Convergence of Sharpness-Aware Minimization

Peter Bartlett
Google Research and UC Berkeley

IHP
October 6, 2022

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions
- Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions
- Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
- Good prediction despite overfitting and no explicit regularization

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions
- Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
- Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions
- Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
- Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
- e.g., gradient flow motivates the study of minimum norm interpolation

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions
- Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
- Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
- e.g., gradient flow motivates the study of minimum norm interpolation
- e.g., discrete time gradient descent and stochastic gradient descent as gradient flow on penalized losses

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions
- Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
- Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
- e.g., gradient flow motivates the study of minimum norm interpolation
- e.g., discrete time gradient descent and stochastic gradient descent as gradient flow on penalized losses
- e.g., implicit regularization of gradient flow in neural networks

High-dimensional prediction with deep networks

Deep learning

- Deep learning has raised many interesting new questions
- Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
- Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
- e.g., gradient flow motivates the study of minimum norm interpolation
- e.g., discrete time gradient descent and stochastic gradient descent as gradient flow on penalized losses
- e.g., implicit regularization of gradient flow in neural networks
- This talk: optimization for non-linear and high-dimensional prediction
(1) Benign overfitting in a non-linear setting
(2) 'Sharpness-Aware Minimization'

Overfitting in Deep Networks

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017)

- Deep networks can be trained to zero training error (for regression loss)
- ... with near state-of-the-art performance
- ... even for noisy problems.
- No tradeoff between fit to training data and complexity!
- Benign overfitting.

Benign Overfitting

Intuition

- Benign overfitting prediction rule \widehat{f} decomposes as

$$
\widehat{f}=\widehat{f}_{0}+\Delta .
$$

- $\widehat{f}_{0}=$ simple component useful for prediction.
- $\Delta=$ spiky component useful for benign overfitting.
- Classical statistical learning theory applies to \widehat{f}_{0}.
- Δ is not useful for prediction, but it is benign.

Benign Overfitting

Benign Overfitting

Linear Regression

- Benign overfitting prediction rule \widehat{f} decomposes as

$$
\widehat{f}=\widehat{f}_{0}+\Delta
$$

- $\widehat{f}_{0}=$ prediction component:
k^{*}-dim subspace corresponding to $\lambda_{1}, \ldots, \lambda_{k^{*}}$.
- $\Delta=$ benign overfitting component: orthogonal subspace. $\quad \Delta$ is benign only if $R_{k^{*}} \gg n$.

Here,
$\lambda_{1}, \lambda_{2}, \ldots$ are the eigenvalues of the covariate covariance, k^{*} is defined in terms of an effective rank of the covariance in the low-variance orthogonal subspace, and $R_{k^{*}}$ is another effective rank in that subspace.

Benign overfitting

- Benign overfitting in classical settings:
- Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla, Tsybakov, 2022; ...]
- Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019; Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; ...]
- Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang, Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; ...]
- Logistic regression [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021; Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; ...]

Benign overfitting

- Benign overfitting in classical settings:
- Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla, Tsybakov, 2022; ...]
- Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019; Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; ...]
- Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang, Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; ...]
- Logistic regression [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021; Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; ...]
- Benign overfitting in neural networks? (beyond the 'neural tangent kernel' approximation)

Benign overfitting

- Benign overfitting in classical settings:
- Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla, Tsybakov, 2022; ...]
- Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019; Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; ...]
- Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang, Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; ...]
- Logistic regression [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021; Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; ...]
- Benign overfitting in neural networks? (beyond the 'neural tangent kernel' approximation)

Spencer Frei

Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT $2022 . \quad a r X i v: 2202.05928$

Benign overfitting without linearity

Spencer Frei

Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT 2022. arXiv:2202.05928

Outline

- Noisy classification with two-layer neural networks trained by GD

Benign overfitting without linearity

Spencer Frei

Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT 2022. arXiv:2202.05928

Outline

- Noisy classification with two-layer neural networks trained by GD
- Benign overfitting

Benign overfitting without linearity

Spencer Frei

Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT $2022 . \quad a r X i v: 2202.05928$

Outline

- Noisy classification with two-layer neural networks trained by GD
- Benign overfitting
- Proof ideas

Goal and technical challenges

Goal

Understand how benign overfitting can occur in neural networks trained by gradient descent to get insight into 'modern' ML.

Goal and technical challenges

Goal

Understand how benign overfitting can occur in neural networks trained by gradient descent to get insight into 'modern' ML.

Technical challenges:

- Understand non-convex learning dynamics of neural network training.

Goal and technical challenges

Goal

Understand how benign overfitting can occur in neural networks trained by gradient descent to get insight into 'modern' ML.

Technical challenges:

- Understand non-convex learning dynamics of neural network training.
- Understand generalization of interpolating classifiers for noisy data when hypothesis class has unbounded capacity.

Distributional setting

- Mixture of two log-concave isotropic clusters:
- Cluster centered at $+\mu \in \mathbb{R}^{p}$, clean label +1
- Cluster centered at $-\mu \in \mathbb{R}^{p}$, clean label -1
- Allow for constant fraction η of training labels to be flipped ($\tilde{P}_{c l}$: 'clean' distribution, P_{ns} : 'noisy' distribution)
- Assume $\|\mu\|$ grows with dimension p.

Figure: $\mathrm{P}_{\text {clust }}=\mathrm{N}\left(0, I_{2}\right)$ with $\|\mu\|=1.9$ and 15% of the labels flipped.

Model and optimization definitions

- We consider γ-leaky, H-smooth activations
ϕ, satisfying for all $z \in \mathbb{R}$,

$$
0<\gamma \leq \phi^{\prime}(z) \leq 1, \quad\left|\phi^{\prime \prime}(z)\right| \leq H
$$

Two-layer neural networks trained by GD

Model and optimization definitions

- We consider γ-leaky, H-smooth activations ϕ, satisfying for all $z \in \mathbb{R}$,

$$
0<\gamma \leq \phi^{\prime}(z) \leq 1, \quad\left|\phi^{\prime \prime}(z)\right| \leq H
$$

Two-layer neural networks trained by GD

- Network with m neurons, first layer weights $W \in \mathbb{R}^{m \times p}$, second layer weights $\left\{a_{j}\right\}_{j=1}^{m}$ (fixed at initialization),

$$
f(x ; W):=\sum_{j=1}^{m} a_{j} \phi\left(\left\langle w_{j}, x\right\rangle\right)
$$

Model and optimization definitions

- We consider γ-leaky, H-smooth activations ϕ, satisfying for all $z \in \mathbb{R}$,

$$
0<\gamma \leq \phi^{\prime}(z) \leq 1, \quad\left|\phi^{\prime \prime}(z)\right| \leq H
$$

Two-layer neural networks trained by GD

- Network with m neurons, first layer weights $W \in \mathbb{R}^{m \times p}$, second layer weights $\left\{a_{j}\right\}_{j=1}^{m}$ (fixed at initialization),

$$
f(x ; W):=\sum_{j=1}^{m} a_{j} \phi\left(\left\langle w_{j}, x\right\rangle\right) .
$$

- Initialize $\left[W^{(0)}\right]_{r, s} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \omega_{\text {init }}^{2}\right), a_{j} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Unif}(\{1 / \sqrt{m},-1 / \sqrt{m}\})$.

