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Large models

GP T3, 2020 

175 billion parameters

From Canziani, et al., 2017. 

Switch Transformer, 2021:

1.6 trillion parameters



This talk

 A taxonomy and of infinitely wide
and deep interpolating networks.

 Equivalence with singular kernel
machines for classification.

 Bayes optimality for classification
but not regression.



The problem of machine learning

Input: data 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1. . 𝑛 , 𝑥𝑖 ∈ ℝ𝑑, 𝑦𝑖 ∈ −1,1 (classification)

Goal: construct 𝑓∗: ℝ𝑑 → ℝ, that best “generalizes” to new 
data.

Under the standard statistical assumptions:

𝑓∗ = 𝑎𝑟𝑔min
𝑓

𝐸𝑢𝑛𝑠𝑒𝑒𝑛 𝑑𝑎𝑡𝑎 𝐿 𝑓 𝑥 , 𝑦



Empirical Risk Minimization

Most ML algorithms are based on minimizing empirical risk.

𝑓𝐸𝑅𝑀
∗ = 𝑎𝑟𝑔min

𝑓∈ℋ

1

𝑛


𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
𝐿 𝑓(𝑥𝑖), 𝑦𝑖

Tension between empirical risk and expected risk. 

Empirical risk



Interpolation and benign over-fitting

Recent understanding: interpolation does 
not contradict generalization.

…



[Hui, B., ICLR 2021]

Train loss at optimal early stopping is far below test loss. 



V. Vapnik, Statistical Learning Theory, 1998

𝑛 → ∞𝑛, ℎ ∞, ℎ

𝑛,∞

ℎ → ∞

𝑛 → ∞

Classical: non-commutative

number of points 𝑛
hypothesis class ℎ

∞,∞, 𝑛 ≫ ℎ

∞,∞, ℎ ≫ 𝑛

ℎ → ∞

Overfitting

Optimal



…

𝑛, ℎ ∞, ℎ𝑛 → ∞

𝑛,∞

ℎ → ∞

𝑛 → ∞

“Modern” commutative 

number of points 𝑛
hypothesis class ℎ

∞,∞, 𝑛 ≫ ℎ

∞,∞, ℎ ≫ 𝑛

ℎ → ∞

Optimal



Kernel machines

Beautiful classical statistical/mathematical theory based on 

Reproducing Kernel Hilbert Spaces (RKHS) -- Hilbert Space of 

functions with bounded evaluation functionals.

RKHS Theory [Aronszajn,…, 1950s]

Splines [Parzen, Wahba,…, 1970-80s]

Kernel machines [Vapnik,…, 1990s]

Wide neural networks [Jacot, Gabriel, Hogler, …,2020s] 



Kernels

Any RKHS corresponds to a PSD kernel.

𝑘 𝑥, 𝑦 = 𝑒
−

𝑥−𝑦 2

𝜎2 Gaussian kernel

𝑘 𝑥, 𝑦 = 𝑒
−

𝑥−𝑦

𝜎 Laplace kernel

Many others…



Interpolating Kernel machines

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓∈ℋ, ∀𝑖𝑓(𝑥𝑖)=𝑦_𝑖 𝑓 ℋ

Representer theorem -- solution:

𝑓∗(𝑥) = σ𝑖 𝛼𝑖 𝑘(𝑥𝑖 , 𝑥), 𝜶 = 𝐾−1𝒚

𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗)



Width -- Transition to linearity

Very wide neural networks (w. linear output layer)  

= linear functions of parameters  

= kernel machines.

𝑘𝑤 𝑥, 𝑧 = ∇𝑤𝑓𝑤 𝑥 , ∇𝑤𝑓𝑤 𝑧

First identified in [Jacot, Gabriel, Hogler, 18] as constant NTK 
along the training trajectory for the model 𝑓𝑤(𝑥).



