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High-dimensional prediction with deep networks

Deep learning

Deep learning has raised many interesting new questions

Efficient nonconvex optimization (empirical risk minimization with
nonlinearly parameterized functions)
Good prediction despite overfitting and no explicit regularization

Optimization methodology affects statistical performance

e.g., gradient flow motivates the study of minimum norm interpolation
e.g., discrete time gradient descent and stochastic gradient descent as
gradient flow on penalized losses
e.g., implicit regularization of gradient flow in neural networks

This talk: optimization for non-linear and high-dimensional prediction
1 Benign overfitting in a non-linear setting
2 ‘Sharpness-Aware Minimization’
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Overfitting in Deep Networks

Deep networks can be trained to zero
training error (for regression loss)

... with near state-of-the-art
performance

... even for noisy problems.

No tradeoff between fit to training data
and complexity!

Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, 2018)
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Benign Overfitting

Intuition

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = simple component useful for prediction.

∆ = spiky component useful for benign overfitting.

Classical statistical learning theory applies to f̂0.

∆ is not useful for prediction, but it is benign.

(Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta Numerica. 2021)
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Benign Overfitting
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Benign Overfitting

Linear Regression (B, Long, Lugosi, Tsigler, 2019), (B, Tsigler, 2020)

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = prediction component:
k∗-dim subspace corresponding to λ1, . . . , λk∗ .

∆ = benign overfitting component:
orthogonal subspace. ∆ is benign only if Rk∗ � n.

Here,
λ1, λ2, . . . are the eigenvalues of the covariate covariance,
k∗ is defined in terms of an effective rank of the covariance in the
low-variance orthogonal subspace, and
Rk∗ is another effective rank in that subspace.
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Benign overfitting

Benign overfitting in classical settings:

Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla,

Tsybakov, 2022; . . . ]

Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019;

Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; . . . ]

Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang,

Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; . . . ]

Logistic regression [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021;

Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; . . . ]

Benign overfitting in neural networks?
(beyond the ‘neural tangent kernel’ approximation)

Spencer Frei Niladri Chatterji

Benign overfitting without linearity: neural network
classifiers trained by gradient descent for noisy linear
data. COLT 2022. arXiv:2202.05928
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Benign overfitting without linearity

Spencer Frei Niladri Chatterji

Benign overfitting without linearity: neural network
classifiers trained by gradient descent for noisy linear
data. COLT 2022. arXiv:2202.05928

Outline

Noisy classification with two-layer neural networks trained by GD

Benign overfitting

Proof ideas
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Goal and technical challenges

Goal

Understand how benign overfitting can occur in neural networks trained by
gradient descent to get insight into ‘modern’ ML.

Technical challenges:

Understand non-convex learning dynamics of neural network
training.

Understand generalization of interpolating classifiers for noisy data
when hypothesis class has unbounded capacity.
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Distributional setting

Mixture of two log-concave isotropic clusters:
Cluster centered at +µ ∈ Rp, clean label +1
Cluster centered at −µ ∈ Rp, clean label −1

Allow for constant fraction η of training labels to be flipped
(P̃cl: ‘clean’ distribution, Pns: ‘noisy’ distribution)
Assume ‖µ‖ grows with dimension p.

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Figure: Pclust = N(0, I2) with ‖µ‖ = 1.9 and 15% of the labels flipped.
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Model and optimization definitions

We consider γ-leaky, H-smooth activations
φ, satisfying for all z ∈ R,

0 < γ ≤ φ′(z) ≤ 1, |φ′′(z)| ≤ H.
−3 −2 −1 0 1 2 3

0

1

2

3

Two-layer neural networks trained by GD

Network with m neurons, first layer weights W ∈ Rm×p, second layer
weights {aj}mj=1 (fixed at initialization),

f (x ;W ) :=
∑m

j=1 ajφ(〈wj , x〉).

Initialize [W (0)]r ,s
i.i.d.∼ N(0, ω2

init), aj
i.i.d.∼ Unif({1/√m,−1/

√
m}).

For `(z) = log(1 + exp(−z)), data {(xi , yi )}ni=1
i.i.d.∼ Pns, α > 0,

W (t+1) = W (t) − α∇L̂(W (t)) = W (t) − α∇
(1

n

n∑
i=1

`
(
yi f (xi ;W

(t))
))
.
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The setting

For failure probability δ ∈ (0, 1), large C > 1:

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Pclust = N(0, I2) with
‖µ‖ = 1.9 and 15% of

the labels flipped.