Model and optimization definitions

- We consider γ-leaky, H -smooth activations ϕ, satisfying for all $z \in \mathbb{R}$,

$$
0<\gamma \leq \phi^{\prime}(z) \leq 1, \quad\left|\phi^{\prime \prime}(z)\right| \leq H
$$

Two-layer neural networks trained by GD

- Network with m neurons, first layer weights $W \in \mathbb{R}^{m \times p}$, second layer weights $\left\{a_{j}\right\}_{j=1}^{m}$ (fixed at initialization),

$$
f(x ; W):=\sum_{j=1}^{m} a_{j} \phi\left(\left\langle w_{j}, x\right\rangle\right)
$$

- Initialize $\left[W^{(0)}\right]_{r, s} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \omega_{\text {init }}^{2}\right), a_{j} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Unif}(\{1 / \sqrt{m},-1 / \sqrt{m}\})$.
- For $\ell(z)=\log (1+\exp (-z))$, data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P_{\mathrm{ns}}, \alpha>0$,

$$
W^{(t+1)}=W^{(t)}-\alpha \nabla \widehat{L}\left(W^{(t)}\right)=W^{(t)}-\alpha \nabla\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i} f\left(x_{i} ; W^{(t)}\right)\right)\right)
$$

The setting

For failure probability $\delta \in(0,1)$, large $C>1$:
(A1) Number of samples $n \geq C \log (1 / \delta)$.

$\mathrm{P}_{\text {clust }}=\mathrm{N}\left(0, I_{2}\right)$ with $\|\mu\|=1.9$ and 15% of the labels flipped.

The setting

For failure probability $\delta \in(0,1)$, large $C>1$:
(A1) Number of samples $n \geq C \log (1 / \delta)$.
(A2) Mean separation $\|\mu\|=\Theta\left(p^{\frac{1}{3}}\right)$.

- Holds for more general $\|\mu\|=\omega_{p}(1)$.

$$
\begin{aligned}
& \mathrm{P}_{\text {clust }}=\mathrm{N}\left(0, I_{2}\right) \text { with } \\
& \|\mu\|=1.9 \text { and } 15 \% \text { of } \\
& \text { the labels flipped. }
\end{aligned}
$$

The setting

For failure probability $\delta \in(0,1)$, large $C>1$:

(A1) Number of samples $n \geq C \log (1 / \delta)$.
(A2) Mean separation $\|\mu\|=\Theta\left(p^{\frac{1}{3}}\right)$.

- Holds for more general $\|\mu\|=\omega_{p}(1)$.
(A3) Dimension $p \gtrsim n^{3}$.
- Ensures all samples are \approx orthogonal.

$$
P_{\text {clust }}=N\left(0, I_{2}\right) \text { with }
$$

$$
\|\mu\|=1.9 \text { and } 15 \% \text { of }
$$ the labels flipped.

The setting

For failure probability $\delta \in(0,1)$, large $C>1$:

$\mathrm{P}_{\text {clust }}=\mathrm{N}\left(0, I_{2}\right)$ with $\|\mu\|=1.9$ and 15% of the labels flipped.
(A1) Number of samples $n \geq C \log (1 / \delta)$.
(A2) Mean separation $\|\mu\|=\Theta\left(p^{\frac{1}{3}}\right)$.

- Holds for more general $\|\mu\|=\omega_{p}(1)$.
(A3) Dimension $p \gtrsim n^{3}$.
- Ensures all samples are \approx orthogonal.
(A4) Noise rate $\eta \leq 1 / C$.

The setting

For failure probability $\delta \in(0,1)$, large $C>1$:

$\mathrm{P}_{\text {clust }}=\mathrm{N}\left(0, I_{2}\right)$ with $\|\mu\|=1.9$ and 15% of the labels flipped.
(A1) Number of samples $n \geq C \log (1 / \delta)$.
(A2) Mean separation $\|\mu\|=\Theta\left(p^{\frac{1}{3}}\right)$.

- Holds for more general $\|\mu\|=\omega_{p}(1)$.
(A3) Dimension $p \gtrsim n^{3}$.
- Ensures all samples are \approx orthogonal.
(A4) Noise rate $\eta \leq 1 / C$.
(A5) Large step-size relative to initialization: $\alpha \geq \omega_{\text {init }} \sqrt{m p}$.
- Ensures 'feature-learning' (non-NTK) after one step.

The setting

For failure probability $\delta \in(0,1)$, large $C>1$:

$\mathrm{P}_{\text {clust }}=\mathrm{N}\left(0, I_{2}\right)$ with $\|\mu\|=1.9$ and 15% of the labels flipped.
(A1) Number of samples $n \geq C \log (1 / \delta)$.
(A2) Mean separation $\|\mu\|=\Theta\left(p^{\frac{1}{3}}\right)$.

- Holds for more general $\|\mu\|=\omega_{p}(1)$.
(A3) Dimension $p \gtrsim n^{3}$.
- Ensures all samples are \approx orthogonal.
(A4) Noise rate $\eta \leq 1 / C$.
(A5) Large step-size relative to initialization: $\alpha \geq \omega_{\text {init }} \sqrt{m p}$.
- Ensures 'feature-learning' (non-NTK) after one step.
- Networks of arbitrary width $m \geq 1$.

Benign overfitting in neural networks trained by GD

For $C>1$ large enough under Assumptions (A1) through (A5):

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with stepsize α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:

Benign overfitting in neural networks trained by GD

For $C>1$ large enough under Assumptions (A1) through (A5):

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with stepsize α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:
(1) $y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right)$ for all i with training loss $\widehat{L}\left(W^{(T)}\right) \leq \varepsilon$.

