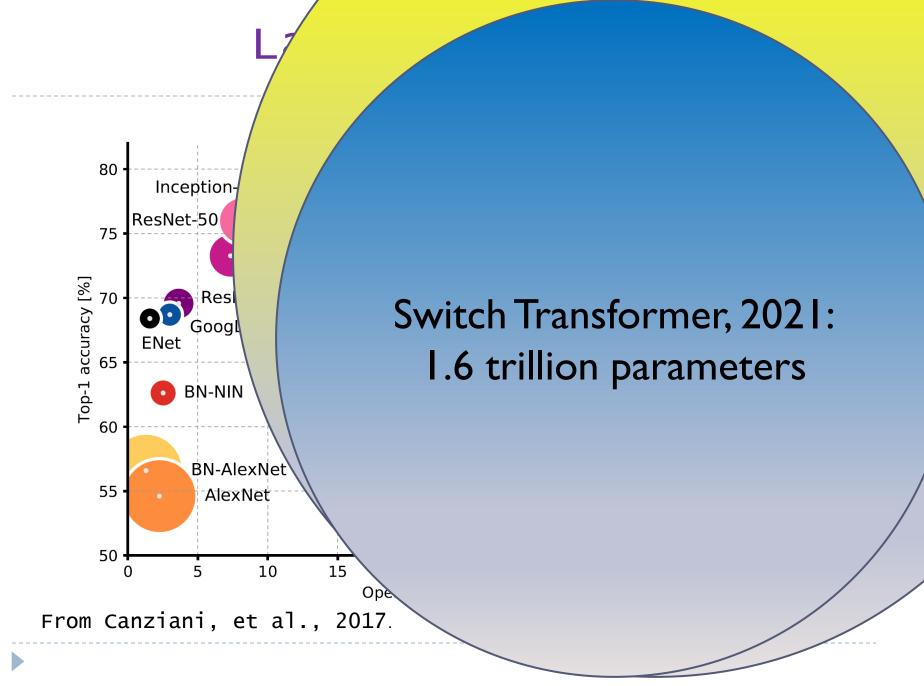
Neural networks, wide and deep, singular kernels and Bayes optimality

Mikhail Belkin University of California San Diego, Halıcıoğlu Data Science Institute

Collaborators: Adit Radhakrishnan, Caroline Uhler, Chaoyue Liu, Libin Zhu, Like Hui, Alexander Rakhlin, Alexander Tsybakov

> Non-Linear and High Dimensional Inference, IHP, Paris, Oct 2022



This talk

- A taxonomy and of infinitely wide and deep interpolating networks.
- Equivalence with singular kernel machines for classification.
- Bayes optimality for classification but not regression.

The problem of machine learning

Input: data (x_i, y_i) , i = 1..n, $x_i \in \mathbb{R}^d$, $y_i \in \{-1,1\}$ (classification)

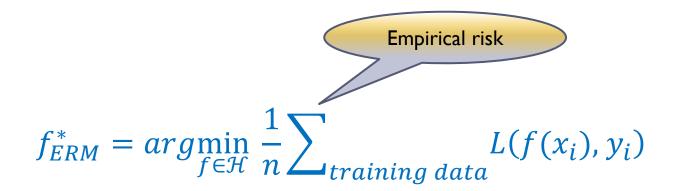
Goal: construct $f^*: \mathbb{R}^d \to \mathbb{R}$, that best "generalizes" to new data.

Under the standard statistical assumptions:

 $f^* = argmin_f E_{unseen\,data} L(f(x), y)$

Empirical Risk Minimization

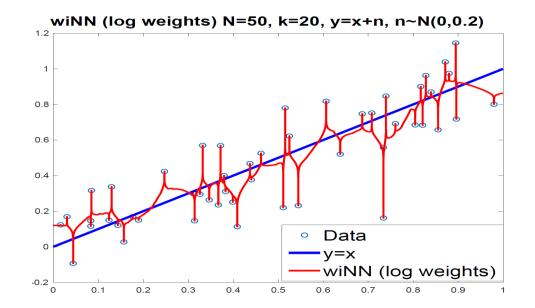
Most ML algorithms are based on minimizing empirical risk.