(A1) Number of samples n ≥ C log(1/δ).

(A2) Mean separation ‖µ‖ = Θ(p
1
3 ).

Holds for more general ‖µ‖ = ωp(1).

(A3) Dimension p & n3.

• Ensures all samples are ≈ orthogonal.

(A4) Noise rate η ≤ 1/C .

(A5) Large step-size relative to initialization:
α ≥ ωinit

√
mp.

• Ensures ‘feature-learning’ (non-NTK) after
one step.

Networks of arbitrary width m ≥ 1.
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Benign overfitting in neural networks trained by GD

For C > 1 large enough under Assumptions (A1) through (A5):

Theorem (Frei, Chatterji, B, 2022)

For 0 < ε < 1/2n, by running GD with stepsize α, for T ≥ Cα−1ε−2

iterations, with high probability over the random initialization and sample:

1 yi = sgn
(
f (xi ;W

(T ))
)

for all i with training loss L̂(W (T )) ≤ ε .

2 The test error satisfies

P(x ,y)∼Pns

[
y 6= sgn(f (x ;W (T )))

]
≤ η + 2 exp

(
−c · np 1

3

)
.

Training error is ≈ 0 with noisy labels (overfitting) , yet still

generalizing near Bayes-optimal (benign) .

Any width m ≥ 1: no dependence on m (except α ≥ ωinit
√
mp).
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Benign overfitting and uniform convergence

Theorem (Frei, Chatterji, B, 2022)

For 0 < ε < 1/2n, by running GD with l.r. α, for T ≥ Cα−1ε−2

iterations, w.h.p. over the random initialization and sample:

1 yi = sgn
(
f (xi ;W

(T ))
)

for all i with training loss L̂(W (T )) ≤ ε .

2 The test error satisfies

P(x ,y)∼Pns

[
y 6= sgn(f (x ;W (T )))

]
≤ η + 2 exp

(
−c · np 1

3

)
.

As ε→ 0, ‖W (T )‖ → ∞ .

Predictor has unbounded norm, neural net can be arbitrarily wide,

achieves ≈ 0 training loss , generalizes near-optimally —Bayes error

≥ η = Ω(1).

Many ways to overfit: p � n, width� 1, . . .
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Benign overfitting and uniform convergence

Theorem (Frei, Chatterji, B, 2022)
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Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that E(x ,ỹ)∼P̃cl
[ỹ f (x ;W )] ≥ 0. Then there exists a universal

constant c > 0 such that

P(x ,y)∼Pns

(
y 6= sgn(f (x ;W ))

)
≤ η+2 exp

−c (E(x ,ỹ)∼P̃cl
[ỹ f (x ;W )]

‖W ‖F

)2


Benign overfitting occurs if we can show:
1 Normalized margin on clean points is large:

E(x,ỹ)∼P̃cl
[ỹ f (x ;W (T ))]

‖W (T )‖F
� 0.

2 Empirical risk can be driven to zero:

yi = sgn
(
f (xi ;W

(T ))
)

for all i , and L̂(W (T )) ≈ 0.
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Gradient descent ensures good generalization performance

Lemma

For any t ≥ 1, for a step size large relative to random initialization,

E(x ,ỹ)∼P̃cl

[
ỹ f (x ;W (t))

‖W (t)‖F

]
&
√
np1/3 � 0,

P(x ,y)∼Pns

(
y 6= sgn(f (x ;W (t)))

)
≤ η + 2 exp

(
−c · np1/3

)
.

Gradient descent produces a particular neural network which will
classify well, regardless of ‖W (t)‖F , with sub-polynomial samples.
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Outline

Optimization for high-dimensional prediction

1 Benign overfitting in a non-linear setting

2 ‘Sharpness-Aware Minimization’
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Sharpness-Aware Minimization: Prediction Performance

Foret, Kleiner, Mobahi, Neyshabur. 2021
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Sharpness-Aware Minimization

Sharpness-Aware Minimization for Efficiently Improving Generalization.
Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

The story: For an empirical loss ` defined on a parameter space:
minw max‖ε‖≤ρ `(w + ε).

The rationale:

max
‖ε‖≤ρ

`(w + ε) = max
‖ε‖≤ρ

`(w + ε)− `(w)︸ ︷︷ ︸
sharpness

+`(w).