Transition to linearity in DAG neural 
networks

Theorem: 

For a neural network (w. arbitrary activations) 
corresponding to a DAG with minimum in-degree 𝑚
(width) and linear output layer

𝐻(𝐹) 𝑤 = 𝑂 1/√𝑚

[Zhu, Liu, B., NeurIPS 2022]  



Width + Depth

…

Infinitely Wide and Deep Networks

Singular Kernel 

Classifiers
1 Nearest Neighbor Majority Vote

Depending on choice of activation function

(Not Optimal) (Not Optimal)(Includes Optimal Classifiers)

[Radhakrishnan, B., Uhler, 2022]  



Inverse and Direct methods

Kernel machine (inverse):

𝑦(𝑥) = sign (𝑌𝑛𝐾𝑛
−1𝐾(X, x))

(𝐾𝑛)𝑖𝑗= 𝑘 𝑥𝑖 , 𝑥𝑗 𝑌𝑛 = 𝑦1, … , 𝑦𝑛 ,

𝐾 X, x = 𝑘 𝑥1, 𝑥 , … , 𝑘 𝑥𝑛, 𝑥
𝑇

Kernel smoother (Nadaraya-Watson)(direct):

𝑦 𝑥 = sign
σ𝑦𝑖𝑘 𝑥𝑖,𝑥

σ 𝑘(𝑥𝑖,𝑥)
= sign 𝑌𝑛𝐾 𝑋, 𝑥



Singular kernels and Interpolating 
Nadaraya-Watson schemes

𝑓(𝑥) =
σ𝑦𝑖𝑘(𝑥𝑖 , 𝑥)

σ𝑘 𝑥𝑖 , 𝑥

𝑘 𝑥𝑖 , 𝑥 =
1

||𝑥 − 𝑥𝑖||
𝛼

Claim: NW predictors with singular kernels 
are interpolating schemes: ∀𝑖 𝑓 𝑥 = 𝑦𝑖

(Shepard’s interpolation, 1968)



Optimality of Interpolating 
Nadaraya-Watson schemes

Consistency for regression. [Devroye, Györfi, Krzyzak, 98]
(the Hilbert scheme) 𝛼 = 𝑑.

Optimality for regression/classification:

Weighted interpolated schemes  with certain singular 
kernels are consistent (converge  to Bayes optimal) 
for classification in any dimension. Moreover, 
statistically (minimax)  optimal for regression in any 
dimension.

[B., Hsu, Mitra, NeuriPS 18], followup [B., Rakhlin, Tsybakov, AIStats 19]





Equivalence of direct and inverse methods

Claim. Direct and inverse methods with singular kernels 
are equivalent for classification:

𝑦 𝑥 = sign
σ𝑦𝑖𝑘(𝑥𝑖 , 𝑥)

σ𝑘 𝑥𝑖 , 𝑥
= sign (𝑌𝑛𝐾𝑛

−1𝐾(𝑋, 𝑥))

Proof.

1. sign
σ 𝑦𝑖𝑘(𝑥𝑖,𝑥)

σ𝑘 𝑥𝑖,𝑥
= sign 𝑌𝑛𝐾 𝑋, 𝑥

2. Singular kernels: 𝐾𝑛 = ∞𝐼 + 𝐺𝑛

𝐾𝑛
−1 = ∞𝐼 + 𝐺𝑛

−1 =
1

∞
𝐼 +

𝐺𝑛

∞

−1
=

1

∞
𝐼 −

1

∞
𝐺𝑛 = 

1

∞
𝐼

Off-diagonal terms



Wide and deep networks

• A taxonomy of infinitely wide and deep classifiers (on a sphere) 
based on activation function.

• Construct infinitely wide and deep FC networks that, when trained 
using standard methods, achieve optimality for classification.

Infinitely Wide and Deep Networks

Singular Kernel 
Classifiers

1 Nearest Neighbor Majority Vote

Depending on choice of activation function

(Not Optimal) (Not Optimal)(Include Optimal Classifiers)

[A. Radhakrishnan, B., C. Uhler, 2022]  



Regression vs Classification

RegressionClassification

• Converges to delta function for regression but not for classification!

