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This talk

» A taxonomy and of 1infinitely wide
and deep i1nterpolating networks.

» Equivalence with singular kernel
machines for classification.

» Bayes optimality for classification
but not regression.



The problem of machine learning

Input: data (x;,y;), i=1..n,x; € R%y;, € {—1,1} (classification)

Goal: construct f“R?—- R, that best “generalizes” to new
data.

Under the standard statistical assumptions:

fr= argmfin Evnseen data L(f(x)» y)



Empirical Risk Minimization

Most ML algorithms are based on minimizing empirical risk.

Empirical risk

1

ey = argmin —z L(f(x),v:)
fERM ng}[ 1 Lstraining data f(x), yi

Tension between empirical risk and expected risk.



Interpolation and benign over-fitting

Recent understanding: interpolation does
not contradict generalization.

wiNN (log weights) N=50, k=20, y=x+n, n~N(0,0.2)
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Table 18: ASR results on training and test set, error rate

train with train with square loss w/ same
Model Task square loss (%) cross-entropy (%)  epochs as CE (%)
Train Test  Train Test Train Test
Attention+CTC TIMIT (PER) 0.9 20.8
(Kim et al., 2017) TIMIT (CER) 4.5 32.5
VGG+BLSTMP WSJ (WER)* 0.7 5.1
(Moritz et al., 2019) WSJ (CER)* 0.3 2.4
VGG+BLSTM Librispeech (WER)* | 0.8 9.8
(Moritz et al., 2019) Librispeech (CER)* 0.6 9.7
Transformer WSJ (WER)* 0.7 5.7
(Watanabe et al., 2018) Librispeech (WER)* 0.9 94

“ For WSJ and Librispeech, we take 10% of the training set for the evaluation of the training error rate.

Train loss at optimal early stopping is far below test loss.

[Hui, B., ICLR 2021]



Classical: non-commutative
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“Modern” commutative

number of points n
hypothesis class h
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Kernel machines

Beautiful classical statistical/mathematical theory based on
Reproducing Kernel Hilbert Spaces (RKHS) -- Hilbert Space of
functions with bounded evaluation functionals.

RKHS Theory [Aronszajn,..., 1950s]

Splines [Parzen,Wahba,..., | 970-80s]

Kernel machines [Vapnik,..., 1990s]

Wide neural networks [Jacot, Gabriel, Hogler, ...,2020s]



Kernels

Any RKHS corresponds to a PSD kernel.

_llx=yll?

k(x,y) =e o2 Gaussian kernel
llx=yl

k(x,y)=e o Laplace kernel

Many others...



Interpolating Kernel machines

fr= argminfeg_[’ Vif(xi)=y_i ||f”7-[

Representer theorem -- solution:
fr(x) =Xiaik(x,x), a =K'y

Kij = k(x;, x;)



width -- Transition to linearity

Very wide neural networks (w. Tinear output layer)
= linear functions of parameters
= kernel machines.

kw (X, Z) — (vwfw (X), Vi fw (Z)>

First identified in [Jacot, Gabriel, Hogler, 18] as constant NTK
along the training trajectory for the model f, (x).



Transition to linearity 1n DAG
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Theorem:

heural

For a neural network (w. arbitrary activations)
corresponding to a DAG with minimum in-degree m

(width) and Tinear output layer

IH(FYW)|l = 0(1/Vm)

[Zzhu, Liu, B., NeurIPS 2022]



width + Depth

Infinitely Wide and Deep Networks

Depending on choice of activation function

_ | ~.

Singular Kernel : _

M Ve
Classifiers | Nearest Neighbor ajority Vote
(Includes Optimal Classifiers) (Not Optimal) (Not Optimal)

[Radhakrishnan, B., Uhler, 2022]



Inverse and Direct methods

Kernel machine (inverse):
y(x) = sign (Y, K, 'K(X,x))
(Kn)ij=k(xi, %)) Y= (1, e, Y0),

KX, x) = (k(xl, x), o, k (2, x))T

Kernel smoother (Nadaraya-watson) (direct):

: ik(x;, :
y(x) = sign (Z;k(zx?) = sign (Y, K (X, x))



Singular kernels and Interpolating
Nadaraya-watson schemes

_ X Yik(x, x)
f(x) - Zk(xilx)
k(e x) = ——
[[x — x;]|*

Claim: Nw predictors with singular kernels
are interpolating schemes: V,; f(x) =vy;

(Shepard’s interpolation, 1968)



Optimality of Interpolating
Nadaraya-watson schemes

consistency for regression. [Devroye, Gyorfi, Krzyzak, 98]
(the Hilbert scheme) « =d.

optimality for regression/classification:

weighted interpolated schemes with certain singular
kernels are consistent (converge to Bayes optimal)
for classification in any dimension. Moreover,

statistically (minimax) optimal for regression in any
dimension.