The reality: First order simplification:

wt+1 = wt − η∇`
(
wt + ρ

∇`(wt)

‖∇`(wt)‖

)
.
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Sharpness-Aware Minimization

Foret, Kleiner, Mobahi, Neyshabur. 2021
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Visualizing SAM Minima

ResNet trained with SGD versus SAM

Foret, Kleiner, Mobahi, Neyshabur. 2021
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Convergence of Sharpness-Aware Minimization

Phil Long Olivier Bousquet

The dynamics of sharpness-aware minimization:
bouncing across ravines and drifting towards
wide minima. B., Long, Bousquet.
arXiv:2210.xxxxx

Outline

SAM with a quadratic criterion: Bouncing across ravines

Stationary points
A non-convex gradient descent
SAM oscillates around minimum

Beyond quadratic: Drifting towards wide minima

SAM near a smooth minimum
Descending the gradient of the spectral norm of the Hessian

Open questions
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SAM with a quadratic criterion

SAM

For a loss function ` : Rd → R, SAM starts with an initial parameter
vector w0 ∈ Rd and updates

wt+1 = wt − η∇`
(
wt + ρ

∇`(wt)

‖∇`(wt)‖

)
.

where η, ρ > 0 are step size parameters.

SAM with quadratic loss

Fix Λ = diag(λ1, . . . , λd) with λ1 ≥ · · ·λd ≥ 0 and consider loss

`(w) =
1

2
w>Λw .

Then ∇`(w) = Λw and wt+1 =

(
I − ηΛ− ηρ

‖Λwt‖
Λ2

)
wt .
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Bouncing across ravines

Theorem (B., Long, Bousquet, 2022)

There is an absolute constant c such that for any eigenvalues
λ1 > λ2 ≥ ... ≥ λd > 0, any neighborhood size ρ > 0, and any step size
0 < η < 1

2λ1
, for all small enough ε, δ > 0, if w0 is sampled from a

continuous probability distribution over Rd (density bounded above by A;
‖w0‖ not too big; |w0,1| not too small), then with probability 1− δ, for all
t sufficiently large (polynomial in d , 1/(ηλd), λ1/λd and 1/(λ2

1/λ
2
2 − 1),

polylogarithmic in other parameters), for some

w∗ ∈
{
± ηρλ1

2− ηλ1
e1

}
and for all s ≥ t, ‖w2s − w∗‖ ≤ ε and ‖w2s+1 + w∗‖ ≤ ε.
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SAM with a quadratic criterion

A reparameterization

Define vt = ∇`(wt) = Λwt . Then

vt+1 =

(
I − ηΛ− ηρ

‖vt‖
Λ2

)
vt ,

so, for all i and all t, we have

vt+1,i =

(
1− ηλi −

ηρλ2
i

‖vt‖

)
vt,i

= (1− ηλi )
(

1− γi
‖vt‖

)
vt,i ,

where γi :=
ηρλ2

i

1− ηλi
.

Nonlinear recurrence, but coupled only by ‖vt‖.
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SAM with a quadratic criterion

Define βi =
1− ηλi
2− ηλi

γi =
ηρλ2

i

2− ηλi
.

Solutions are in the eigenvector directions, βi from the minimum

The set of non-zero solutions (v2
1 , . . . , v

2
d ) to ∀i , v2

t+1,i = v2
t,i is

d⋃
i=1

co{β2
i ej : βj = βi},

where co(S) denotes the convex hull of a set S and ej is the jth basis
vector in Rd .
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SAM with a quadratic criterion

Define αi =
(1− ηλ1)γ1 + (1− ηλi )γi

1− ηλ1 + 1− ηλi
. Recall βi =

1− ηλi
2− ηλi

γi .

If λ1 > λ2, then βd ≤ · · · ≤ β1 < αd ≤ · · ·α2 ≤ α1 = γ1.

Norm of v versus βi determines how components grow

‖vt‖ > βi iff v2
t+1,i < v2

t,i .

Norm of v versus αi determines relative growth

If λ1 > λ2, then for i ∈ {2, . . . , d}, ‖vt‖ < αi iff
v2
t+1,1

v2
t+1,i

>
v2
t,1

v2
t,i

.

Define b = (1− ηλ1)γ1.