Tension between empirical risk and expected risk.

Interpolation and benign over-fitting

Recent understanding: interpolation does not contradict generalization.



...

		train with		train with		square loss w/ same	
Model	Task	square loss (%)		cross-entropy (%)		epochs as CE (%)	
		Train	Test	Train	Test	Train	Test
Attention+CTC	TIMIT (PER)	0.9	20.8	4.8	20.8	0.9	20.8
(Kim et al., 2017)	TIMIT (CER)	4.5	32.5	11.6			32.5
VGG+BLSTMP	WSJ (WER)*	0.7	5.1	0.3			5.1
(Moritz et al., 2019)	WSJ (CER)*	0.3	2.4	0.1			2.4
VGG+BLSTM	Librispeech (WER)*	0.8	9.8	0.4			10.3
(Moritz et al., 2019)	Librispeech (CER)*	0.6	9.7	0.3			10.2
Transformer	WSJ (WER)*	0.7	5.7	0.5			5.7
(Watanabe et al., 2018)	Librispeech (WER)*	0.9	9.4	1.2			9.4

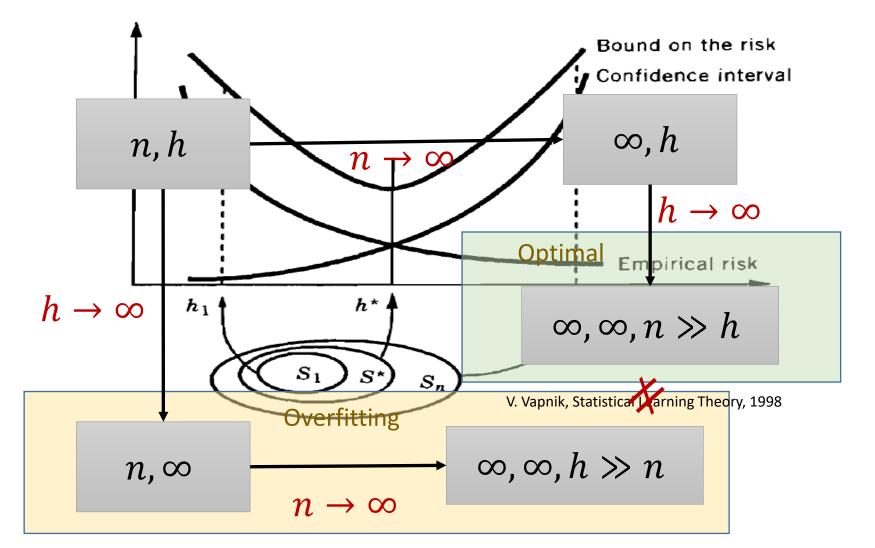
Table 18: ASR results on training and test set, error rate

* For WSJ and Librispeech, we take 10% of the training set for the evaluation of the training error rate.

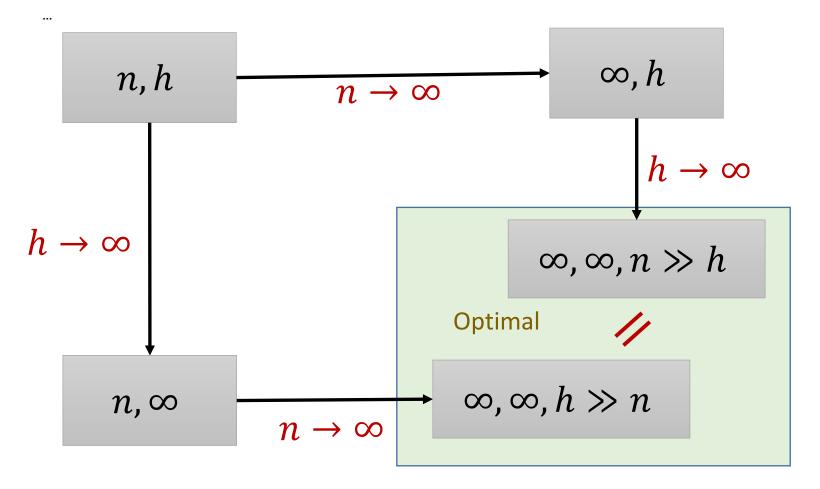
Train loss at optimal early stopping is far below test loss.