Benign overfitting in neural networks trained by GD

For $C>1$ large enough under Assumptions (A1) through (A5):

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with stepsize α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:
(1) $y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right)$ for all i with training loss $\widehat{L}\left(W^{(T)}\right) \leq \varepsilon$.
(2) The test error satisfies

$$
\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}\left[y \neq \operatorname{sgn}\left(f\left(x ; W^{(T)}\right)\right)\right] \leq \eta+2 \exp \left(-c \cdot n p^{\frac{1}{3}}\right)
$$

Benign overfitting in neural networks trained by GD

For $C>1$ large enough under Assumptions (A1) through (A5):

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with stepsize α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:
(1) $y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right)$ for all i with training loss $\widehat{L}\left(W^{(T)}\right) \leq \varepsilon$.
(2) The test error satisfies

$$
\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}\left[y \neq \operatorname{sgn}\left(f\left(x ; W^{(T)}\right)\right)\right] \leq \eta+2 \exp \left(-c \cdot n p^{\frac{1}{3}}\right) .
$$

- Training error is ≈ 0 with noisy labels (overfitting), yet still generalizing near Bayes-optimal (benign).

Benign overfitting in neural networks trained by GD

For $C>1$ large enough under Assumptions (A1) through (A5):

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with stepsize α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:
(1) $y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right)$ for all i with training loss $\widehat{L}\left(W^{(T)}\right) \leq \varepsilon$.
(2) The test error satisfies

$$
\mathbb{P}_{(x, y) \sim \mathbb{P}_{\mathrm{ns}}}\left[y \neq \operatorname{sgn}\left(f\left(x ; W^{(T)}\right)\right)\right] \leq \eta+2 \exp \left(-c \cdot n p^{\frac{1}{3}}\right)
$$

- Training error is ≈ 0 with noisy labels (overfitting), yet still generalizing near Bayes-optimal (benign).
- Any width $m \geq 1$: no dependence on m (except $\alpha \geq \omega_{\text {init }} \sqrt{m p}$).

Benign overfitting and uniform convergence

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with l.r. α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, w.h.p. over the random initialization and sample:
(1) $y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right)$ for all i with training loss $\widehat{L}\left(W^{(T)}\right) \leq \varepsilon$.
(2) The test error satisfies

$$
\mathbb{P}_{(x, y) \sim \mathbb{P}_{\mathrm{ns}}}\left[y \neq \operatorname{sgn}\left(f\left(x ; W^{(T)}\right)\right)\right] \leq \eta+2 \exp \left(-c \cdot n p^{\frac{1}{3}}\right)
$$

Benign overfitting and uniform convergence

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with I.r. α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, w.h.p. over the random initialization and sample:
(1) $y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right)$ for all i with training loss $\widehat{L}\left(W^{(T)}\right) \leq \varepsilon$.
(2) The test error satisfies

$$
\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}\left[y \neq \operatorname{sgn}\left(f\left(x ; W^{(T)}\right)\right)\right] \leq \eta+2 \exp \left(-c \cdot n p^{\frac{1}{3}}\right)
$$

- As $\varepsilon \rightarrow 0,\left\|W^{(T)}\right\| \rightarrow \infty$.

Benign overfitting and uniform convergence

Theorem

For $0<\varepsilon<1 / 2 n$, by running GD with I.r. α, for $T \geq C \alpha^{-1} \varepsilon^{-2}$ iterations, w.h.p. over the random initialization and sample:
(1) $y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right)$ for all i with training loss $\widehat{L}\left(W^{(T)}\right) \leq \varepsilon$.
(2) The test error satisfies

$$
\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}\left[y \neq \operatorname{sgn}\left(f\left(x ; W^{(T)}\right)\right)\right] \leq \eta+2 \exp \left(-c \cdot n p^{\frac{1}{3}}\right)
$$

- As $\varepsilon \rightarrow 0,\left\|W^{(T)}\right\| \rightarrow \infty$.
- Predictor has unbounded norm, neural net can be arbitrarily wide, achieves ≈ 0 training loss, generalizes near-optimally —Bayes error $\geq \eta=\Omega(1)$.
- Many ways to overfit: $p \gg n$, width $\gg 1, \ldots$

Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that $\mathbb{E}_{(x, \tilde{y}) \sim \tilde{P}_{c l}}[\tilde{y} f(x ; W)] \geq 0$. Then there exists a universal constant c>0 such that
$\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}(y \neq \operatorname{sgn}(f(x ; W))) \leq \eta+2 \exp \left(-c\left(\frac{\mathbb{E}_{(x, \tilde{y}) \sim \tilde{\mathrm{P}}_{\mathrm{c}}}[\tilde{y} f(x ; W)]}{\|W\|_{F}}\right)^{2}\right)$

Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that $\mathbb{E}_{(x, \tilde{y}) \sim \tilde{P}_{c l}}[\tilde{y} f(x ; W)] \geq 0$. Then there exists a universal constant c>0 such that
$\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}(y \neq \operatorname{sgn}(f(x ; W))) \leq \eta+2 \exp \left(-c\left(\frac{\mathbb{E}_{(x, \tilde{y}) \sim \tilde{\mathrm{P}}_{\mathrm{c}}}[\tilde{y} f(x ; W)]}{\|W\|_{F}}\right)^{2}\right)$

- Benign overfitting occurs if we can show:
(1) Normalized margin on clean points is large:

$$
\frac{\mathbb{E}_{(x, \tilde{y}) \sim \tilde{P}_{\mathrm{c}}}\left[\tilde{y} f\left(x ; W^{(T)}\right)\right]}{\left\|W^{(T)}\right\|_{F}} \gg 0 .
$$

Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that $\mathbb{E}_{(x, \tilde{y}) \sim \tilde{P}_{c l}}[\tilde{y} f(x ; W)] \geq 0$. Then there exists a universal constant c>0 such that
$\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}(y \neq \operatorname{sgn}(f(x ; W))) \leq \eta+2 \exp \left(-c\left(\frac{\mathbb{E}_{(x, \tilde{y}) \sim \tilde{\mathrm{P}}_{\mathrm{c}}}[\tilde{f} f(x ; W)]}{\|W\|_{F}}\right)^{2}\right)$

- Benign overfitting occurs if we can show:
(1) Normalized margin on clean points is large:

$$
\frac{\mathbb{E}_{(x, \tilde{y}) \sim \tilde{P}_{c}}\left[\tilde{y} f\left(x ; W^{(T)}\right)\right]}{\left\|W^{(T)}\right\|_{F}} \gg 0 .
$$

(2) Empirical risk can be driven to zero:

$$
y_{i}=\operatorname{sgn}\left(f\left(x_{i} ; W^{(T)}\right)\right) \text { for all } i, \quad \text { and } \quad \widehat{L}\left(W^{(T)}\right) \approx 0
$$

Gradient descent ensures good generalization performance

Lemma

For any $t \geq 1$, for a step size large relative to random initialization,

$$
\begin{aligned}
\mathbb{E}_{(x, \tilde{y}) \sim \tilde{\mathrm{P}}_{\mathrm{cl}}}\left[\frac{\tilde{y} f\left(x ; W^{(t)}\right)}{\left\|W^{(t)}\right\|_{F}}\right] & \gtrsim \sqrt{n p^{1 / 3}} \gg 0 \\
\mathbb{P}_{(x, y) \sim \mathrm{P}_{\mathrm{ns}}}\left(y \neq \operatorname{sgn}\left(f\left(x ; W^{(t)}\right)\right)\right) & \leq \eta+2 \exp \left(-c \cdot n p^{1 / 3}\right) .
\end{aligned}
$$

- Gradient descent produces a particular neural network which will classify well, regardless of $\left\|W^{(t)}\right\|_{F}$, with sub-polynomial samples.

