Quantum groups in a coco nutshell

Florian Giselle.

WATERSRLTOF

Department of Applied Mathematics
Useful refs.

Masjid Quantum groups
chasi Pressley A guide to quantum groups.

T Tain: An introduction to quantized lie groups and lie algebras hepth 9111043
y. Kosmann Schwarzbach: Lie bialgb Poisson lie of ps and dressing transf.
what is a quantum group?
lie group: Manifold + product. los coorolinates
non comm utative

Plan:

* Overview
* Before quantum: Poisson.
\rightarrow symmetries
L phase space
* Quantum:

4 Hops algebras.

Bd gravity as the leading application

Overview Motivations

Consider a group G

Overview
Motivations
functions on G.

$$
\begin{gathered}
C(G) \times C(G) \\
\rightarrow C(G)
\end{gathered}
$$

Consider a group G equipped with Poisson bracket

$$
\begin{gathered}
g^{(i)} \in G, \quad i=1,2 \\
\left\{g_{A B}^{(i)}, g_{B C}^{(i)}\right\} .
\end{gathered}
$$

coarsegraining should preserve Poisson bracket.

Product is a Poisson map

Historical motivation: integrable systems.

Also coming from symmetry
\longrightarrow Symmetry action on a Poisson space M

Example: angular momentum

$$
\vec{x} \in \mathbb{R}^{3} \quad\left\{x_{i}, x_{j}\right\}=\varepsilon_{i j}{ }^{k} x_{k} .
$$

\mathbb{R}^{3} acts on itself by translation.

$$
\vec{x} \rightarrow a D \vec{x}=\vec{x}+\vec{a} \quad \vec{a} \in \mathbb{R}^{3} .
$$

demand Poisson structure to be covariant under sym action:

$$
\left.\begin{array}{rl}
& \left\{x_{i}+a_{i} ; x_{j}+a_{j}\right\} \stackrel{!}{=} \varepsilon_{i j}^{k}\left(x_{k}+a_{k}\right) \\
\left\{x_{i}^{\prime}, x_{j}^{\prime}\right\} & =\varepsilon_{i j}^{k} x_{k}^{\prime} \\
\varepsilon_{i j}^{k} x_{k}
\end{array}\right\}
$$

\vec{a} : sym parameters need to have a non zero Poisson bracket.

$$
\left\{a_{i}, a_{j}\right\}=\varepsilon_{i j}^{k} a_{k} .
$$

nus action by multiplication
L action is a Poisson map.
\rightarrow product is a Poisson map.

Move de trails now

Poisson manifolds. lie, Poisson 1800 1888.93.
mum manifold, $c^{\infty}(\pi)=c^{\infty}$ functions
L ex: coordinate functions $M=\mathbb{R}^{3} \nexists g \quad x^{i}(g)$ (single patch).
use group structure : $x^{i}\left(g_{1} g_{2}\right)=x^{i}\left(g_{1}\right)+x^{i}\left(g_{2}\right)$.

$$
M=\operatorname{SU}(2) \ni g
$$

1) $\vec{p}(g) \quad$ (at least 2 patch)
use group structure $p^{i}\left(g_{1} g_{2}\right)=\left(p\left(g_{1}\right) \oplus p\left(g_{2}\right)\right)^{i}$
ex: $g= \pm \sqrt{1-|\vec{p}|^{2}} \underline{\mu}+\vec{p} \cdot \vec{\sigma}$
sucre) genevalas
2) matrix elements (if Peter weal theorem).

$$
D_{a n}^{j}(8)
$$

$$
\begin{aligned}
& D_{m n}^{j}(g) \in \mathbb{C} \\
& D_{m n}^{j} \in C(s \cup(2)) .
\end{aligned}
$$

nm Poisson bracket:

$$
\begin{aligned}
& c^{\infty}(M) \times c^{\infty}(\Omega) \rightarrow c^{\infty}(M) \\
&\left(f, f_{2}\right) \rightarrow\left\{f_{1}, f_{2}\right\}
\end{aligned}
$$

Properties: *antiscymuetry. $\left\{f_{1}, f_{2}\right\}=-\left\{f_{2}, f_{1}\right\}$

$$
\text { * Jacobi id : } 0=\left\{f_{1},\left\{f_{2}, f_{3}\right\}\right\}
$$

* Derivation:

$$
\begin{aligned}
& \left\{f_{3} f_{1}, f_{2}\right\} \\
& =\left\{f_{3}, f_{2}\right\} f_{1}+f_{3}\left\{f_{1}, f_{2}\right\}
\end{aligned}
$$

on a Cartesian product: $M \times N, \quad \rho_{1} f_{2} \in C^{\infty}(\pi \times N)$

$$
\left\{, \xi_{M} \quad\{,\}_{N}\right.
$$

$$
\left\{f_{1}, f_{2}\right\}_{M \times N}(x, y)=\left\{f_{1}(\cdot, y) ; f_{2}(\cdot, y)\right\}_{M}(x)+\left\{f_{1}\left(x_{1} \cdot\right) f_{2}(x,)\right\}_{N}(y)
$$

"on a Cartesian product, there is a natural Poisson bracket, with no crossed terms". "product Poisson bracket".

Poisson map: $\quad \phi: M \rightarrow N$

$$
\begin{gathered}
\left\{f_{1} f_{2}\right\}_{N} \circ \phi=\left\{f_{1} \circ \phi ; f_{2} \circ \phi\right\}_{M} \\
\text { Poisson map }=\text { covariance". }
\end{gathered}
$$

Roisson bivector: coordinates on M: x^{i}

$$
\begin{gathered}
\left\{\rho_{1}, \rho_{2}\right\}(x)=\pi^{i j}(x) \partial_{i} \rho_{1} \partial_{j} f_{2} \text { lie 1888-93. } \\
\pi^{i j}=-\pi^{j i} ; \pi^{r i} \partial_{r} \pi^{j k}+\pi^{r j} \partial_{r} \pi^{k i}+\pi^{r k} \partial_{r} \pi^{i j}=0 \\
\text { anrisyon } \quad \text { Jacobi id. }
\end{gathered}
$$