[Hui, B., ICLR 2021]

Classical: non-commutative number of points *n* 6.1 THE SCHEME OF THE STRUCTURAL RISK MINIMIZATION INDUSTION PRIME IPLE



"Modern" commutative number of points *n* hypothesis class *h*



Kernel machines

Beautiful classical statistical/mathematical theory based on Reproducing Kernel Hilbert Spaces (RKHS) -- Hilbert Space of functions with bounded evaluation functionals.

RKHS Theory [Aronszajn,..., 1950s] Splines [Parzen, Wahba,..., 1970-80s] Kernel machines [Vapnik,..., 1990s] Wide neural networks [Jacot, Gabriel, Hogler, ..., 2020s]

Kernels

Any RKHS corresponds to a PSD kernel.

$$k(x,y) = e^{\frac{\|x-y\|^2}{\sigma^2}}$$

Gaussian kernel

$$k(x,y) = e^{\frac{\|x-y\|}{\sigma}}$$

Laplace kernel

Many others...

D

Interpolating Kernel machines

$$f^* = argmin_{f \in \mathcal{H}, \forall_i f(x_i) = y_i} \|f\|_{\mathcal{H}}$$

Representer theorem -- solution:

D

$$f^*(x) = \sum_i \alpha_i k(x_i, x), \ \boldsymbol{\alpha} = K^{-1} \boldsymbol{y}$$

 $K_{ij} = k(x_i, x_j)$

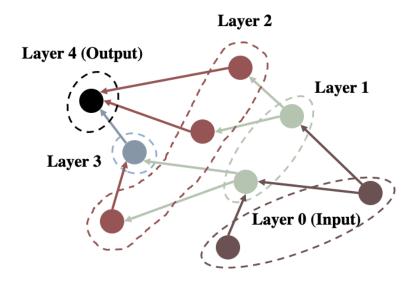
Width -- Transition to linearity

Very wide neural networks (w. linear output layer)
 = linear functions of parameters
 = kernel machines.

$$k_w(x,z) = \langle \nabla_w f_w(x), \nabla_w f_w(z) \rangle$$

First identified in [Jacot, Gabriel, Hogler, 18] as constant NTK along the training trajectory for the model $f_w(x)$.

Transition to linearity in DAG neural networks



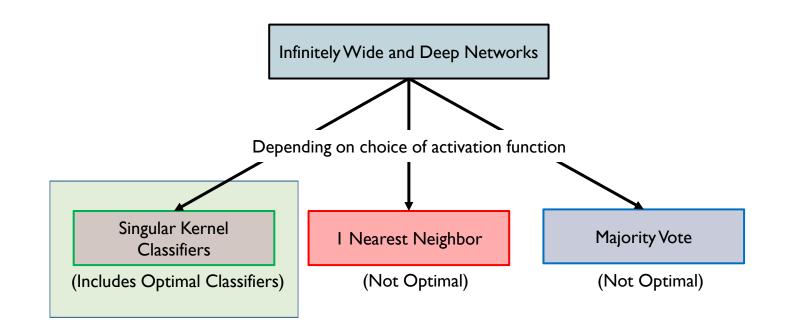
Theorem:

For a neural network (w. arbitrary activations) corresponding to a DAG with minimum in-degree m (width) and linear output layer

$$\|H(F)(w)\| = O(1/\sqrt{m})$$

[Zhu, Liu, B., NeurIPS 2022]