Training Data



Taxonomy of Infinitely Wide and Deep FC Nets

Infinitely Wide and Deep 
Neural Nets

Singular Kernel 
Classifiers

1-Nearest Neighbor 
Classifiers

Majority Vote Classifiers

(Include Optimal Classifiers)

ReLU 2nd Hermite Polynomial

(Not Optimal)(Not Optimal)

Examples:

Cubic Polynomial

Depends on activation function 𝜙. z~𝒩 0,1

𝐴 = 𝔼 𝜙 𝑧

𝐴′ = 𝔼 𝜙′(𝑧)

𝐵 = 𝔼 𝜙′ 𝑧 2



Singular Kernel Classifiers 

Theorem A. (𝐴 = 0, 𝐴′ ≠ 0)

𝑘∞ 𝑥, 𝑧 ~
𝑅(||𝑥−𝑧||)

||𝑥−𝑧||𝛼

𝛼 = −
4 ln𝐴′

ln 𝐵

Consequence (using Devroye, Györfi, and Krzyzak (1998)): 

If 𝛼 = 𝑑, infinite depth neural net predictor ℎ∞ is Bayes 
optimal.

Infinite depth NTK



1-NN and Majority vote

Theorem B. (𝐴 = 0 = 𝐴′ = 0)

𝑠𝑖𝑔𝑛(ℎ∞) = 1 − 𝑁𝑁(𝑥)

Theorem C*. (𝐴 ≠ 0)

𝑠𝑖𝑔𝑛(ℎ∞) = majority vote (𝑦1, … , 𝑦𝑛 )



What is going on?

Kernels for deep FC networks (on the unit 
sphere). Put 𝑣 = 𝑥, 𝑧

𝑘0 𝑣 = 𝑣

𝑘𝑙 𝑣 = 𝜓(… 𝜓 𝑣 … + 𝑘𝑙−1 𝑣 𝜓′(𝜓(… 𝜓 𝑣 …

𝜓 𝑣 = 𝔼 𝑢,𝑡 ~𝒩 0,Λ 𝑣 𝜙 𝑢 𝜙 𝑡 , Λ =
1 𝑣
𝑣 1

[Daniely, Frostig, Singer, 16], [Jacot, Gabriel, Hogler, 18] 

𝑙 − 1𝑙

Dual activation function.



First key observation

𝑘𝑙 𝑣 = 𝜓(… 𝜓 𝑣 … + 𝑘𝑙−1 𝑣 𝜓′(𝜓(… 𝜓 𝑣 …

𝜓𝑙 𝑣 = 𝜓(… 𝜓 𝑣 …

Kernels 𝑘𝑙 𝑥, 𝑧 and 𝜓𝑙 𝑥, 𝑧 (after normalization) have 
poles of the same order at 𝑣 = 1 as 𝑙 → ∞.

𝑙



𝜓: 0,1 → [0,1] is convex and monotone.

Two fixed points (case 1, sing. kernel): 

A = 𝜓 0 = 0,  A′ = 𝜓 1 = 1

What does   𝜓𝑙 𝑣 = 𝜓(… 𝜓 𝑣 … look like?

Iteration

𝜓

10

1



Piecewise linear function

Iteration of Function (Single Point)



Iteration  on the unit interval

Iteration of Normalized Function



Iteration

𝜓∞ 𝑣 = lim
𝑙→∞

𝜓𝑙(𝑣)

𝑎𝑙
is well-defined and has a pole at 1.



What matters are the slopes.

Kernel singularity of order 

𝛼~ −
ln 𝑏

ln 𝑎



Kernel singularity of order 

𝛼~
ln𝜙′ 0

ln𝜙′ 1

Key observation

Same pole order



Summary

Remarkable properties of neural networks:

• Wide neural networks = kernel machines.

• Deep neural networks = kernel machines with 
singular kernels = NW schemes for classification.

• Clear separation between regression and 
classification.