Ex: $\quad\left\{x_{i}, x_{j}\right\}=0$

$$
\pi(x)=0 .
$$

Ex: $\left\{x_{i} ; x^{j}\right\}=\varepsilon^{i j} x^{k}$

$$
\begin{aligned}
& \pi(x)=\varepsilon^{i j} x^{k} \partial_{i} \otimes \partial_{j} \\
& \text { note: } \pi(0)=0
\end{aligned}
$$

Ex: $\quad\left\{x^{i}, x^{j}\right\}=0=\left\{p^{i}, p^{j}\right\}$

$$
\left\{x^{i}, p^{j}\right\}=\delta^{i j} \quad \pi=\left(\Omega^{-1}\right)^{I J} \partial_{I} \otimes \theta_{J} .
$$

$$
T^{*}\left|R^{3} \cong \underset{x}{\underset{x}{\mid R^{3}} \times \underset{R^{3}}{\vec{p}}} \quad x^{I}=\right| \begin{aligned}
& x \\
& p
\end{aligned} \quad \Omega=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

note: $\quad \Omega^{-1}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
symplectio: bivector is invertible.
Phasespace is a special case of a Poissonspace. symplectric Poisson manifold.

One motivation (among others!) for considering a Poisson structure on symmetry structure. (group.)

Poisson Manifold M, G lie group acting on M.

$$
\begin{gathered}
\alpha: G \times M \rightarrow M \quad p \text { point in } M . \\
(g, p) \rightarrow g \Delta p=\alpha(g, p) \\
h \Delta(g \triangleright p)!(h g) \Delta p .
\end{gathered}
$$

$(1$ action is pulled back to $C(M)$. $q_{\text {coors goner. }}$

Ex

$$
\begin{aligned}
& p^{\prime}=g \triangleright p . \\
& \begin{aligned}
x^{\nu}\left(p^{\prime}\right) & =g \nabla x^{\omega}(p) \\
& =X^{\omega}(g \nabla p) .
\end{aligned}
\end{aligned}
$$

If we deal with a symmetry of the Poisson space, Poisson bracket should be covariant under action

$$
\begin{aligned}
& g \Delta\left\{f_{1}, f_{2}\right\}_{M}=\left\{g \Delta f_{1} ; g \Delta f_{2}\right\}_{M} \\
& g D\left\{f_{1}, f_{2}\right\}(p)=\left\{f_{1}, f_{2}\right\}(g \circ p) \\
& \vec{x}+\vec{a}=\vec{x} \\
& =\left\{f_{1}, f_{2}\right\} \circ \alpha\left(\underset{G}{g_{q}}, p\right) \\
& =\left\{f_{1} \circ \alpha, f_{2} \circ \alpha\right\}_{G \times M}^{G}(g, p)
\end{aligned}
$$

mention is a Poisson map.
mu group should be equipped with a Poisson structure.

$$
\begin{aligned}
& \left\{x_{i} ; x_{j}\right\}=\varepsilon_{i j}^{k} x_{k} . \\
& \left.(x+a)_{i},(x+a)_{j}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: } \quad \Pi=\mathbb{C}_{2}^{2} \quad G=\operatorname{soc}(2) \\
& \left\{_{i, j=1,2} z_{i}, \bar{z}_{j}\right\}=\mathbb{1}_{i j} \\
& \left(g_{i j}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text {. } \\
& g \triangleright \mathbb{Y}=\mathbb{M} \\
& g \triangleright\left\{z_{i}, \bar{z}_{j}\right\}=g 口 \underline{M}_{i j}=\underline{\underline{y}}_{i j} \\
& \left\{(g \mapsto z),\left(\bar{g} \Delta z_{j}\right\}=\left\{g_{i k} z_{k} ; \bar{g}_{j_{m}} z_{m}\right\}\right. \\
& =\left\{g_{i k} ; \bar{g}_{i m}\right\}_{G} z_{k} \bar{z}_{m} \rightarrow \mathbb{\mu}_{i j} \\
& +g_{i k}\left\{z_{k}, \bar{z}_{m}\right\} \bar{g}_{M} \\
& \rightarrow g_{i k}\left\{z_{k}, \bar{z}_{m}\right\} \bar{g}_{j m}=g_{i k} \delta_{k m} \bar{g}_{j m} \\
& =\operatorname{g}_{i m} \bar{g}_{j m}=\delta_{i j} .
\end{aligned}
$$

what happens if Poisson brackets non trivial between the z^{\prime} s?
need non Trivial brackets on C(G)
anus hid olen symonetries by considering Poisson structure on the gp.
cf Maite's talk

Punch line:

Symmetry group should be equipped with a Poisson bracket.

Important property for the action

$$
\begin{gathered}
g \Delta h \Delta x=g h \Delta x . \\
g \Delta h \Delta\left\{f_{1}, f_{2}\right\}=(g h) \Delta\left\{f_{1}, f_{2}\right\} \\
=\left\{f_{1}, f_{2}\right\}(g h ; p) \\
=\left\{g \Delta h \Delta f_{1} ; g \Delta h \Delta f_{2}\right\}(p) \\
=\left\{(g h) \Delta f_{1} ;(g h) \Delta f_{2}\right\}(p) \\
=\left\{f_{1} \circ a \circ \alpha ; f_{2} \circ o \Delta x\right\}(g, h, p)
\end{gathered}
$$

$$
\vec{x}+\vec{a}+\vec{b}
$$

$$
\begin{aligned}
& =\left\{R_{h} R_{0} F_{1}, R_{0} F_{2}\right\}_{G}(g)+\left\{\begin{array}{l}
i \\
L_{0} F \\
1
\end{array}, \operatorname{lof}\right\}_{G}(h)
\end{aligned}
$$

mus compatibility between product and Poisson bracket on G

$$
\begin{aligned}
& v: \quad G \times G \rightarrow G \\
& (g, h)=g h=v(g, h) .
\end{aligned}
$$

mun in terms of the Poisson bivector $e g=g$.

$$
\pi(g h)=R_{h} \pi(g)+L_{g} \pi(h) . L_{p} \pi(e)
$$

we say π is Multiplicative

Note $\pi(e)=0$ cannot be symplectic

Definition
A Poisson lie group is a lie group equipped with a Poisson structure compatible with product.