Width + Depth



•••

[Radhakrishnan, B., Uhler, 2022]

Inverse and Direct methods

Kernel machine (inverse):

$$y(x) = \operatorname{sign} (Y_n K_n^{-1} K(\mathbf{X}, \mathbf{x}))$$
$$(K_n)_{ij} = k(x_i, x_j) \quad Y_n = (y_1, \dots, y_n),$$
$$K(\mathbf{X}, \mathbf{x}) = (k(x_1, x), \dots, k(x_n, x))^T$$

Kernel smoother (Nadaraya-Watson)(direct):

$$y(x) = \operatorname{sign}\left(\frac{\sum y_i k(x_i, x)}{\sum k(x_i, x)}\right) = \operatorname{sign}\left(Y_n K(X, x)\right)$$

Singular kernels and Interpolating Nadaraya-Watson schemes

$$f(x) = \frac{\sum y_i k(x_i, x)}{\sum k(x_i, x)}$$

$$k(x_i, x) = \frac{1}{||x - x_i||^{\alpha}}$$

Claim: NW predictors with singular kernels are interpolating schemes: $\forall_i f(x) = y_i$

(Shepard's interpolation, 1968)

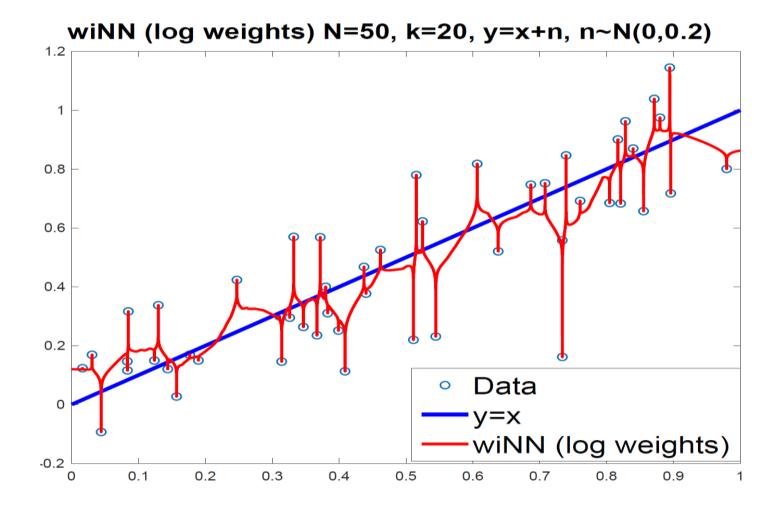
Optimality of Interpolating Nadaraya-Watson schemes

Consistency for regression. [Devroye, Györfi, Krzyzak, 98] (the Hilbert scheme) $\alpha = d$.

Optimality for regression/classification:

Weighted interpolated schemes with certain singular kernels are consistent (converge to Bayes optimal) for classification in any dimension. Moreover, statistically (minimax) optimal for regression in any dimension.

[B., Hsu, Mitra, NeuriPS 18], followup [B., Rakhlin, Tsybakov, AIStats 19]



Equivalence of direct and inverse methods

Claim. Direct and inverse methods with singular kernels are equivalent for classification:

$$y(x) = \operatorname{sign}\left(\frac{\sum y_i k(x_i, x)}{\sum k(x_i, x)}\right) = \operatorname{sign}\left(Y_n K_n^{-1} K(X, x)\right)$$

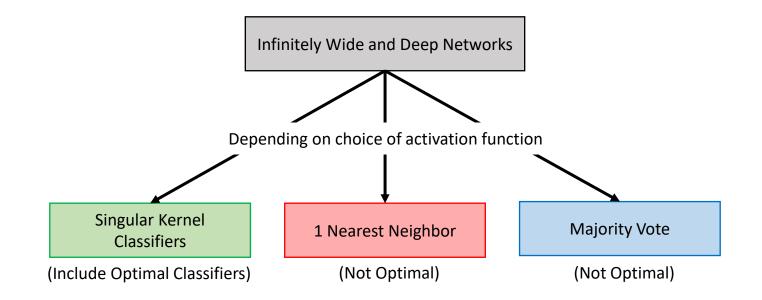
Proof.