‖vt‖ ≤ b implies ‖vt+1‖ ≤ b (and the decay to b is exponentially fast).
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A non-convex gradient descent

Lemma

For ut := (−1)twt , if ‖wt‖ > 0,

ut+1 = ut − ηρ∇J(ut),

where

J(u) =
1

2
u>Cu − ‖Λu‖, C = diag

(
λ2

1

β1
, . . . ,

λ2
d

βd

)
.

Also,

J(ut+1)− J(ut) ≤ −
1

2ρ

d∑
i=1

u2
t,i

(
1− βi
‖Λut‖

)2

(2− ηλi )2λi .

27 / 40



A non-convex gradient descent

Lemma

For ut := (−1)twt , if ‖wt‖ > 0,

ut+1 = ut − ηρ∇J(ut),

where

J(u) =
1

2
u>Cu − ‖Λu‖, C = diag

(
λ2

1

β1
, . . . ,

λ2
d

βd

)
.

Also,

J(ut+1)− J(ut) ≤ −
1

2ρ

d∑
i=1

u2
t,i

(
1− βi
‖Λut‖

)2

(2− ηλi )2λi .

27 / 40



A non-convex gradient descent

Lemma

For ut := (−1)twt , if ‖wt‖ > 0,

ut+1 = ut − ηρ∇J(ut),

where

J(u) =
1

2
u>Cu − ‖Λu‖, C = diag

(
λ2

1

β1
, . . . ,

λ2
d

βd

)
.

Also,

J(ut+1)− J(ut) ≤ −
1

2ρ

d∑
i=1

u2
t,i

(
1− βi
‖Λut‖

)2

(2− ηλi )2λi .

27 / 40



A non-convex gradient descent

Properties of J

∇J(u) = 0 iff for some i , ‖u‖ = βi/λi and u ∈ span{ej : βj = βi}.

For unit norm û satisfying ∇J(βi/λi û) = 0,

∇2J

(
βi
λi
û

)
= Λ2

 ∑
j :βj 6=βi

(
1

βj
− 1

βi

)
eje
>
j +

1

βi
ûû>

 ,

which has |{j : βj < βi}|+ 1 positive eigenvalues, |{j : βj > βi}| negative
eigenvalues, and |{j : βj = βi}| − 1 zero eigenvalues.

The set of all stationary points with only non-negative eigenvalues is

M =

{
u ∈ Rd : ‖u‖ =

β1

λ1
, u ∈ span{ej : βj = β1}

}
,

and this is the set of global minima. There are no other local minima.
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A non-convex gradient descent

Lemma

For ε > 0, and ‖vT0‖ ≤ b,∣∣∣{t ≥ T0 : ‖vt‖ ≥ (1 + ε)β1

}∣∣∣ ≤ 2

ηε2λ1β1

(
max
‖Λw‖≤b

J(w)−min
w

J(w)

)
≤ 3β1

ηε2λ1βd
.

Recall:

βd ≤ · · · ≤ β1 < αd ≤ · · ·α2 ≤ α1 = γ1,

Norm of v versus βi determines how components grow, and

Norm of v versus αi determines relative growth compared to the
leading component.
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Bouncing across ravines

Theorem (B., Long, Bousquet, 2022)

There is an absolute constant c such that for any eigenvalues
λ1 > λ2 ≥ ... ≥ λd > 0, any neighborhood size ρ > 0, and any step size
0 < η < 1

2λ1
, for all small enough ε, δ > 0, if w0 is sampled from a

continuous probability distribution over Rd (density bounded above by A;
‖w0‖ not too big; |w0,1| not too small), then with probability 1− δ, for all
t sufficiently large (polynomial in d , 1/(ηλd), λ1/λd and 1/(λ2

1/λ
2
2 − 1),

polylogarithmic in other parameters), for some

w∗ ∈
{
± ηρλ1

2− ηλ1
e1

}
and for all s ≥ t, ‖w2s − w∗‖ ≤ ε and ‖w2s+1 + w∗‖ ≤ ε.
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Bouncing across ravines

SAM’s asymptotic behavior

For some

w∗ ∈
{
± ηρλ1

2− ηλ1
e1

}
,

and for all s ≥ t, w2s ≈ w∗ and w2s+1 ≈ −w∗.

This is not the solution to the motivating minimax optimization
problem: for `(w) = w>Λw/2,

arg min
w

max
‖ε‖≤ρ

`(w + ε) = 0.

