 2000):

- 1. From the point cloud, build a neighborhood graph \hat{G} ;
- 2. Estimate $\widehat{\mathbf{d}}(x, y) := \mathbf{d}_{\widehat{G}}(x, y)$.

For a wisely chosen connectivity radius, one can get

$$(1-\varepsilon_n)\widehat{\mathbf{d}}(x,y) \leq \mathbf{d}_M(x,y) \leq (1+\varepsilon_n)\widehat{\mathbf{d}}(x,y),$$

with high probability and with $\varepsilon_n \approx n^{-2/3d}$, as shown in (Aaron & Bodart, 2018).

▶ There is room for improvement.

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

► The accuracy becomes $\varepsilon_n \approx n^{-1/d}$: that's better

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

► The accuracy becomes $\varepsilon_n \approx n^{-1/d}$: that's better

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

▶ The accuracy becomes $\varepsilon_n \approx n^{-1/d}$: that's better.

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

► The accuracy becomes $\varepsilon_n \approx n^{-1/d}$: that's better

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

 \triangleright The accuracy becomes $\varepsilon_n \approx n^{-1/d}$: that's better

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

► The accuracy becomes $\varepsilon_n \approx n^{-1/d}$: that's better

Figure 12: Enhancing the Isomap algorithm (Aamari, B. & Levard, 2022).

► The accuracy becomes $\varepsilon_n \approx n^{-1/d}$: that's better.

More generally, building upon polynomial patches instead of metric graphs, one can get:

Theorem Aamari, B. & Levrard (2022)

There exists an estimator $\hat{\mathbf{d}}$ such that, for any $P \in \Sigma_k$, uniformly for any $x, y \in M$ where $M = \operatorname{supp} P$, there holds

$$(1-\varepsilon_n)\widehat{\mathbf{d}}(x,y) \leq \mathbf{d}_M(x,y) \leq (1+\varepsilon_n)\widehat{\mathbf{d}}(x,y)$$

with high probability and with $\varepsilon_n \approx n^{-k/d}$.

Furthermore, this accuracy is optimal.

Optimal reach estimation

- 1. The reach: definition and mode
- 2. Estimation strategies for the reach
- Optimal metric learning
- 4. Optimal reach estimation
- 5. Conclusion

Estimating the distortion radius

Idea: plug-in estimation of the sdr.

$$\widehat{\operatorname{sdr}} := \sup \left\{ r \mid \forall x, y \in \widehat{M}, \ \Delta \leq \|x - y\| \leq 2r \Rightarrow \widehat{\operatorname{d}}(x, y) \leq \operatorname{d}_{\mathscr{S}(r)}(x, y) \right\}.$$

▶ The sdr needs to be stable with respect to small perturbations of (M, d_M) .

Two embedded spaces (K, d) and (K', d') are (ε, v) -close if

- 1. $d_{\mathrm{H}}(K, K') \leq \varepsilon$;
- 2. $\forall x, y \in K$ that are Δ -apart

$$(1-v)d'(x',y') \le d(x,y) \le (1+v)d'(x',y')$$

for all x', y' among the nearest neighbors of x and y in K

Estimating the distortion radius

Idea: plug-in estimation of the sdr.

$$\widehat{\operatorname{sdr}} := \sup \left\{ r \mid \forall x, y \in \widehat{M}, \ \Delta \leq \|x - y\| \leq 2r \Rightarrow \widehat{\operatorname{d}}(x, y) \leq \operatorname{d}_{\mathcal{S}(r)}(x, y) \right\}.$$

▶ The sdr needs to be stable with respect to small perturbations of (M, d_M) .

Two embedded spaces (K, d) and (K', d') are (ε, v) -close if

- 1. $d_H(K, K') \leq \varepsilon$;
- 2. $\forall x, y \in K$ that are Δ -apart

$$(1-\nu){\rm d}'(x',y') \le {\rm d}(x,y) \le (1+\nu){\rm d}'(x',y')$$

for all x', y' among the nearest neighbors of x and y in K.

Estimating the distortion radius

For any reasonable embedded metric space (K, d) (e.g. (M, d_M) where M is a submanifold):

Proposition

For any other space (K', \mathbf{d}') that is (ε, v) -close to (K, \mathbf{d}) , there holds

$$|\operatorname{sdr}_{\Delta}(K, d) - \operatorname{sdr}_{\Delta}(K', d')| \leq \frac{\varepsilon \vee \Delta \nu}{\Delta^4}.$$

▶ We show that if $d_H(M, \widehat{M}) \le \varepsilon$ and \widehat{d} is the estimator described before, then $(\widehat{M}, \widehat{d})$ is $(\varepsilon, \varepsilon/\Delta)$ -close to (M, d_M) .

Optimal reach estimation

Using local polynomial patching (Aamari and Levrard, 2019) yields:

Theorem Aamari, B. & Levrard (2022)

For any $k \ge 3$, there exists an estimator \widehat{sdr} such that

$$\sup_{P\in\Sigma_k}\mathbb{E}_{p^{\otimes n}}\left[|\widehat{\operatorname{sdr}}-\operatorname{sdr}_\Delta(M)|\right] \preceq \Delta^{-4}n^{-\frac{k}{d}},$$

and this rate is minimax-optimal.

- ▶ Faster rate than for the local reach!
- ▶ Diverging risk as $\Delta \to 0$ (which is expected since $\operatorname{sdr}_{\Delta}(M) \to \operatorname{rch}(M)$ then).

Optimal reach estimation

Letting Σ_k^{α} be the submodel on which

$$R_{\ell}(M) - \text{wfs}(M) \ge \alpha$$
,

there holds for the estimator

$$\widehat{\operatorname{rch}} = \widehat{R_\ell} \wedge \widehat{\operatorname{sdr}},$$

Theorem Aamari, B. & Levrard (2022)

For any $k \ge 3$, adaptively on $\alpha \in \mathbb{R}$,

$$\forall \alpha > 0, \quad \sup_{P \in \Sigma_k^{\alpha}} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{\operatorname{rch}} - \operatorname{rch}(M)| \right] \leq n^{-\frac{k}{d}},$$
$$\forall \alpha \leq 0, \quad \sup_{P \in \Sigma_k^{\alpha}} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{\operatorname{rch}} - \operatorname{rch}(M)| \right] \leq n^{-\frac{k-2}{d}},$$

and these rates are minimax-optimal.

Conclusion

- 1. The reach: definition and mode
- 2. Estimation strategies for the reach
- Optimal metric learning
- 4. Optimal reach estimation
- 5. Conclusion

Figure 13: The optimal reach estimation pipeline

Figure 13: The optimal reach estimation pipeline

Figure 13: The optimal reach estimation pipeline

Figure 13: The optimal reach estimation pipeline

Figure 13: The **optimal** reach estimation pipeline

Conclusion and prospects

To sum up:

- ▶ Optimal estimation rates for the reach;
- ▶ Estimation of other geometric quantities along the way;
- ▶ Optimal estimation of geodesic lengths.

Possible developments:

- Computationally efficient estimation procedures;
- ▶ Geometric estimations under additive noise.

Thank you for your attention!

► Aamari, B. & Levrard (2022). Optimal Reach Estimation and Metric Learning. *arXiv preprint arXiv:2207.06074*.