$$
\pi(g h)=R_{h} \pi(g)+L_{g} \pi(h)
$$

Example:

1) $\pi(y)=0$
2) Let $r=r_{i j} x^{\downarrow} \theta x^{d} \in \operatorname{die} \theta$ lie $G x^{i}$ generator of lie G. r must satisfy some properties Jacobi.

$$
\pi(g)=L_{g} r-R_{g} r=[g \otimes g ; r]
$$

check: $\pi(g h)=L_{g h} r-R_{g h} r$

$$
\begin{aligned}
& l_{l_{g} r-R_{g} r}=g h \otimes g h r-r g h \otimes g h . \\
& =g \otimes g r-r g \theta g . \\
& \pi(g h)=R_{h} \pi(g)+L_{g} \pi(h) \\
& R_{h} \pi_{g}=(g \otimes g r-r \theta \theta g)(h \otimes h)=g \otimes g r h \otimes h \\
& L_{g} \pi_{h}=g \theta g(h \otimes h r-r h \otimes h)=g h \otimes g h r
\end{aligned}
$$

Theorem
Every multiplicative Poisson structure on a connected semi simple or compact lie group is of the form

$$
\pi(g)= \pm\left(L_{g} r-r R_{g}\right) .
$$

antisgm
where r is such that
$\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right] \in$ lie G lie f n lie G
(\rightarrow if $=0$ invariant under the adjoin
Yang Baxter equation

$$
\left[J_{+}, J_{-}\right]=J_{3}
$$

Example: $\operatorname{suc}(2)=\operatorname{lie} G \ni J_{i}\left[J_{3}, J_{ \pm}\right]= \pm 2 J_{ \pm}$

$$
\begin{aligned}
& \pi(g)=L_{g}\left(J_{+} \wedge J\right)-R_{g}\left(J_{+} \wedge J_{-}\right) \\
& r=J_{+} \wedge J_{-}=\left(J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right) \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& 2 S_{13}=J_{+} \oplus 1 \otimes J_{-}-J_{-} \mid \theta J_{+} \\
& 2 r_{23}=1 \otimes J_{+} \otimes J_{-}-1 \otimes J_{-} \otimes J_{+} \\
& 4\left[r_{12} ; r_{13}\right]=\left[J_{t} \otimes J_{-} \otimes 1-J_{-} \otimes J_{+} \otimes 1 ;\right. \\
& \left.1 \otimes J_{+} \otimes J_{-}-1 \otimes J_{-} \otimes \mathbf{J}_{+}\right] \\
& =J_{+} \theta\left[\left[_{0}, J_{+}\right] \theta^{5}--J_{+} \otimes\left[5^{5}, 5\right] \theta^{5}\right. \\
& -J_{-} \otimes\left[J_{t}, J_{t}\right] \otimes 5+S_{-} \otimes\left[J_{+} J_{-}\right] \oplus J_{+} \\
& =-J_{+} \otimes J_{3} \otimes J_{-}+J_{-} \otimes J_{3} \otimes J_{+} \\
& \left.4\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]\right)=\varepsilon^{i j k} J_{i} \otimes J_{j} \oplus J_{k} .
\end{aligned}
$$

Punch line:
large class of Poisson brackets on G compatible with multiplication are given by bisector

$$
\begin{array}{r}
\pi(g)= \pm\left(L_{g} r-R_{g} r\right) \\
L_{\text {o }} \in l_{i e} G \text { (lie } G
\end{array}
$$

People look at all possible r given G.
30) Poincare: stachusa 1998. J. Phys. A: Math. Gen. 314555

Id Poincare: Zakrzewski hepth 9412099 Loufinished?

From bivector to Poisson bracket. $\quad f: \in(G)$. when π is multiplicative.
$\pi(g) \in T_{g} G \otimes T_{g} G$

$$
\begin{array}{r}
\left\{f_{1}, f_{2}\right\}(g)=\left\langle\pi_{g i}\left(d f_{1}\right)_{g} \otimes\left(d f_{2}\right)_{g}\right\rangle . \\
r=r_{i}^{i d} x_{i} \otimes x_{j} \in T_{e} G \otimes T_{e} G . \\
T_{e} G \sim l_{i e} G . \\
\left\{f_{1} f_{2}\right\}(g)=\left\langle\pi(g) ;\left(d f_{1}\right)_{g} \otimes\left(d f_{2}\right)_{g}\right\rangle \\
=\left\langle L_{g} r-R_{g} r_{i}\left(d f_{1}\right)_{g} \otimes\left(d f_{2}\right)_{g}\right\rangle . \\
= \\
\left\langle r_{i}\left(L_{g}^{*} \otimes L_{g}^{*}-R_{g}^{*} \otimes R_{g}^{*}\right)\left(d f_{1}\right)_{g} \otimes\left(d f_{2}\right)_{g}\right\rangle
\end{array}
$$

Sklynanin bracket.

Even more: $\quad r=r^{i j} X_{i} \otimes X_{j}$ basis of Lie G.
$X_{i}{ }^{L}$ and X_{j}^{R} are the corresponding left or right invariant vector fields.

$$
\left\{\rho_{1} \delta_{2}\right\}(g)=F\left(x_{i}^{2} \delta_{1} \otimes x_{j}^{2} \rho_{2}-x_{i j}^{R} \delta_{1}\left(x_{j}^{R} \rho_{2}\right)\right.
$$

Take the case where the functions are the matrix elements.

$$
\begin{aligned}
& f_{1} \equiv L_{i j} \quad f_{2} \equiv L_{k 1} \\
& X_{L}^{a} L_{i j}(g)=\frac{d}{d t} L_{i j}\left(e^{t x^{a}} g\right)=X_{i m}^{a} L_{m j}(g) \\
& X_{R}^{a} L_{i j}(z)=\frac{d}{d t} L_{i j}\left(g e^{t x^{a}}\right)=L_{i m}(z) X_{m j}^{a} \\
& \left\{L_{i j} ; L_{k 1}\right\}=r^{a b}\left(X_{a}^{L} L_{i j} \otimes x_{b}^{L} L_{k 1}-x_{a}^{R} L_{i j} \otimes X_{b}^{R} L_{k 1} \backslash\right. \\
& =r^{a b}\left(L_{i m} x_{j}^{a} j^{\otimes} L_{k \mu \mu l} x^{b}-x_{i m}^{a} L_{m j} \otimes x_{k \mu}^{b} L_{m 1}\right) \\
& =r_{m j \mu 1} L_{i m} \otimes L_{k \mu}-r_{i m k \mu} L_{m j} \otimes L_{\mu 1} \\
& =-[r ; L \oplus L]_{i j k I}
\end{aligned}
$$