SAM’s gradient-based approach leads to oscillations around the
minimum.
These oscillations have an impact for a non-quadratic loss.
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SAM’s gradient-based approach leads to oscillations around the
minimum.
These oscillations have an impact for a non-quadratic loss.
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Convergence of Sharpness-Aware Minimization

Outline

SAM with a quadratic criterion: Bouncing across ravines

Stationary points
A non-convex gradient descent
SAM oscillates around minimum

Beyond quadratic: Drifting towards wide minima

SAM near a smooth minimum
Descending the gradient of the spectral norm of the Hessian

Open questions
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SAM: Beyond Quadratic

Locally quadratic objective function

Consider a smooth objective ` with a slowly varying (B-Lipschitz) third
derivative: ∥∥D3`(w)− D3`(w ′)

∥∥ ≤ B‖w − w ′‖.

Consider a local minimum wz ∈ Rd :

∇`(wz) = 0, H := ∇2`(wz) = diag(λ1, . . . , λd),

with λ1 ≥ · · · ≥ λd ≥ 0.
Near wz , ` is close to

`q(w) = `(wz) +
1

2
(w − wz)>H(w − wz).
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SAM: Beyond Quadratic

Locally quadratic objective function

Consider an overparameterized setting, with
λ1 > λ2 ≥ · · · ≥ λk > λk+1 = · · · = λd = 0 for k > 1.
Suppose

w0 satisfies e>i (w0 − wz) = 0 for i = k + 1, . . . , d ,

SAM is initialized at w0 and applied to the quadratic objective `q.

Then for all t, the condition e>i (wt − wz) = 0 for i > k continues to hold,
and SAM converges to the set{

wz ±
β1

λ1
e1

}
.

What is the impact of bouncing over the ravine?
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SAM: Drifting Towards Wide Minima

Theorem (B., Long, Bousquet, 2022)

For st ∈ {−1, 1}, consider the point wt = wz +
stβ1

λ1
e1

= wz +
ηρλ1st
2− ηλ1

e1.

Then, if Bηρ ≤ 1, SAM’s update on ` gives (for some ‖ζ‖ ≤ 1)

wt+1 − wt = −2
ηρλ1st
2− ηλ1

e1 −
ηρ2

2

(
1 +

ηλ1

2− ηλ1

)2

∇λmax(∇2`(wz))

+ ηρ2

(
(1 + ηλ1)3ρ

6
+ 2(2λ1 + Bρ)η

)
Bζ.

The gradient steps have:

A component that maintains the oscillation in the e1 direction,

A component pointing downhill in the spectral norm of the Hessian,

For small stepsize parameters η, ρ > 0, a smaller component reflecting
the change of third derivative.
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Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

Far from a minimum, GD and SAM descend the gradient of the
objective

Near a minimum, SAM descends the gradient of the spectral norm of
the Hessian.

SAM uses one additional gradient measurement per iteration to
compute a specific third derivative: the gradient of the second
derivative in the leading eigenvector direction.

Statistical benefits of wide global minima of empirical risk?
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Wide global minima of empirical risk?

Coding/information theory:

Hinton and van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. COLT93.

Hochreiter and Schmidhuber. Flat minima. Neural Comput. 1997.

Negrea, Haghifam, Dziugaite, Khisti, Roy. Information-theoretic
generalization bounds for SGLD via data-dependent estimates.
NeurIPS 2019.

Neu, Dziugaite, Haghifam, Roy. Information-theoretic generalization
bounds for stochastic gradient descent. COLT 2021.
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Wide global minima of empirical risk?

PAC-Bayes:

Langford and Caruana. (Not) bounding the true error. NIPS 2002.

Dziugaite, Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than
training data. UAI 2017.

Nonequilibrium statistical physics:

Baldassi, Borgs, Chayes, Ingrosso, Lucibello, Saglietti, and Zecchina.
Unreasonable effectiveness of learning neural networks: From
accessible states and robust ensembles to basic algorithmic schemes.
PNAS 2016.

Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes,
Sagun, and Zecchina. Entropy-SGD: Biasing gradient descent into
wide valleys. ICLR 2017.
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Convergence of Sharpness-Aware Minimization

Outline

SAM with a quadratic criterion: Bouncing across ravines

Stationary points
A non-convex gradient descent
SAM oscillates around minimum

Beyond quadratic: Drifting towards wide minima

SAM near a smooth minimum
Descending the gradient of the spectral norm of the Hessian

Open questions
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