Outline

Optimization for high-dimensional prediction

(1) Benign overfitting in a non-linear setting
(2) 'Sharpness-Aware Minimization'

Sharpness-Aware Minimization: Prediction Performance

Foret, Kleiner, Mobahi, Neyshabur. 2021

Sharpness-Aware Minimization

Sharpness-Aware Minimization for Efficiently Improving Generalization. Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

Sharpness-Aware Minimization

Sharpness-Aware Minimization for Efficiently Improving Generalization. Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

- The story: For an empirical loss ℓ defined on a parameter space: $\min _{w} \max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)$.

Sharpness-Aware Minimization

Sharpness-Aware Minimization for Efficiently Improving Generalization. Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

- The story: For an empirical loss ℓ defined on a parameter space: $\min _{w} \max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)$.
- The rationale:

$$
\max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)=\underbrace{\max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)-\ell(w)}_{\text {sharpness }}+\ell(w) .
$$

Sharpness-Aware Minimization

Sharpness-Aware Minimization for Efficiently Improving Generalization.
Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

- The story: For an empirical loss ℓ defined on a parameter space: $\min _{w} \max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)$.
- The rationale:

$$
\max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)=\underbrace{\max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)-\ell(w)}_{\text {sharpness }}+\ell(w) .
$$

- The reality: First order simplification:

$$
w_{t+1}=w_{t}-\eta \nabla \ell\left(w_{t}+\rho \frac{\nabla \ell\left(w_{t}\right)}{\left\|\nabla \ell\left(w_{t}\right)\right\|}\right) .
$$

Sharpness-Aware Minimization

Foret, Kleiner, Mobahi, Neyshabur. 2021

Visualizing SAM Minima

ResNet trained with SGD versus SAM

Foret, Kleiner, Mobahi, Neyshabur. 2021

Convergence of Sharpness-Aware Minimization

Phil Long

Olivier Bousquet

- The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

Outline

Convergence of Sharpness-Aware Minimization

Phil Long

Olivier Bousquet

- The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

Outline

- SAM with a quadratic criterion: Bouncing across ravines
- Stationary points
- A non-convex gradient descent
- SAM oscillates around minimum

Convergence of Sharpness-Aware Minimization

Phil Long

Olivier Bousquet

- The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

Outline

- SAM with a quadratic criterion: Bouncing across ravines
- Stationary points
- A non-convex gradient descent
- SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
- SAM near a smooth minimum
- Descending the gradient of the spectral norm of the Hessian

Convergence of Sharpness-Aware Minimization

Phil Long

Olivier Bousquet

- The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

Outline

- SAM with a quadratic criterion: Bouncing across ravines
- Stationary points
- A non-convex gradient descent
- SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
- SAM near a smooth minimum
- Descending the gradient of the spectral norm of the Hessian
- Open questions

SAM with a quadratic criterion

SAM

For a loss function $\ell: \mathbb{R}^{d} \rightarrow \mathbb{R}$, SAM starts with an initial parameter vector $w_{0} \in \mathbb{R}^{d}$ and updates

$$
w_{t+1}=w_{t}-\eta \nabla \ell\left(w_{t}+\rho \frac{\nabla \ell\left(w_{t}\right)}{\left\|\nabla \ell\left(w_{t}\right)\right\|}\right) .
$$

where $\eta, \rho>0$ are step size parameters.

SAM with a quadratic criterion

SAM

For a loss function $\ell: \mathbb{R}^{d} \rightarrow \mathbb{R}$, SAM starts with an initial parameter vector $w_{0} \in \mathbb{R}^{d}$ and updates

$$
w_{t+1}=w_{t}-\eta \nabla \ell\left(w_{t}+\rho \frac{\nabla \ell\left(w_{t}\right)}{\left\|\nabla \ell\left(w_{t}\right)\right\|}\right) .
$$

where $\eta, \rho>0$ are step size parameters.

SAM with quadratic loss

Fix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{1} \geq \cdots \lambda_{d} \geq 0$ and consider loss

$$
\ell(w)=\frac{1}{2} w^{\top} \Lambda w .
$$

Then $\nabla \ell(w)=\Lambda w$ and $w_{t+1}=\left(1-\eta \Lambda-\frac{\eta \rho}{\left\|\Lambda w_{t}\right\|} \Lambda^{2}\right) w_{t}$.

Bouncing across ravines

Theorem

There is an absolute constant c such that for any eigenvalues $\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{d}>0$, any neighborhood size $\rho>0$, and any step size $0<\eta<\frac{1}{2 \lambda_{1}}$, for all small enough $\epsilon, \delta>0$, if w_{0} is sampled from a continuous probability distribution over \mathbb{R}^{d} (density bounded above by A; $\left\|w_{0}\right\|$ not too big; $\left|w_{0,1}\right|$ not too small), then with probability $1-\delta$, for all t sufficiently large (polynomial in $d, 1 /\left(\eta \lambda_{d}\right), \lambda_{1} / \lambda_{d}$ and $1 /\left(\lambda_{1}^{2} / \lambda_{2}^{2}-1\right)$, polylogarithmic in other parameters), for some

$$
w^{*} \in\left\{ \pm \frac{\eta \rho \lambda_{1}}{2-\eta \lambda_{1}} e_{1}\right\}
$$

and for all $s \geq t,\left\|w_{2 s}-w^{*}\right\| \leq \epsilon$ and $\left\|w_{2 s+1}+w^{*}\right\| \leq \epsilon$.

SAM with a quadratic criterion

A reparameterization

Define $v_{t}=\nabla \ell\left(w_{t}\right)=\Lambda w_{t}$. Then

$$
v_{t+1}=\left(I-\eta \Lambda-\frac{\eta \rho}{\left\|v_{t}\right\|} \Lambda^{2}\right) v_{t}
$$

SAM with a quadratic criterion

A reparameterization

Define $v_{t}=\nabla \ell\left(w_{t}\right)=\Lambda w_{t}$. Then

$$
v_{t+1}=\left(I-\eta \Lambda-\frac{\eta \rho}{\left\|v_{t}\right\|} \Lambda^{2}\right) v_{t}
$$

so, for all i and all t, we have

$$
\begin{aligned}
v_{t+1, i} & =\left(1-\eta \lambda_{i}-\frac{\eta \rho \lambda_{i}^{2}}{\left\|v_{t}\right\|}\right) v_{t, i} \\
& =\left(1-\eta \lambda_{i}\right)\left(1-\frac{\gamma_{i}}{\left\|v_{t}\right\|}\right) v_{t, i}
\end{aligned}
$$

where $\gamma_{i}:=\frac{\eta \rho \lambda_{i}^{2}}{1-\eta \lambda_{i}}$.