New notalion: $\quad L_{i j}=a_{i}{ }^{j}$

$$
\begin{aligned}
& L \otimes 1=\left(\begin{array}{ccccccc}
a_{1}^{1} & 0 & \cdots & 0 & \cdots & a_{p}^{1} & 0
\end{array} \cdots \begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \{L \oplus L\}=-[r, L \otimes L] .
\end{aligned}
$$

Punch line:
when the bivector is of the type

$$
\pi(g)=L_{g} P-R_{g} r
$$

the Poisson bracket between the matrix elements take the shape.

$$
\left\{L_{(1)} ; L_{(2)}\right\}=-[r, L \otimes L] .
$$

numb what natural Poisson (symplectic) space a Poisson lie group acts as symmetry?

The group G acts on itself by multiplication.
eg: $L: G \times G \rightarrow G$

$$
\left(g ; g^{\prime}\right) \rightarrow L_{g} g^{\prime}=g g^{\prime}
$$

\longrightarrow natural Poisson space: the Poisson liege itself.
\rightarrow another Poisson structure on G

$$
\begin{aligned}
\left\{g_{(1)}, g_{(2)}\right\}_{+} & =\left[r, g_{1} g_{2}\right]_{+} \\
& =r g_{1} g_{2}+g_{1} g_{2} r .
\end{aligned}
$$

symmetry p
check: $\left\{h_{(1)}, h_{(2)}\right\}_{-}=\left[\begin{array}{lll}r & h_{1} & h_{[2}\end{array}\right]$.

$$
\left.=r h_{(i)} h_{(2)} h_{(0)} h_{(4}\right)^{r}
$$

$$
\begin{aligned}
& \left\{(h g)_{(1)} ;(h g)_{(2)}\right\}_{+} \stackrel{?}{=}\left[r_{i}(g h)_{()}(g h)_{(t)}\right]_{+} \\
& =\left\{R_{g} h_{())} ; R_{g} h_{(2)}\right\}_{-}+\left\{L_{h} g_{(0)} ; l_{h} g_{(0)}\right\}_{+}
\end{aligned}
$$

\rightarrow will be related to phase spaces.

Punch line:

Not all bisectors generated by r are multiplicative!
mum go infinitesimal bi algebra.

Te G
in finitesinal limit: $g \in G \rightarrow$ lie $G \ni x$ (close to the identity) $\quad g \rightarrow 1+x$

$$
T_{g} G \otimes T_{g} G \nexists \pi(z) \rightarrow \delta(x) \in \operatorname{lie} G \otimes \operatorname{lic} G
$$

Main example: $\pi(g)=L_{g} r-R_{g} r$

$$
\begin{aligned}
& =g \otimes g r-r g \otimes g \\
& \approx(1+x) \otimes(1+x) r-r(1+x) \otimes(1+x) \\
& \rightarrow[\underbrace{x \otimes 1+1 \otimes x}_{\Delta x} ; r]=\delta(x) .
\end{aligned}
$$

Since $\pi(g)$ is a Poisson bivector, δ satisfies some properties.
$\delta:$ lie $G \rightarrow$ lie $G \cap$ lie G.

Let $(\text { lie } G)^{*}$ the dual vector space to lie G

$$
\left\langle\xi_{i} x_{j}\right\rangle=\delta_{i j} .
$$

we can use δ to define a bracket on (lie G)

$$
\begin{aligned}
& \left\langle\xi_{i} \otimes \xi_{j} ; \quad \delta\left(x_{k}\right)\right\rangle=\left\langle\delta_{a b k} x_{a} \otimes x_{b}, \rho_{i j m} \xi_{m}\right. \\
& \left.\left\langle\xi_{i}, \bar{\xi}_{j}\right]_{k} ; x_{k}\right\rangle \\
& \left\langle\xi_{j} ; f_{a b k} x_{a} \otimes x_{b}\right\rangle=f_{a b k} \delta_{i a} \delta_{j b}=f_{i j k} .
\end{aligned}
$$

Since we constructed δ from π which satisfied the Jacobi id, the brocket $[;]_{*}$ also satisfies the Jacobi identity.
$\left\{\begin{array}{l}{[,]_{*} \text { is a (lie) bracket }} \\ (\text { lie } G)^{*} \text { is a lie algebra. }\end{array}\right.$
hus lie G^{*} (finite dim case)
Definition:
A lie bialgebra, noted (lie G, δ) or (lie θ, lie σ^{*}) on lie G is give in terms of a skew sym linear map $\delta:$ lie $G \rightarrow$ lie $G \otimes$ lie G suck that
$* \delta^{*}:$ lie $G^{*} \otimes \operatorname{lie} G^{*} \rightarrow$ lie G^{*} is a lie brakes

* δ is a cocycle.
\rightarrow co homology of lie alg.

$$
\delta([x, y])=a d_{x} \delta(y)-a d_{y} \delta(x) \text {. }
$$

cocycle property comes from bivector property
mus given a tensor T on the lie gp G a mapping from G to $k^{\text {th }}$ tensor powerlie G is defined by

$$
e(\pi)(g)=\pi(g) \cdot g^{-1} .
$$

Main example: $\pi(g)=g r-r g=\left(g r g^{-1}-r\right) g$

$$
T_{e} G \otimes T_{e} G
$$

If π is multiplicative:

$$
\begin{aligned}
& P(\pi)(g h)=g P(\pi)(h) g^{-1}+e(\pi)(g) \\
& =g\left(h r h^{-1}-r\right) g^{-1}+g r g^{-1}-r \\
& =
\end{aligned}
$$