[B., Hsu, Mitra, NeuriPS 18], followup [B., Rakhlin, Tsybakov, AIStats 19]



WIiNN (log weights) N=50, k=20, y=x+n, n~N(0,0.2)
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Equivalence of direct and inverse methods

Claim. Direct and inverse methods with singular kernels
are equivalent for classification:

Z :Vik(xi! x)
Zk(xi,x)

y(x) = sign ( ) = sign (Y, K,; 1K (X, x))

Proof.

: 2 Yik(xipx)\ _ .
1. sign ( ST ) = sign (Y,,K(X, x))

e

2. Singular kernels: K, = ol + G,

Kt = (0ol + G) ™t = —(I +f—£)_1 =—(1-2Gy)= =1



wide and deep networks

» A taxonomy of infinitely wide and deep classifiers (on a sphere)
based on activation function.

e Construct infinitely wide and deep FC networks that, when trained
using standard methods, achieve optimality for classification.

Infinitely Wide and Deep Networks

Depending on choice of activation function

— ‘, .

Singular Kernel
Classifiers

1 Nearest Neighbor Majority Vote

(Include Optimal Classifiers) (Not Optimal) (Not Optimal)

[A. Radhakrishnan, B., C. Uhler, 2022]



Regression vs Classification

Training Data Classification Regression
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* Converges to delta function for regression but not for classification!



Taxonomy of Infinitely wide and Deep FC Nets

Depends on activation function ¢.

Infinitely Wide and Deep

Neural Nets

\ 4

A/ /\A

z~N(0,1)

A =E(¢(2))
A" = E(¢'(2))

B = E([¢'(2)]?)

£ 0
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Majority Vote Classifiers

1-Nearest Neighbor
Classifiers

Singular Kernel
Classifiers

(Not Optimal)

(Not Optimal)

Examples:

(Include Optimal Classifiers)

RelLU

¢(r) = max(0, x)

2"d Hermite Polynomial
22 -1

Cubic Polynomial

ey

x3 —
b(z) = +$%




Singular Kernel Classifiers

Theorem A. (A=0,4 +0)

K (x, 2) ~ (R<||x—z||>)

[lx—z||*
Infinite depth NTK Y 41n A’

In B

Consequence (using Devroye, Gyorfi, and Krzyzak (1998)):

If a=d, infinite depth neural net predictor h* is Bayes
optimal.



1-NN and Majority vote

Theorem B. (A=0=A4"=0)

sign(h®) =1 —- NN(x)

Theorem C*. (A4 #0)

sign(h™) = majority vote (y4, .-, Yn )



what 1s going on?

Kernels for deep FC networks (on the unit
sphere). Put v = (x,2)

kK°(v) =v

k'(v) T Y(... ) ...’) + kl‘l(v)t/)’\(t/)(... (W(v) }
|
| -1

Y) = [E(u,t)~N(0,A(v)) (o), A= (117 117)

Dual activation function.

[Daniely, Frostig, Singer, 16], [Jacot, Gabriel, Hogler, 18]



First key observation

k' (v) =¥ (Y ) ---)’+ ' @ @) -.0)

|
[

') =Y. @) ...)

Kernels k'({x,z)) and y'({x,z)) (after normalization) have
poles of the same order at v=1 as [ - .



Tteration

Y:|0,1] — [0,1] is convex and monotone.
1
M
1

Two fixed points (case 1, sing. kernel):
A=y(0)=0,A'=y(1)=1

What does ' (v) = (... [ (v) ...) look like?



Piecewise linear function

Iteration of Function (Single Point)
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lteration on the unit interval

Iteration of Normalized Function
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ITteration
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Y* ) = }Lryowl(v) is well-defined and has a pole at 1.

al
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What matters are the slopes.

Kernel singularity of order
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Key observation

Kernel singularity of order

In ¢’ (0)
o)

Same pole order




Summary

Remarkable properties of neural networks:

- Wide neural networks = kernel machines.

- Deep neural networks = kernel machines with
singular kernels = NW schemes for classification.

« Clear separation between regression and
classification.