SAM with a quadratic criterion

A reparameterization

Define $v_{t}=\nabla \ell\left(w_{t}\right)=\Lambda w_{t}$. Then

$$
v_{t+1}=\left(I-\eta \Lambda-\frac{\eta \rho}{\left\|v_{t}\right\|} \Lambda^{2}\right) v_{t}
$$

so, for all i and all t, we have

$$
\begin{aligned}
v_{t+1, i} & =\left(1-\eta \lambda_{i}-\frac{\eta \rho \lambda_{i}^{2}}{\left\|v_{t}\right\|}\right) v_{t, i} \\
& =\left(1-\eta \lambda_{i}\right)\left(1-\frac{\gamma_{i}}{\left\|v_{t}\right\|}\right) v_{t, i}
\end{aligned}
$$

where $\gamma_{i}:=\frac{\eta \rho \lambda_{i}^{2}}{1-\eta \lambda_{i}}$.
Nonlinear recurrence, but coupled only by $\left\|v_{t}\right\|$.

SAM with a quadratic criterion

Define $\beta_{i}=\frac{1-\eta \lambda_{i}}{2-\eta \lambda_{i}} \gamma_{i}=\frac{\eta \rho \lambda_{i}^{2}}{2-\eta \lambda_{i}}$.

Solutions are in the eigenvector directions, β_{i} from the minimum

The set of non-zero solutions $\left(v_{1}^{2}, \ldots, v_{d}^{2}\right)$ to $\forall i, v_{t+1, i}^{2}=v_{t, i}^{2}$ is

$$
\bigcup_{i=1}^{d} \operatorname{co}\left\{\beta_{i}^{2} e_{j}: \beta_{j}=\beta_{i}\right\}
$$

where $\operatorname{co}(S)$ denotes the convex hull of a set S and e_{j} is the j th basis vector in \mathbb{R}^{d}.

SAM with a quadratic criterion

$$
\text { Define } \alpha_{i}=\frac{\left(1-\eta \lambda_{1}\right) \gamma_{1}+\left(1-\eta \lambda_{i}\right) \gamma_{i}}{1-\eta \lambda_{1}+1-\eta \lambda_{i}}
$$

$$
\text { Recall } \beta_{i}=\frac{1-\eta \lambda_{i}}{2-\eta \lambda_{i}} \gamma_{i}
$$

SAM with a quadratic criterion

Define $\alpha_{i}=\frac{\left(1-\eta \lambda_{1}\right) \gamma_{1}+\left(1-\eta \lambda_{i}\right) \gamma_{i}}{1-\eta \lambda_{1}+1-\eta \lambda_{i}} . \quad \quad$ Recall $\beta_{i}=\frac{1-\eta \lambda_{i}}{2-\eta \lambda_{i}} \gamma_{i}$.
If $\lambda_{1}>\lambda_{2}$, then $\beta_{d} \leq \cdots \leq \beta_{1}<\alpha_{d} \leq \cdots \alpha_{2} \leq \alpha_{1}=\gamma_{1}$.

SAM with a quadratic criterion

Define $\alpha_{i}=\frac{\left(1-\eta \lambda_{1}\right) \gamma_{1}+\left(1-\eta \lambda_{i}\right) \gamma_{i}}{1-\eta \lambda_{1}+1-\eta \lambda_{i}}$.

$$
\text { Recall } \beta_{i}=\frac{1-\eta \lambda_{i}}{2-\eta \lambda_{i}} \gamma_{i}
$$

If $\lambda_{1}>\lambda_{2}$, then $\beta_{d} \leq \cdots \leq \beta_{1}<\alpha_{d} \leq \cdots \alpha_{2} \leq \alpha_{1}=\gamma_{1}$.
Norm of v versus β_{i} determines how components grow
$\left\|v_{t}\right\|>\beta_{i}$ iff $v_{t+1, i}^{2}<v_{t, i}^{2}$.

SAM with a quadratic criterion

Define $\alpha_{i}=\frac{\left(1-\eta \lambda_{1}\right) \gamma_{1}+\left(1-\eta \lambda_{i}\right) \gamma_{i}}{1-\eta \lambda_{1}+1-\eta \lambda_{i}}$.

$$
\text { Recall } \beta_{i}=\frac{1-\eta \lambda_{i}}{2-\eta \lambda_{i}} \gamma_{i}
$$

If $\lambda_{1}>\lambda_{2}$, then $\beta_{d} \leq \cdots \leq \beta_{1}<\alpha_{d} \leq \cdots \alpha_{2} \leq \alpha_{1}=\gamma_{1}$.
Norm of v versus β_{i} determines how components grow
$\left\|v_{t}\right\|>\beta_{i}$ iff $v_{t+1, i}^{2}<v_{t, i}^{2}$.

Norm of v versus α_{i} determines relative growth
If $\lambda_{1}>\lambda_{2}$, then for $i \in\{2, \ldots, d\},\left\|v_{t}\right\|<\alpha_{i}$ iff $\frac{v_{t+1,1}^{2}}{v_{t+1, i}^{2}}>\frac{v_{t, 1}^{2}}{v_{t, i}^{2}}$.

SAM with a quadratic criterion

Define $\alpha_{i}=\frac{\left(1-\eta \lambda_{1}\right) \gamma_{1}+\left(1-\eta \lambda_{i}\right) \gamma_{i}}{1-\eta \lambda_{1}+1-\eta \lambda_{i}} . \quad \quad$ Recall $\beta_{i}=\frac{1-\eta \lambda_{i}}{2-\eta \lambda_{i}} \gamma_{i}$.
If $\lambda_{1}>\lambda_{2}$, then $\beta_{d} \leq \cdots \leq \beta_{1}<\alpha_{d} \leq \cdots \alpha_{2} \leq \alpha_{1}=\gamma_{1}$.
Norm of v versus β_{i} determines how components grow
$\left\|v_{t}\right\|>\beta_{i}$ iff $v_{t+1, i}^{2}<v_{t, i}^{2}$.