This defines the notion of 1-cocycle

Theorem:
let G be a simply connected lie group. Every bialgebra structure on lie is the tangent lie bialgebra of a unique Poisson structure which makes G a Poisson lie group.

$$
\begin{aligned}
\text { lie: } & \operatorname{lie} G \leftrightarrow G \\
\text { Poisson lie: } & (\text { lie } G, \delta) \leftrightarrow(G, \pi)
\end{aligned}
$$

Terminology: we say the lie bialgebra is

* Coboundary, if $\exists r \in \operatorname{lie} G \operatorname{lie} G / \delta(x)=[x, r]$. with r satisfying the modified YB equation.
* coboundary quasitsiangular, if $r=a+s$ with $s \in \operatorname{lie} G \odot$ lie $G, a \in$ lie $G \wedge$ lie G. such that classical $y B$ is satisfied.
* coboundary triangular if $r=a \in$ liebnlieg
* coboundary factorizable if s defines a nou degenerate sym. bilinear formon Lie G^{*}.

$$
\delta(x)=[1 \oplus x+x \oplus 1, r]
$$

Example
lie $G=\operatorname{su}(2) \ni J_{i}$
antisyn.

$$
\begin{aligned}
\delta\left(J_{+}\right) & =\left[J_{+} \otimes|+| \otimes J_{+} ; J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right] \frac{1}{2} \\
& =\left(-J_{3} \otimes J_{1}+J_{+} \otimes J_{3}\right) \frac{1}{2}=J_{+} \wedge J_{3}
\end{aligned}
$$

$$
\begin{aligned}
\delta\left(J_{-}\right) & =\left[J_{-} \otimes \mid \otimes J_{-} ; J_{+} \otimes J_{-} J_{-} \otimes J_{+}\right] \frac{1}{2} \\
& =\left(-J_{3} \otimes J_{-}+J_{-} \otimes J_{3}\right) \frac{1}{2}=J_{-} \wedge J_{3}
\end{aligned}
$$

$$
\begin{aligned}
\delta\left(J_{3}\right) & =\left[J_{3} \otimes 1+\mid \otimes J_{3} ; J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right] 1 / 2 \\
& =\left(J_{+} \otimes J_{-}+J_{-} \otimes J_{+}-J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
r^{\prime}= & 1 / 2 J_{3} \otimes J_{3}+2 J_{+} \otimes J_{-} \\
r^{\prime}= & \frac{1}{2} J_{3} \otimes J_{3}+2 J_{+} \otimes J_{-} \\
= & \frac{1}{2} J_{3} \otimes J_{3}+J_{+} \otimes J_{2}+J_{-} \otimes J_{+} \\
& +J_{+} \otimes J_{-}-J_{-} \otimes J_{+} \\
= & \frac{1}{2} J_{1}+2 r= \\
& =\sigma+\theta .
\end{aligned}
$$

Punch line:

lie: $\quad \operatorname{lie} G \leftrightarrow G$
Poisson lie: $($ lie $G, \delta) \leftrightarrow(G, \pi)$

Notion of duality is key to the notion of quantum groups?

Def: Mania Triple.
It is a triple of lie algebras (∂, lief, Lie $^{*}{ }^{*}$) together with a non deg. Sym. bilinear form. \langle,$\rangle on \delta$ under the adjoint action of ∂ such that.

1) $\operatorname{lie} G$ and lie G^{*} ave lie subalgb of \mathcal{A}
2) 0) Lie $G \oplus$ lie G^{*} as vector space
3) Lie G and lie G^{*} are isotropic for \langle,$\rangle .$

$$
\left\langle x_{i}, x_{j}\right\rangle=0=\left\langle\xi_{i}, \xi_{j}\right\rangle \quad \begin{aligned}
& x \in \operatorname{lie}_{\xi \in \operatorname{lie}^{*}}
\end{aligned}
$$

Proposition:
For any finite dim lie algebra, there is a \mid to \mid correspondence between lie bialgl structure on lie G and the Manin Triple (2 , lie G, lie G^{*}).
useful to see how things are constrained:

$$
\begin{aligned}
& {\left[x_{i}, x_{j}\right]=c_{i j}^{k} x_{k}\left\{\left[\xi_{i}, \xi_{j}\right]=f_{i j}^{k} \xi_{k}\right.} \\
& \delta\left(\begin{array}{l}
x_{k}
\end{array}\right)=f_{i j k} x^{i} \otimes x^{j}\left\{\delta_{*}\left(\begin{array}{l}
\xi_{k}
\end{array}\right)=c_{k i j} \xi^{i} \otimes\right\}^{j} \\
& \begin{aligned}
\left\langle\underline{\left[x_{i i} ; \xi_{j}\right]} ; \xi_{k}\right)^{t} & =\left\langle x_{i} ;\left[\xi_{j}, \xi_{k}\right]\right\rangle \\
& \left.=\left\langle x_{i}\right\rangle \xi_{j a}\right\rangle
\end{aligned} \\
& =\left\langle x_{i j} \delta_{j_{k a}} \xi_{a}\right\rangle \\
& =f_{j k i}
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle\left[x_{i}, \xi_{j}\right]_{i} x_{k}\right\rangle=-\left\langle\left[\xi_{j ;} x_{i}\right] ; x_{k}\right\rangle \\
&=-\left\langle\xi_{j ;}\left[x_{i}, x_{k}\right]\right\rangle \\
&=-c_{i k j} \\
& {\left[x_{i}, \xi_{j}\right]=-c_{i k j} \xi_{k}+f_{j k i} x_{k} }
\end{aligned}
$$

cocycle property:

$$
\begin{aligned}
& \delta\left(\left[x_{i}, x_{j}\right]\right) \stackrel{?}{=} x_{i} \cdot \delta\left(x_{j}\right)-x_{j} \cdot \delta\left(x_{i}\right) . \\
& \delta\left(c_{i j}^{k} x_{k}\right)=c_{i j}^{k} f^{m n} k x_{m} \otimes x_{n}
\end{aligned}
$$

null cocycle property gives Jacobi id with mixed terms of d.

Punch line:

It is equivalent to talk about a bialgebra $($ lie $G, \delta)$ and a pair of (dual) lie algebras (Manin Triple)

It also allows to construct a natural dual space

In the finite dim case, Marin triple is self dual.