1. sign
$$\left(\frac{\sum y_i k(x_i, x)}{\sum k(x_i, x)}\right)$$
 = sign $\left(Y_n K(X, x)\right)$
2. Singular kernels: $K_n = \infty I + G_n$

$$K_n^{-1} = (\infty I + G_n)^{-1} = \frac{1}{\infty} \left(I + \frac{G_n}{\infty} \right)^{-1} = \frac{1}{\infty} \left(I - \frac{1}{\infty} G_n \right) = \frac{1}{\infty} I$$

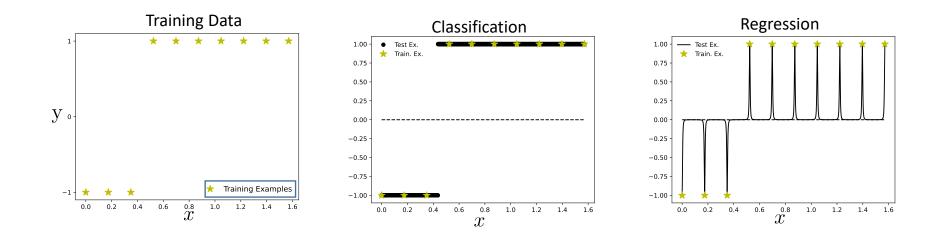
Wide and deep networks

- A taxonomy of infinitely wide and deep classifiers (on a sphere) based on activation function.
- Construct infinitely wide and deep FC networks that, when trained using standard methods, achieve optimality for classification.



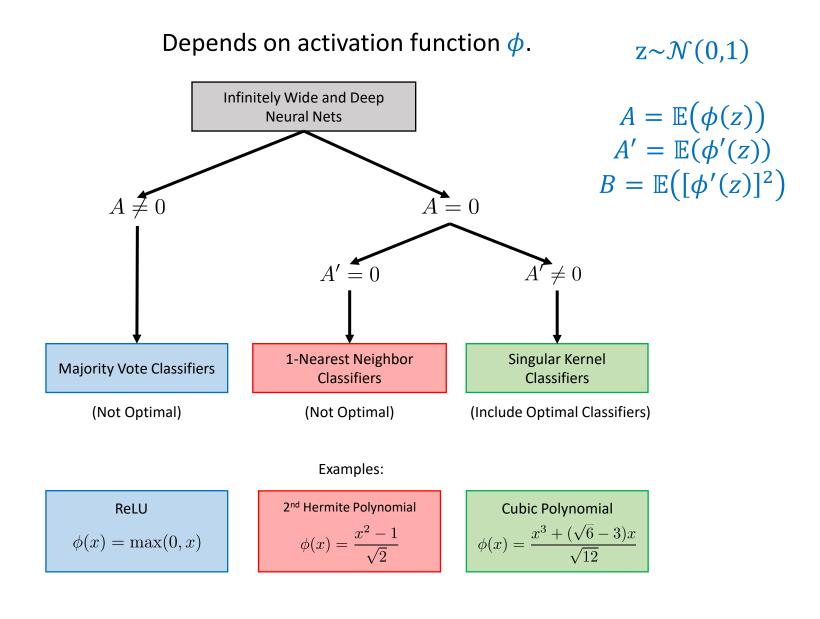
[A. Radhakrishnan, B., C. Uhler, 2022]

Regression vs Classification



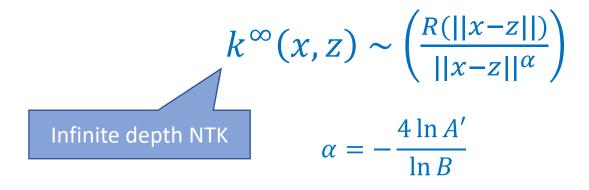
Converges to delta function for regression but not for classification!