Norm of v versus α_{i} determines relative growth
If $\lambda_{1}>\lambda_{2}$, then for $i \in\{2, \ldots, d\},\left\|v_{t}\right\|<\alpha_{i}$ iff $\frac{v_{t+1,1}^{2}}{v_{t+1, i}^{2}}>\frac{v_{t, 1}^{2}}{v_{t, i}^{2}}$.
Define $b=\left(1-\eta \lambda_{1}\right) \gamma_{1}$.
$\left\|v_{t}\right\| \leq b$ implies $\left\|v_{t+1}\right\| \leq b \quad$ (and the decay to b is exponentially fast).

A non-convex gradient descent

Lemma

For $u_{t}:=(-1)^{t} w_{t}$, if $\left\|w_{t}\right\|>0$,

$$
u_{t+1}=u_{t}-\eta \rho \nabla J\left(u_{t}\right)
$$

A non-convex gradient descent

Lemma

For $u_{t}:=(-1)^{t} w_{t}$, if $\left\|w_{t}\right\|>0$,

$$
u_{t+1}=u_{t}-\eta \rho \nabla J\left(u_{t}\right)
$$

where

$$
J(u)=\frac{1}{2} u^{\top} C u-\|\Lambda u\|, \quad C=\operatorname{diag}\left(\frac{\lambda_{1}^{2}}{\beta_{1}}, \ldots, \frac{\lambda_{d}^{2}}{\beta_{d}}\right) .
$$

A non-convex gradient descent

Lemma

For $u_{t}:=(-1)^{t} w_{t}$, if $\left\|w_{t}\right\|>0$,

$$
u_{t+1}=u_{t}-\eta \rho \nabla J\left(u_{t}\right)
$$

where

$$
J(u)=\frac{1}{2} u^{\top} C u-\|\Lambda u\|, \quad C=\operatorname{diag}\left(\frac{\lambda_{1}^{2}}{\beta_{1}}, \ldots, \frac{\lambda_{d}^{2}}{\beta_{d}}\right) .
$$

Also,

$$
J\left(u_{t+1}\right)-J\left(u_{t}\right) \leq-\frac{1}{2 \rho} \sum_{i=1}^{d} u_{t, i}^{2}\left(1-\frac{\beta_{i}}{\left\|\Lambda u_{t}\right\|}\right)^{2}\left(2-\eta \lambda_{i}\right)^{2} \lambda_{i}
$$

A non-convex gradient descent

$$
\begin{aligned}
& \text { Properties of } J \\
& \nabla J(u)=0 \text { iff for some } i,\|u\|=\beta_{i} / \lambda_{i} \text { and } u \in \operatorname{span}\left\{e_{j}: \beta_{j}=\beta_{i}\right\} .
\end{aligned}
$$

A non-convex gradient descent

Properties of J

$\nabla J(u)=0$ iff for some $i,\|u\|=\beta_{i} / \lambda_{i}$ and $u \in \operatorname{span}\left\{e_{j}: \beta_{j}=\beta_{i}\right\}$. For unit norm \widehat{u} satisfying $\nabla J\left(\beta_{i} / \lambda_{i} \widehat{u}\right)=0$,

$$
\nabla^{2} J\left(\frac{\beta_{i}}{\lambda_{i}} \widehat{u}\right)=\Lambda^{2}\left(\sum_{j: \beta_{j} \neq \beta_{i}}\left(\frac{1}{\beta_{j}}-\frac{1}{\beta_{i}}\right) e_{j} e_{j}^{\top}+\frac{1}{\beta_{i}} \widehat{u} \widehat{u}^{\top}\right),
$$

which has $\left|\left\{j: \beta_{j}<\beta_{i}\right\}\right|+1$ positive eigenvalues, $\left|\left\{j: \beta_{j}>\beta_{i}\right\}\right|$ negative eigenvalues, and $\left|\left\{j: \beta_{j}=\beta_{i}\right\}\right|-1$ zero eigenvalues.

A non-convex gradient descent

Properties of J

$\nabla J(u)=0$ iff for some $i,\|u\|=\beta_{i} / \lambda_{i}$ and $u \in \operatorname{span}\left\{e_{j}: \beta_{j}=\beta_{i}\right\}$. For unit norm \widehat{u} satisfying $\nabla J\left(\beta_{i} / \lambda_{i} \widehat{u}\right)=0$,

$$
\nabla^{2} J\left(\frac{\beta_{i}}{\lambda_{i}} \widehat{u}\right)=\Lambda^{2}\left(\sum_{j: \beta_{j} \neq \beta_{i}}\left(\frac{1}{\beta_{j}}-\frac{1}{\beta_{i}}\right) e_{j} e_{j}^{\top}+\frac{1}{\beta_{i}} \widehat{u} \widehat{u}^{\top}\right),
$$

which has $\left|\left\{j: \beta_{j}<\beta_{i}\right\}\right|+1$ positive eigenvalues, $\left|\left\{j: \beta_{j}>\beta_{i}\right\}\right|$ negative eigenvalues, and $\left|\left\{j: \beta_{j}=\beta_{i}\right\}\right|-1$ zero eigenvalues.
The set of all stationary points with only non-negative eigenvalues is

$$
M=\left\{u \in \mathbb{R}^{d}:\|u\|=\frac{\beta_{1}}{\lambda_{1}}, u \in \operatorname{span}\left\{e_{j}: \beta_{j}=\beta_{1}\right\}\right\}
$$

and this is the set of global minima. There are no other local minima.

A non-convex gradient descent

Lemma

For $\epsilon>0$, and $\left\|v_{T_{0}}\right\| \leq b$,

$$
\begin{aligned}
\left|\left\{t \geq T_{0}:\left\|v_{t}\right\| \geq(1+\epsilon) \beta_{1}\right\}\right| & \leq \frac{2}{\eta \epsilon^{2} \lambda_{1} \beta_{1}}\left(\max _{\|\Lambda w\| \leq b} J(w)-\min _{w} J(w)\right) \\
& \leq \frac{3 \beta_{1}}{\eta \epsilon^{2} \lambda_{1} \beta_{d}} .
\end{aligned}
$$

Recall:

- $\beta_{d} \leq \cdots \leq \beta_{1}<\alpha_{d} \leq \cdots \alpha_{2} \leq \alpha_{1}=\gamma_{1}$,
- Norm of v versus β_{i} determines how components grow, and
- Norm of v versus α_{i} determines relative growth compared to the leading component.