(d). Lie G \otimes lie G* Manintriple.
is there a cocycle structure on d which contains the same in formation as (lie G, δ) and lie $G^{*}, a_{\&}$)?

$$
\left(\partial, \delta^{\partial}\right) \quad \begin{aligned}
& s_{i} P_{i} \\
& \sin ^{2}(2) \mathbb{R} \mathbb{R}^{3} \\
& {\left[J_{i}, J_{j}\right]=\varepsilon_{i j}{ }^{k} S_{k} .} \\
& {\left[P_{i}, P_{j}\right]=0} \\
& {\left[s_{i}, P_{j}\right]=\varepsilon_{i j}{ }^{k} P_{k} .}
\end{aligned}
$$

Given a pair of dual lie algebras lie G, lect such that (lie G, lie G^{*}) is a (finite dim) bialy there is a canonical bialgb structure δ
$\left(\partial=L_{i e} G \mathbb{D}\right.$ Lie $\left.G^{*}, \frac{\partial}{\delta}\right)$ is then called the classical double.

$$
\rightarrow \delta^{\partial}=\left[|O \mu+\mu \otimes|, r^{r}\right]
$$

it is coboundary and quasitriangular.

$$
r^{\partial} \in \text { lie } \in \otimes \text { lie } G^{*} C \partial \otimes \partial
$$

is the identity map lief \rightarrow lie $\hat{r}=X_{i} \otimes \xi^{i}$ satisfies classical
cocycle on ∂ is

$$
\begin{aligned}
\delta^{\partial}(\mu) & =[u ; r] \\
& =[u|+1+| \otimes u ; \Theta]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Take } \mu=x_{i} \in \text { lieG } \\
& \delta^{\delta}\left(x_{i}\right)=\left[x_{i} ; x_{j}\right] \otimes \xi^{j}+x_{j} \otimes\left[x_{i} ; \xi^{j}\right] \\
& =c_{i j}{ }^{k} x_{k} \otimes \xi^{j}+x_{j} \otimes\left(-c_{i k j} \xi_{k}+f_{j k i} x_{k}\right) \\
& =f_{j k i} x_{j} \otimes x_{k}=\delta_{\text {lieG }}\left(x_{i}\right) \text {. } \\
& \delta^{\partial}\left(\xi_{i}\right)=\left[\xi_{i}, x_{j}\right] \otimes \xi^{j}+x_{j} \otimes\left[\xi_{i} \xi_{j}\right] \\
& \left.=\left(c_{i k i}\right\}^{k}-f_{i k j} x^{k}\right) \otimes \xi^{j} \\
& +x_{j} \otimes f_{i j}^{k} \xi_{k} . \\
& =-c_{j k i} \xi^{j} \otimes \xi^{k}=-\delta_{l i e G^{*}}\left(\xi_{i}\right)
\end{aligned}
$$

nuns we can exponentiate $\mathcal{O} \rightarrow D$

$$
\begin{gathered}
\partial=\text { lie } G \nsim \text { lie } G^{*}, \delta^{\partial} \\
D_{q}=G \notin G^{*}, \pi
\end{gathered}
$$

Note: D is even dimensional.
ho could we use it as phase space? (with $a \neq \pi \%$).

Punch line:

Mann Triple
Given the (double lie algebra) $\partial=$ lie $G \perp$ lie G^{*} we can find easily a quasitsiangular coigcle:
r matrix is the identity.

Examples.

$$
\begin{aligned}
& \text { lie } G=\operatorname{sun}(2) \ni J_{i} \quad \delta(J)=0 \\
& l \\
& \text { lie } G^{*}=\operatorname{suc}(2)^{*} \partial \xi_{j} \quad\left[\xi_{i}, \xi_{j}\right]=0 \\
&\left\langle\left[\xi_{i} ; \xi_{j}\right]_{l_{i}\left(G^{*}\right.}\left(J_{k}\right)\right\rangle=\left\langle\operatorname{lij}_{i j} \xi_{a} ; J_{k}\right\rangle \\
&=f_{i j a} \delta_{a k}=f_{i j k} . \\
&=\left\langle\xi_{i} \otimes \xi_{j} ; \delta\left(J_{k}\right)\right\rangle=0 \text { mus } f_{i j k}=0
\end{aligned}
$$

$\partial!$! lie $G=\operatorname{suc}(2) \quad \operatorname{li} G^{*}=\mathbb{R}^{3}$.

$$
\left[J_{i} ; \xi_{j}\right]=\varepsilon_{i j k} \xi_{k}-\rho_{j k i} J_{k} .
$$

$\partial=\operatorname{suc}(2) \propto \mathbb{R}^{3}: 3 d$ euclidean lie alg h.

$$
\begin{aligned}
& G=S U(2) \ni g \quad \prod_{f v(i)}=0 \text { mus }\left\{g_{i i} ; g_{K} \mid\right\}=0 \\
& G^{*}=\mathbb{R}^{3} \Rightarrow \mathcal{X}^{(2)} \quad \mathbb{R}^{3}=\varepsilon_{i j k} x^{i} \partial_{j} \otimes \partial_{k} \\
& \delta_{\text {lie } \sigma^{*}}\left(\xi_{k}\right)=\varepsilon_{i j k} \xi^{i} \otimes \xi^{j} . \quad\left\{x_{i}, x_{j}\right\}=\varepsilon_{i i}{ }^{k} x_{k} .
\end{aligned}
$$

$$
\left\{x_{i} ; g\right\}=0
$$

$D=\operatorname{su}(2) \times \mathbb{R}^{3} \quad$ Euclidian group
other case:

$$
\begin{aligned}
\text { lie } G & =\operatorname{su}(2) \nexists J_{i} \quad r=J_{+} n J_{-} \\
\delta\left(J_{+}\right) & =\left[J_{+} \otimes 1+\mid \otimes J_{+} ; J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right] \frac{1}{2} \\
& =\left(-J_{3} \otimes J_{1}+J_{+} \otimes J_{3}\right) \frac{1}{2}=J_{+} \cap J_{3} \\
\delta\left(J_{-}\right) & =\left[J_{-} \otimes 1+\mid \otimes J_{-} ; J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right] \frac{1}{2} \\
& =\left(-J_{3} \otimes J_{-}+J_{-} \otimes J_{3}\right) \frac{1}{2}=J_{-} \cap J_{3} \\
\delta\left(J_{3}\right) & =\left[J_{3} \otimes 1+\otimes J_{3} ; J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right] / 2 \\
& =\left[J_{+} \otimes J_{+}+J_{-} \otimes J_{+}-J_{+} \otimes J_{-}-J_{-} \otimes J_{+}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\xi_{+} \not J_{+} \wedge J_{3} \xi_{-} \cdot \delta_{+}\left(J_{+}\right)\right\rangle=0 \\
& \left\langle\xi_{+} \oplus \underset{\sim}{ } ; \delta(J)\right\rangle=0 \\
& J_{-} \wedge J_{3} \\
& \left\langle\xi_{+} \oplus \underline{\xi} ; \delta(J)\right\rangle=0 \\
& \left\langle\xi_{+} \otimes \xi_{3} ; \delta\left(J_{+}\right)\right\rangle=\left\langle\xi_{+} \otimes \xi_{3} ; \quad\left(J_{+} \otimes J_{3}-J_{3} \otimes J_{+}\right) \frac{1}{2}\right\rangle \\
& J_{4} \wedge J_{3}=1 / 2 \\
& \left\langle\xi_{\}} \otimes \xi_{3} ; \delta\left(J_{-}\right)\right\rangle=0 . \\
& J_{-} \wedge J_{3} \\
& \left\langle\xi_{+} \otimes \xi_{3} ; \delta\left(\xi_{3}\right)\right\rangle=0 \\
& \text { ••• muv }\left[\xi_{-}, \xi_{3}\right]=\frac{1}{2} \xi
\end{aligned}
$$

$$
\begin{aligned}
& \text { lie } G^{*} \equiv a n_{2} \quad \begin{array}{l}
{\left[\xi_{1} \xi_{-}\right]=0} \\
{\left[\xi_{+}, \xi_{3}\right]=\frac{1}{2} \xi_{+}} \\
{\left[\xi_{-}, \xi_{3}\right]=\frac{1}{2}}
\end{array} \\
& \partial!\text { lie } G=\operatorname{suc}(2) \quad \operatorname{lie} G^{*}=a n_{2} \\
& {\left[J_{i i} \xi_{j}\right]=\stackrel{+}{\varepsilon_{i j k} \xi_{k}}-\delta_{j k i} J_{k} .} \\
& \partial=\operatorname{sil}(2, c)=\left(\operatorname{suc}(2) \Delta \operatorname{an} n_{2} ; r=\frac{1}{2} J_{i} \theta \xi^{i}\right) \\
& \text { Iwasawa decomposition }
\end{aligned}
$$

Punch line:
non abilianess "curvature"

$$
\downarrow^{1}
$$

Poisson non commutativity
(sway
(π, G) : nonabelian os .

non Trivial.
angular. momentous

Symmetries of what? Lo phase space.
mum Poisson space: restrict to where Poisson bivector is invertible: Symplectic leaves.

Example: $\mathbb{R}^{3} ;\left\{x^{i} ; x^{j}\right\}=\varepsilon^{i j}{ }_{k} x^{k}$

$$
\begin{aligned}
\longrightarrow x^{i} x_{i}= & c^{2} \\
& \text { coadjoint or bits. }
\end{aligned}
$$

mus symplectic space $=$ phase space. Dringeld double D acts on itself by left (or right) multiplication (as a group). even dim by def?
\longrightarrow can we make Da phase space?

As a Poissou lie g roup

$$
\begin{gathered}
l u=d \in D=G^{*} \bowtie G \quad r=\xi^{i}\left(J_{i}=s+a\right. \\
\left\{d_{(1)} ; d_{(2)}\right\}=[a, d \otimes d] . \\
\left\{l_{(1)}, l_{(2)}\right\}=+[r, l \otimes l] . \quad \text { Drifeld double } \\
\left\{\mu_{(1)}, \mu_{(2)}\right\}=-[r, u \otimes \mu] \quad\left\{l_{(1)} ; u_{(2)}\right\}=0
\end{gathered}
$$

As a symplectic space

$$
l \mu=d \in D=G_{M}^{*} G
$$

$$
\left\{d_{(1)} ; d_{(2)}\right\}_{ \pm}=\left[a_{1}, d \otimes d\right]_{t}
$$

Heisen berg dooble.

$$
\begin{aligned}
& \left\{\ell_{(1)}, l_{(2)}\right\}=+[r, l \otimes l] . \\
& \left\{\mu_{(1)}, \mu_{(2)}\right\}=-[r, u \otimes \mu]
\end{aligned} \quad\left\{l_{(1)} ; u_{(2)}\right\}=l_{(1)} r \mu_{(2)}
$$

Example: $D=\mathbb{R}^{3} \times \Delta S U(2)$

$$
\begin{aligned}
& r=3^{i} \otimes J_{i} ;\left[\xi^{i} ; \xi^{j}\right]=0 . \\
& D=l u \quad l \in \mathbb{R}^{3} \quad u \in \operatorname{Su}(2) \\
& x^{i}(l)
\end{aligned}
$$

we obtain

$$
\left\{x^{i}, p^{j}\right\}=\delta^{i j}
$$

$$
\begin{aligned}
& \left\{x^{i} ; u\right\}=J_{i} \mu \\
& \left\{x^{i}, x^{j}\right\}=\varepsilon^{i j k} x_{k} \\
& \{u, \mu\}=0
\end{aligned}
$$

Hence we recover the Paisson brackel of T^{*} su(2)!

$$
\left(T^{*} \text { SU(2) }<\{ \}\right)^{2} \sim\left(\mathbb{R}^{\text {ISU(2) }} \times \text { SU }^{(2)} ;\{ \}_{7}\right)
$$

Symmetry: (ISOUC2, , $\left\{-\xi_{-}\right)$Phase space (ISOC 2), $\left\{\xi_{+}\right.$)
Lo acts on itself by left or right multiplication

Similar to $\mathbb{R}^{2}=\mathbb{R} \otimes \mathbb{R} \simeq T^{*} \mathbb{R}$.