Taxonomy of Infinitely Wide and Deep FC Nets



Singular Kernel Classifiers

Theorem A. $(A = 0, A' \neq 0)$



Consequence (using Devroye, Györfi, and Krzyzak (1998)):

If $\alpha = d$, infinite depth neural net predictor h^{∞} is Bayes optimal.

1-NN and Majority vote

Theorem B. (A = 0 = A' = 0)

$$sign(h^{\infty}) = 1 - NN(x)$$

Theorem C*. $(A \neq 0)$

 $sign(h^{\infty}) = majority vote(y_1, ..., y_n)$

What is going on?

Kernels for deep FC networks (on the unit sphere). Put $v = \langle x, z \rangle$

 $k^0(v) = v$

$$k^{l}(v) = \psi(\dots(\psi(v) \dots) + k^{l-1}(v)\psi'(\psi(\dots(\psi(v) \dots) + l - 1)))$$

 $\psi(v) = \mathbb{E}_{(u,t)\sim\mathcal{N}(0,\Lambda(v))} \phi(u)\phi(t), \qquad \Lambda = \begin{pmatrix} 1 & v \\ v & 1 \end{pmatrix}$

Dual activation function.

[Daniely, Frostig, Singer, 16], [Jacot, Gabriel, Hogler, 18]

First key observation

$$k^{l}(v) = \psi(\dots(\psi(v) \dots) + k^{l-1}(v)\psi'(\psi(\dots(\psi(v) \dots)$$

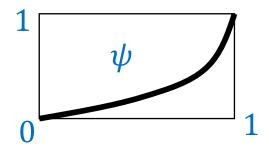
$$l$$

$$\psi^{l}(v) = \psi(\dots(\psi(v) \dots)$$

Kernels $k^{l}(\langle x, z \rangle)$ and $\psi^{l}(\langle x, z \rangle)$ (after normalization) have poles of the same order at v = 1 as $l \to \infty$.

Iteration

 ψ : [0,1] \rightarrow [0,1] is convex and monotone.

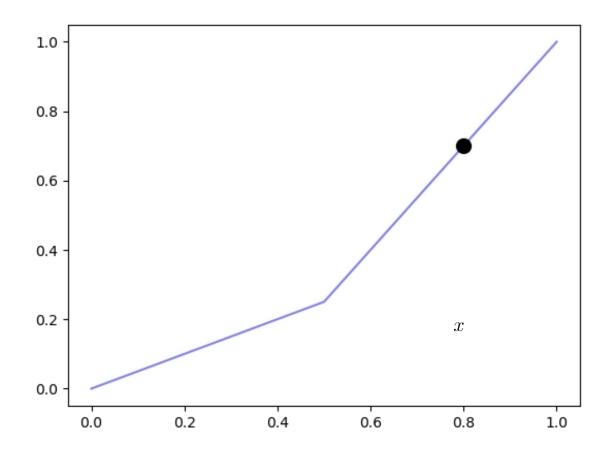


Two fixed points (case 1, sing. kernel): $A = \psi(0) = 0, A' = \psi(1) = 1$

What does $\psi^{l}(v) = \psi(\dots(\psi(v) \dots))$ look like?

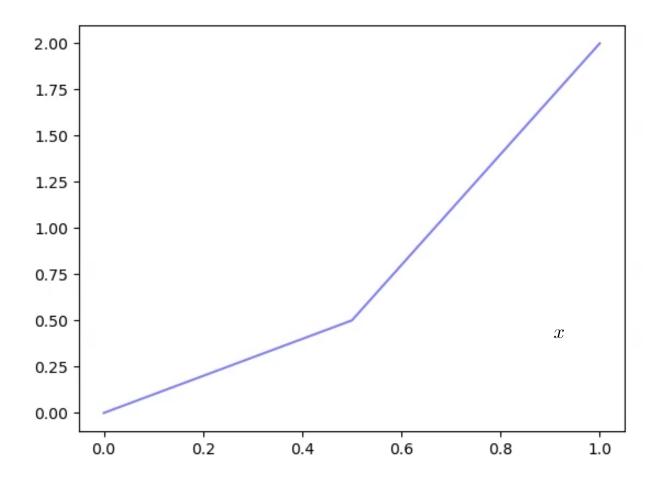
Piecewise linear function

Iteration of Function (Single Point)