Bouncing across ravines

Theorem

There is an absolute constant c such that for any eigenvalues $\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{d}>0$, any neighborhood size $\rho>0$, and any step size $0<\eta<\frac{1}{2 \lambda_{1}}$, for all small enough $\epsilon, \delta>0$, if w_{0} is sampled from a continuous probability distribution over \mathbb{R}^{d} (density bounded above by A; $\left\|w_{0}\right\|$ not too big; $\left|w_{0,1}\right|$ not too small), then with probability $1-\delta$, for all t sufficiently large (polynomial in $d, 1 /\left(\eta \lambda_{d}\right), \lambda_{1} / \lambda_{d}$ and $1 /\left(\lambda_{1}^{2} / \lambda_{2}^{2}-1\right)$, polylogarithmic in other parameters), for some

$$
w^{*} \in\left\{ \pm \frac{\eta \rho \lambda_{1}}{2-\eta \lambda_{1}} e_{1}\right\}
$$

and for all $s \geq t,\left\|w_{2 s}-w^{*}\right\| \leq \epsilon$ and $\left\|w_{2 s+1}+w^{*}\right\| \leq \epsilon$.

Bouncing across ravines

SAM's asymptotic behavior

For some

$$
w^{*} \in\left\{ \pm \frac{\eta \rho \lambda_{1}}{2-\eta \lambda_{1}} e_{1}\right\}
$$

and for all $s \geq t, w_{2 s} \approx w^{*}$ and $w_{2 s+1} \approx-w^{*}$.

Bouncing across ravines

SAM's asymptotic behavior

For some

$$
w^{*} \in\left\{ \pm \frac{\eta \rho \lambda_{1}}{2-\eta \lambda_{1}} e_{1}\right\}
$$

and for all $s \geq t, w_{2 s} \approx w^{*}$ and $w_{2 s+1} \approx-w^{*}$.

- This is not the solution to the motivating minimax optimization problem: for $\ell(w)=w^{\top} \Lambda w / 2$,

$$
\arg \min _{w} \max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)=0 .
$$

Bouncing across ravines

SAM's asymptotic behavior

For some

$$
w^{*} \in\left\{ \pm \frac{\eta \rho \lambda_{1}}{2-\eta \lambda_{1}} e_{1}\right\}
$$

and for all $s \geq t, w_{2 s} \approx w^{*}$ and $w_{2 s+1} \approx-w^{*}$.

- This is not the solution to the motivating minimax optimization problem: for $\ell(w)=w^{\top} \Lambda w / 2$,

$$
\arg \min _{w} \max _{\|\epsilon\| \leq \rho} \ell(w+\epsilon)=0 .
$$

- SAM's gradient-based approach leads to oscillations around the minimum.
These oscillations have an impact for a non-quadratic loss.

Convergence of Sharpness-Aware Minimization

Outline

- SAM with a quadratic criterion: Bouncing across ravines
- Stationary points
- A non-convex gradient descent
- SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
- SAM near a smooth minimum
- Descending the gradient of the spectral norm of the Hessian
- Open questions

SAM: Beyond Quadratic

Locally quadratic objective function

Consider a smooth objective ℓ with a slowly varying (B-Lipschitz) third derivative:

$$
\left\|D^{3} \ell(w)-D^{3} \ell\left(w^{\prime}\right)\right\| \leq B\left\|w-w^{\prime}\right\|
$$

SAM: Beyond Quadratic

Locally quadratic objective function

Consider a smooth objective ℓ with a slowly varying (B-Lipschitz) third derivative:

$$
\left\|D^{3} \ell(w)-D^{3} \ell\left(w^{\prime}\right)\right\| \leq B\left\|w-w^{\prime}\right\|
$$

Consider a local minimum $w_{z} \in \mathbb{R}^{d}$:

$$
\nabla \ell\left(w_{z}\right)=0, \quad H:=\nabla^{2} \ell\left(w_{z}\right)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)
$$

with $\lambda_{1} \geq \cdots \geq \lambda_{d} \geq 0$.

SAM: Beyond Quadratic

Locally quadratic objective function

Consider a smooth objective ℓ with a slowly varying (B-Lipschitz) third derivative:

$$
\left\|D^{3} \ell(w)-D^{3} \ell\left(w^{\prime}\right)\right\| \leq B\left\|w-w^{\prime}\right\|
$$

Consider a local minimum $w_{z} \in \mathbb{R}^{d}$:

$$
\nabla \ell\left(w_{z}\right)=0, \quad H:=\nabla^{2} \ell\left(w_{z}\right)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)
$$

with $\lambda_{1} \geq \cdots \geq \lambda_{d} \geq 0$.
Near w_{z}, ℓ is close to

$$
\ell_{q}(w)=\ell\left(w_{z}\right)+\frac{1}{2}\left(w-w_{z}\right)^{\top} H\left(w-w_{z}\right) .
$$

SAM: Beyond Quadratic

Locally quadratic objective function

Consider an overparameterized setting, with $\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{k}>\lambda_{k+1}=\cdots=\lambda_{d}=0$ for $k>1$. Suppose

- w_{0} satisfies $e_{i}^{\top}\left(w_{0}-w_{z}\right)=0$ for $i=k+1, \ldots, d$,
- SAM is initialized at w_{0} and applied to the quadratic objective ℓ_{q}. Then for all t, the condition $e_{i}^{\top}\left(w_{t}-w_{z}\right)=0$ for $i>k$ continues to hold, and SAM converges to the set

$$
\left\{w_{z} \pm \frac{\beta_{1}}{\lambda_{1}} e_{1}\right\}
$$

SAM: Beyond Quadratic

Locally quadratic objective function

Consider an overparameterized setting, with $\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{k}>\lambda_{k+1}=\cdots=\lambda_{d}=0$ for $k>1$. Suppose

- w_{0} satisfies $e_{i}^{\top}\left(w_{0}-w_{z}\right)=0$ for $i=k+1, \ldots, d$,
- SAM is initialized at w_{0} and applied to the quadratic objective ℓ_{q}.

Then for all t, the condition $e_{i}^{\top}\left(w_{t}-w_{z}\right)=0$ for $i>k$ continues to hold, and SAM converges to the set

$$
\left\{w_{z} \pm \frac{\beta_{1}}{\lambda_{1}} e_{1}\right\}
$$

- What is the impact of bouncing over the ravine?