\longrightarrow action: $(a, b) D(p, a)$

$$
\begin{aligned}
& =(a+p, b+q) \\
& =(p+a, q+b) .
\end{aligned}
$$

are 0 here

Note: in $T^{*} S U(2)$ we have the left and the right momentum $X_{L} ; X_{R}=\mu^{-1} X_{L} \mu$.
we have the same in the Heisen berg double formulation ISO (2) has a left and a right decamp position.

$$
d=l \mu=\mu \mu^{-1} l \mu=\tilde{\mu} \tilde{l} \quad \text { with } \left\lvert\, \begin{aligned}
& \tilde{\mu}=\mu \\
& \tilde{l}=\mu^{-1} l \mu
\end{aligned}\right.
$$

pictorial representation

\rightarrow we can deform the cotangent bundle of $\mathrm{SO}(2)$

Lo still a phase space but with non trivial Poisson bracket on the SU(2) sector.

$$
\begin{aligned}
T^{*} \operatorname{So}(2) \text { mus } S L(2, C) & =A W_{2} \not \propto \text { SUE) } \\
& =\text { SU(2) } \bowtie A N_{2}
\end{aligned}
$$

$$
\begin{aligned}
d=l \mu & =\tilde{\mu} \tilde{l} \\
& =(l \Delta u)(l \Delta u) \\
(\tilde{\mu} \Delta \tilde{l})(\tilde{u} \Delta \tilde{l}) & =
\end{aligned}
$$

Punch line:

 have a symmetry structure given by a Poisson lie group (Drinfeld double)
we can oleform $T^{*} G$ into a new phase space. Still have Poisson lie group as symmetries.

When we write the phase as a group we call it Heisenberg double.
according to the choice of dynamics we choose, we might have some non Trivial Poisson lie symmerries.

what about the symplectic form?
Alekseer
6 Malkin
Heisen berg double.
Theorem Making
if $D=G \Perp G^{*}$ is a matched pair of groups with $\operatorname{dim} G=\operatorname{dim} G^{*}$
then

$$
\Omega=\frac{1}{2}(\langle\Delta \tilde{\mu} n \Delta l\rangle+\langle\underline{\Delta} n \Delta \tilde{e}\rangle)
$$

is a symplectic form.

$$
\begin{aligned}
& \Delta v=\delta v v^{-1} \\
& \Delta v=v^{-1} \delta v .
\end{aligned}
$$

L can be generalized to the case where the factorization is only local.

Note: we get (non abelian) group valued charges in general Lo momentum maps.
we can show easily that Ω is closed.

$$
\begin{aligned}
\Delta \Delta d=(\delta d) d^{-1} & =\delta l l^{-1}+l \delta u \mu^{-1} l^{-1} \\
& \left.=\Delta l+d \Delta u d^{-1}\right) \Delta l-\Delta \tilde{u}=d(\Delta u-\Delta \tilde{l}) \\
& =\Delta \tilde{u}+d \Delta \tilde{e} d^{-1} \cdot \\
\delta \Delta v & =\Delta v \wedge \Delta v \quad \delta \Delta v=-\Delta v \wedge \Delta v
\end{aligned}
$$

$$
\begin{aligned}
& \delta\langle\Delta \tilde{\mu} \wedge \Delta l\rangle=\langle\Delta \tilde{\mu} \wedge \Delta \tilde{\mu} \wedge \Delta l\rangle \\
&-\langle\Delta \tilde{\mu} \hat{\imath} \Delta l \wedge \Delta l\rangle \\
&,\langle x,(\bar{y}, \vec{\prime}\rangle\rangle \\
&=\langle\Delta \tilde{\mu} \wedge \Delta \tilde{\mu} \wedge \Delta l\rangle=-\langle[, x] ; z\rangle . \\
&-\langle\Delta l \wedge \Delta \tilde{\mu} \wedge \Delta l\rangle \\
&=\langle(\Delta \tilde{\mu}-\Delta l) \wedge \Delta \tilde{\mu} \wedge \Delta l\rangle . \\
&= \text { isotropy of }\langle\cdot\rangle \\
&\langle(\Delta \bar{\mu}-\Delta l) \wedge(\Delta \tilde{\mu}-\Delta l) \wedge(\Delta \tilde{\mu}-\Delta l)\rangle
\end{aligned}
$$

Same calculation for the other contribution mus get opposite value.

Explicit example:

$$
\begin{aligned}
D & =\mathbb{R}^{3} \times \operatorname{suc}(2) \\
& =\operatorname{su}(2) \propto \mathbb{R}^{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \ell \mu=\mu \tilde{l} \quad \tilde{l}=\mu^{-1} l \mu . \\
& \Omega=\frac{1}{2}\langle\Delta \tilde{\mu} \wedge \Delta l\rangle+\frac{1}{2}\langle\Delta \mu n \Delta \tilde{l}\rangle \\
& \Delta \mu
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\ell}=\tilde{l}^{-1} \delta \tilde{l}=\mu^{-1} l^{-1} \mu\left(-\mu^{-1} \delta \mu \mu^{-1} \ell \mu+\mu^{-1} \delta l u+\mu^{-1} \ell \delta \mu\right) \\
& =-\mu^{-1} l^{-1} \delta u^{-1} l u+\mu^{-1} \underbrace{l^{-1} \delta l}_{\delta x} u+\mu^{-1} \delta u \\
& \langle\Delta \mu n \Delta \tilde{l}\rangle=-\left\langle\Delta \mu \wedge l^{-1} \Delta \mu l\right\rangle+\langle\Delta \mu n \delta x\rangle+0 \\
& l=1+\chi \quad l^{-1}=1-x \\
& \Delta \mu x-x \Delta \mu=[\Delta \mu ; x] \\
& \Omega \equiv\langle\Delta \mu n \delta \neq\rangle-\frac{1}{2}\langle\notin ;[\Delta \mu \wedge \Delta \mu]\rangle \text {. }
\end{aligned}
$$

This is the symplectic for of the spinning fop.
 alge bra of oloservables which transform under sym

Observablesare represerted onsuch form un stares. They also rams formunder soch symme ries.