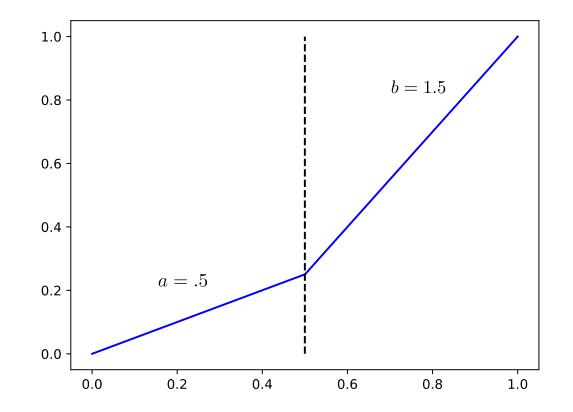


Iteration on the unit interval

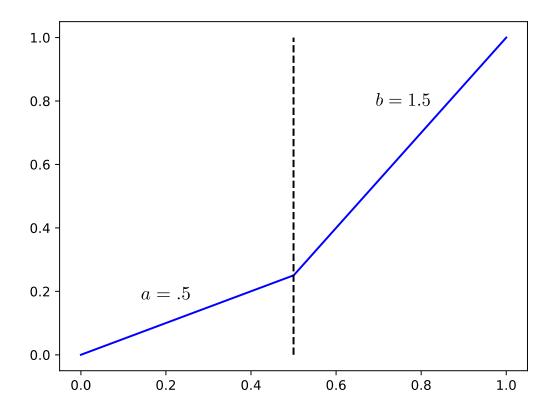
Iteration of Normalized Function



Iteration



 $\psi^{\infty}(v) = \lim_{l \to \infty} \frac{\psi^{l}(v)}{a^{l}}$ is well-defined and has a pole at 1.

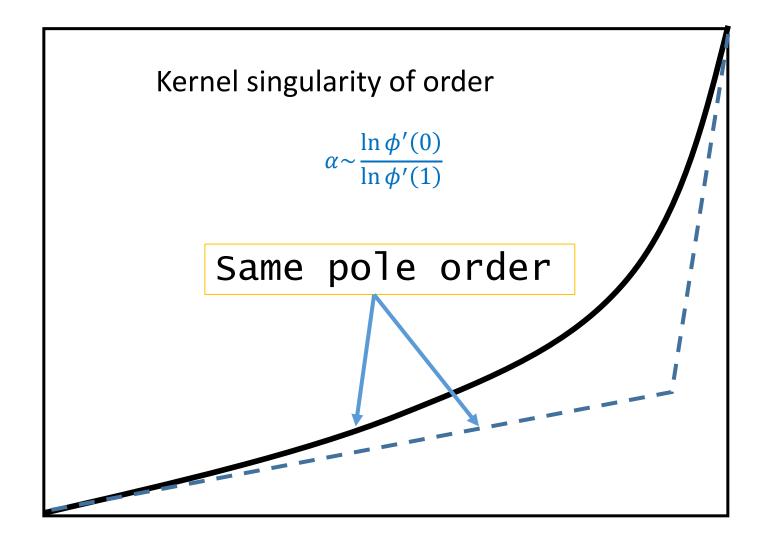


What matters are the slopes.

Kernel singularity of order

 $\alpha \sim -\frac{\ln b}{\ln a}$

Key observation



Summary

Remarkable properties of neural networks:

• Wide neural networks = kernel machines.

 Deep neural networks = kernel machines with singular kernels = NW schemes for classification.

• Clear separation between regression and classification.