SAM: Drifting Towards Wide Minima

Theorem

For $s_{t} \in\{-1,1\}$, consider the point $w_{t}=w_{z}+\frac{s_{t} \beta_{1}}{\lambda_{1}} e_{1}$
Then, if $B \eta \rho \leq 1$, SAM's update on ℓ gives
(for some $\|\zeta\| \leq 1$)

$$
\begin{gathered}
w_{t+1}-w_{t}=-2 \frac{\eta \rho \lambda_{1} s_{t}}{2-\eta \lambda_{1}} e_{1}-\frac{\eta \rho^{2}}{2}\left(1+\frac{\eta \lambda_{1}}{2-\eta \lambda_{1}}\right)^{2} \nabla \lambda_{\max }\left(\nabla^{2} \ell\left(w_{z}\right)\right) \\
+\eta \rho^{2}\left(\frac{\left(1+\eta \lambda_{1}\right)^{3} \rho}{6}+2\left(2 \lambda_{1}+B \rho\right) \eta\right) B \zeta .
\end{gathered}
$$

SAM: Drifting Towards Wide Minima

Theorem

For $s_{t} \in\{-1,1\}$, consider the point $w_{t}=w_{z}+\frac{s_{t} \beta_{1}}{\lambda_{1}} e_{1}=w_{z}+\frac{\eta \rho \lambda_{1} s_{t}}{2-\eta \lambda_{1}} e_{1}$.
Then, if $B \eta \rho \leq 1$, SAM's update on ℓ gives
(for some $\|\zeta\| \leq 1$)

$$
\begin{gathered}
w_{t+1}-w_{t}=-2 \frac{\eta \rho \lambda_{1} s_{t}}{2-\eta \lambda_{1}} e_{1}-\frac{\eta \rho^{2}}{2}\left(1+\frac{\eta \lambda_{1}}{2-\eta \lambda_{1}}\right)^{2} \nabla \lambda_{\max }\left(\nabla^{2} \ell\left(w_{z}\right)\right) \\
+\eta \rho^{2}\left(\frac{\left(1+\eta \lambda_{1}\right)^{3} \rho}{6}+2\left(2 \lambda_{1}+B \rho\right) \eta\right) B \zeta .
\end{gathered}
$$

The gradient steps have:

- A component that maintains the oscillation in the e_{1} direction,

SAM: Drifting Towards Wide Minima

Theorem

For $s_{t} \in\{-1,1\}$, consider the point $w_{t}=w_{z}+\frac{s_{t} \beta_{1}}{\lambda_{1}} e_{1}=w_{z}+\frac{\eta \rho \lambda_{1} s_{t}}{2-\eta \lambda_{1}} e_{1}$.
Then, if $B \eta \rho \leq 1$, SAM's update on ℓ gives
(for some $\|\zeta\| \leq 1$)

$$
\begin{gathered}
w_{t+1}-w_{t}=-2 \frac{\eta \rho \lambda_{1} s_{t}}{2-\eta \lambda_{1}} e_{1}-\frac{\eta \rho^{2}}{2}\left(1+\frac{\eta \lambda_{1}}{2-\eta \lambda_{1}}\right)^{2} \nabla \lambda_{\max }\left(\nabla^{2} \ell\left(w_{z}\right)\right) \\
+\eta \rho^{2}\left(\frac{\left(1+\eta \lambda_{1}\right)^{3} \rho}{6}+2\left(2 \lambda_{1}+B \rho\right) \eta\right) B \zeta .
\end{gathered}
$$

The gradient steps have:

- A component that maintains the oscillation in the e_{1} direction,
- A component pointing downhill in the spectral norm of the Hessian,

SAM: Drifting Towards Wide Minima

Theorem

(B., Long, Bousquet, 2022)

For $s_{t} \in\{-1,1\}$, consider the point $w_{t}=w_{z}+\frac{s_{t} \beta_{1}}{\lambda_{1}} e_{1}=w_{z}+\frac{\eta \rho \lambda_{1} s_{t}}{2-\eta \lambda_{1}} e_{1}$.
Then, if $B \eta \rho \leq 1$, SAM's update on ℓ gives
(for some $\|\zeta\| \leq 1$)

$$
\begin{gathered}
w_{t+1}-w_{t}=-2 \frac{\eta \rho \lambda_{1} s_{t}}{2-\eta \lambda_{1}} e_{1}-\frac{\eta \rho^{2}}{2}\left(1+\frac{\eta \lambda_{1}}{2-\eta \lambda_{1}}\right)^{2} \nabla \lambda_{\max }\left(\nabla^{2} \ell\left(w_{z}\right)\right) \\
+\eta \rho^{2}\left(\frac{\left(1+\eta \lambda_{1}\right)^{3} \rho}{6}+2\left(2 \lambda_{1}+B \rho\right) \eta\right) B \zeta .
\end{gathered}
$$

The gradient steps have:

- A component that maintains the oscillation in the e_{1} direction,
- A component pointing downhill in the spectral norm of the Hessian,
- For small stepsize parameters $\eta, \rho>0$, a smaller component reflecting the change of third derivative.

Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

- Far from a minimum, GD and SAM descend the gradient of the objective

Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

- Far from a minimum, GD and SAM descend the gradient of the objective
- Near a minimum, SAM descends the gradient of the spectral norm of the Hessian.

Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

- Far from a minimum, GD and SAM descend the gradient of the objective
- Near a minimum, SAM descends the gradient of the spectral norm of the Hessian.
- SAM uses one additional gradient measurement per iteration to compute a specific third derivative: the gradient of the second derivative in the leading eigenvector direction.

Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

- Far from a minimum, GD and SAM descend the gradient of the objective
- Near a minimum, SAM descends the gradient of the spectral norm of the Hessian.
- SAM uses one additional gradient measurement per iteration to compute a specific third derivative: the gradient of the second derivative in the leading eigenvector direction.
- Statistical benefits of wide global minima of empirical risk?

Wide global minima of empirical risk?

Coding/information theory:

- Hinton and van Camp. Keeping the neural networks simple by minimizing the description length of the weights. COLT93.
- Hochreiter and Schmidhuber. Flat minima. Neural Comput. 1997.
- Negrea, Haghifam, Dziugaite, Khisti, Roy. Information-theoretic generalization bounds for SGLD via data-dependent estimates. NeurIPS 2019.
- Neu, Dziugaite, Haghifam, Roy. Information-theoretic generalization bounds for stochastic gradient descent. COLT 2021.

Wide global minima of empirical risk?

PAC-Bayes:

- Langford and Caruana. (Not) bounding the true error. NIPS 2002.
- Dziugaite, Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. UAI 2017.

Nonequilibrium statistical physics:

- Baldassi, Borgs, Chayes, Ingrosso, Lucibello, Saglietti, and Zecchina. Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes. PNAS 2016.
- Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes, Sagun, and Zecchina. Entropy-SGD: Biasing gradient descent into wide valleys. ICLR 2017.

Convergence of Sharpness-Aware Minimization

Outline

- SAM with a quadratic criterion: Bouncing across ravines
- Stationary points
- A non-convex gradient descent
- SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
- SAM near a smooth minimum
- Descending the gradient of the spectral norm of the Hessian
- Open questions

Optimization in High-Dimensional Prediction

Olivier Bousquet

Niladri Chatterji

Spencer Frei

Phil Long

- Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. Frei, Chatterji, B. COLT 2022 arXiv:2202.05928
- The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

